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What is a permutation?

Let [n] denote the set {1, 2, · · · , n}.

A permutation π is a 1-1 function from [n] onto itself.

We will use the notation π(i) to denote the image of i ∈ [n]
under π.

The space of permutations of size n will be denoted by Sn.
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Viewing permutation as a measure (Hoppen et al., JCT(B) 2013)

Given a permutation π on Sn, partition the unit square into
n2 squares of sizes 1/n.

Define a measure L(π) on the unit square with the following
density w.r.t. Lebesgue measure:

fπ(x, y) =n if π(⌈nx⌉) = ⌈ny⌉,
=0 otherwise.

Thus we put mass on the (i, j)th box iff π(i) = j.

With this definition the measure L(π) has uniform marginals
for any permutation π. Let M denote the set of all
probability measure on [0, 1]2 with both marginals uniform.

Sumit Mukherjee Permutation limits 2 / 49



Viewing permutation as a measure (Hoppen et al., JCT(B) 2013)

Given a permutation π on Sn, partition the unit square into
n2 squares of sizes 1/n.

Define a measure L(π) on the unit square with the following
density w.r.t. Lebesgue measure:

fπ(x, y) =n if π(⌈nx⌉) = ⌈ny⌉,
=0 otherwise.

Thus we put mass on the (i, j)th box iff π(i) = j.

With this definition the measure L(π) has uniform marginals
for any permutation π. Let M denote the set of all
probability measure on [0, 1]2 with both marginals uniform.

Sumit Mukherjee Permutation limits 2 / 49



Viewing permutation as a measure (Hoppen et al., JCT(B) 2013)

Given a permutation π on Sn, partition the unit square into
n2 squares of sizes 1/n.

Define a measure L(π) on the unit square with the following
density w.r.t. Lebesgue measure:

fπ(x, y) =n if π(⌈nx⌉) = ⌈ny⌉,
=0 otherwise.

Thus we put mass on the (i, j)th box iff π(i) = j.

With this definition the measure L(π) has uniform marginals
for any permutation π. Let M denote the set of all
probability measure on [0, 1]2 with both marginals uniform.

Sumit Mukherjee Permutation limits 2 / 49



Viewing permutation as a measure (Hoppen et al., JCT(B) 2013)

Given a permutation π on Sn, partition the unit square into
n2 squares of sizes 1/n.

Define a measure L(π) on the unit square with the following
density w.r.t. Lebesgue measure:

fπ(x, y) =n if π(⌈nx⌉) = ⌈ny⌉,
=0 otherwise.

Thus we put mass on the (i, j)th box iff π(i) = j.

With this definition the measure L(π) has uniform marginals
for any permutation π.

Let M denote the set of all
probability measure on [0, 1]2 with both marginals uniform.

Sumit Mukherjee Permutation limits 2 / 49



Viewing permutation as a measure (Hoppen et al., JCT(B) 2013)

Given a permutation π on Sn, partition the unit square into
n2 squares of sizes 1/n.

Define a measure L(π) on the unit square with the following
density w.r.t. Lebesgue measure:

fπ(x, y) =n if π(⌈nx⌉) = ⌈ny⌉,
=0 otherwise.

Thus we put mass on the (i, j)th box iff π(i) = j.

With this definition the measure L(π) has uniform marginals
for any permutation π. Let M denote the set of all
probability measure on [0, 1]2 with both marginals uniform.

Sumit Mukherjee Permutation limits 2 / 49



Example

Let n = 3, and let π = (π(1), π(2), π(3)) = (1, 3, 2).

Then
the density of L(π) is given below:

(0, 0) (0, 1)

(1, 1)(1, 0)

Figure: Permuton for (1, 3, 2)

Here the white region has no density, and the shaded region
has density 3.
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Defining convergence of permutations (Hoppen et al., JCT(B) 2013)

We say a sequence of permutations {πn}n≥1 converges to a
measure µ, if the corresponding sequence of measures
{L(πn)}n≥1 converge weakly to µ.

Since M is closed with respect to weak topology, the limiting
measure µ necessarily is in M.

Conversely given any measure µ ∈ M, there exists a sequence
of permutations which converge to µ.

The space M containing all permutations and their limits is a
compact metric space.

We will refer to M as the space of permutons.
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Convergence of random permutations

If {πn}n≥1 is a sequence of random permutations, then say
that

πn
d−→ µ,

if the corresponding random measures L(πn)
d→ µ.

The above definition is equivalent to:

[L(πn)(f1), · · · , L(πn)(fk)]
d−→ [µ(f1), · · · , µ(fk)]

for every finite collection of continuous function (f1, · · · , fk)
on the unit square.

As a first example, if πn is the identity permutation on Sn

(i.e. (πn(i) = i) for i ∈ [n]), then πn converges to the
uniform distribution on the diagonal x = y.
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Convergence of random permutations

Similarly, if πn is the reverse of the identity permutation on
Sn (i.e. (πn(i) = n+ 1− i) for i ∈ [n]), then πn converges to
the uniform distribution on the other diagonal x+ y = 1.

If πn is a uniformly random permutation on Sn, then πn
converges in probability to u, the uniform
distribution/Lebesgue measure on the unit square.

In the three examples above, the limiting measure µ is not a
random measure.

Next we give an example where the limiting measure µ is itself
random.
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Convergence of random permutations

Pick an integer I ∈ [n] uniformly at random, and set
πn(j) = j + I(mod n).

For e.g. if n = 5 and I = 2, then πn = (3, 4, 5, 1, 2).

In this case πn converges in distribution to the random
measure F (U), where U ∼ U [0, 1] and F : [0, 1] 7→ M is a
deterministic mapping, defined below:

Given s ∈ [0, 1], set F (s) to be the joint law of the pair of

random variables
(
V, s+ V (mod 1)

)
, where V ∼ U [0, 1].
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Permutations of growing size

The definition of a sequence of permutations {πn}n≥1

converging hold even if the permutations are not growing in
size.

However in all our examples, the size of πn has been taken to
be n.

In fact, all the interesting examples of permutation limits
come from sequence of permutations of growing size, as a
convergent sequence of permutations {πn}n≥1 with bounded
size is eventually constant (Hoppen et al., JCT(B) 2013).

Hence, throughout the rest of the talk we will assume that for
any sequence {πn}n≥1 we have πn ∈ Sn, and sometimes omit
the subscript n.
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Representing π as a discrete measure

Define the discrete measure L̃(π) on the unit square by

1

n

n∑
i=1

δ(
i
n
,
π(i)
n

).

Its marginals are discrete uniform on { 1
n ,

2
n , · · · , 1}.

The two measures L(π) and L̃(π) are close in the
Kolmogorov-Smirnov distance, i.e.

sup
x,y∈[0,1]2

∣∣∣FL(π)(x, y)− F
L̃(π)

(x, y)
∣∣∣ ≤ 2

n
.

Thus for most limiting operations, without loss of generality
we can switch between L(π) and L̃(π).
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How is permutation limit theory helpful?

The list of permutation statistics that people care about is
really long, and includes

Number of fixed points,

Number of cycles of a given length,

Number of inversions,

Length of the Longest Increasing Subsequence (LIS),

Linear Statistics of the form
∑n

i=1 f(i/n, π(i)/n),

Permutation graphs,

......
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Uniform versus Non uniform distribution on Sn

The behavior of these statistics are mostly well understood
when π is chosen uniformly at random from Sn.

However, almost nothing is known about these statistics when
π is chosen from a non uniform probability distribution on Sn.

In particular, this talk will focus on four different non uniform
distributions:

Mallows models with Kendall’s Tau (Mallows, Biometrika 1957).

µ random permutations (Hoppen et al., JCT(B) 2013).

Exponential family with Linear Statistic (M., AoS 2016).

Gibbs random permutation (Borga, Das, M., Winkler, IMRN

2023).
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Outline of this talk

This talk will derive asymptotic properties of some
permutation statistics for any sequence of random
permutations which converge to a deterministic limiting
measure.

Focusing on the case when πn is uniformly random on Sn, it
will study detailed properties of the degree sequence of the
permutation graph Gπn .

It will then explain how these results apply to the four
examples mentioned above.
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Part A: General results



A general estimate for “regular distributions”

Suppose πn is a random permutation on Sn, chosen from
some distribution Pn.

Assume that πn converges in probability to a (non-random)
measure µ, which has a continuous density ρ.

Also assume that Pn is regular, in the sense that
Pn(πn(i) = j) is “jointly continuous” in i, j ∈ n.

Pn(πn(i) = j)

Pn(πn(i′) = j′)
= 1 + o(1) if |i− i′|+ |j − j′| = o(n).

Under these two assumptions, we have (M., EJP 2016)

Pn(πn(i) = j) ≈ 1

n
ρ(i/n, j/n).
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Distribution of the permutation process

In this case, for any t ∈ (0, 1] we have

1

n
πn(nt)

d→ Z(t),

where Z(t) has density ρ(t, .).

In words, Z(t) has the conditional law of Y given X = t,
where (X,Y ) ∼ ρ.

Also, for any finite collection of distinct numbers
t1, t2, · · · , tk ∈ (0, 1], the components of the random vector

1

n
(πn(nt1), · · · , πn(ntk))

are asymptotically mutually independent.
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Process convergence ∼ Permutation convergence

The last slide shows that convergence of
permutation+regularity of the distribution implies
convergence of permutation process.

Conversely, convergence of permutation process implies
convergence of permutation (no regularity required).

Thus convergence of permutation process is a (slightly)
stronger requirement than convergence of permutations.

It is not hard to construct examples where permutation
converges but process does not.

However, since most common distributions are regular, these
two are essentially equivalent.
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Asymptotics of fixed points

Let

Nn(πn) :=

n∑
i=1

1{πn(i) = i}

denote the number of fixed points of πn.

Using the general estimate, this gives

ENn(πn) ≈
1

n

n∑
i=1

ρ(i/n, i/n)

≈
ˆ 1

0
ρ(x, x)dx.

Also the events {πn(i) = i}i∈[n] are approximately
independent.

Thus Nn(πn) has an asymptotic Poisson distribution with
mean ˆ 1

0
ρ(x, x)dx.

(M., EJP 2016).
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Comment about the regularity assumption

The assumption that the function Pn(πn(i) = j) is continuous
in (i, j) ∈ [n] is not just a technical requirement.

Consider the probability distribution Pn,θ with p.m.f.

Pn,θ(πn) =
1

Zn(θ)
eθNn(πn).

In this case {πn}n≥1 converges in probability to u, the
uniform distribution on [0, 1]2, for all θ.

However, Nn(πn) converges in distribution to Poisson with
mean eθ, which depends on θ.
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Comment about the regularity assumption

In this case there is a natural bijection ϕ between the sets

A := {πn ∈ Sn : πn(1) = 1, πn(2) = 2}
B := {πn ∈ Sn : πn(1) = 2, πn(2) = 1}

.

Also for any τ ∈ A this bijection satisfies

Pn,θ(πn = τ) = e2θPn,θ(πn = ϕ(τ)).

Summing over τ ∈ A this gives

Pn,θ(πn(1) = 1, πn(2) = 2) = e2θPn,θ(πn(1) = 2, πn(2) = 1).

Consequently Pn,θ is not regular.

Thus some regularity of the distribution is necessary for the
number of fixed points to be determined by the limiting
permuton.
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Number of cycles of a given length

Let Ck(πn) be the number of cycles of length k.

In particular C1(πn) is the number of fixed points.

Again using the general estimate, M., EJP 2016 shows that
Ck(πn) is asymptotically Poisson with mean

1

k

ˆ
[0,1]k

ρ(x1, x2) · · · ρ(xk, x1)dx1 · · · dxk.

Also the random variables (C1(πn), C2(πn), · · · , Ck(πn)) are
asymptotically mutually independent.

This generalizes the classical result for uniformly random
permutations, which corresponds to the choice ρ ≡ 1.
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Permutation Graphs

Given a permutation π ∈ Sn, define a labeled graph Gπ with
vertex set [n], and edges given by

Gπ(i, j) =1 iff (i− j)(π(i)− π(j)) < 0,

=0 otherwise.

In words, there is an edge between (i, j) in Gπ iff (i, j) is an
inversion in π.

Thus the number of inversions of π is the
number of edges in Gπ.

Also the degree di of a vertex i in Gπ is the number of
inversions containing i.
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Connection with dense graph limits

If a sequence of permutations πn converge in the sense of
permutation limits, then the sequence of graphs Gπn converge
in cut metric (Glebov et al., JCT(B) 2015).

The converse is not necessarily true (Bhattacharya-M., AAP

2017).

Indeed, note that the graphs Gπn and Gπ−1
n

are isomorphic for
any πn ∈ Sn.

However, if πn converges to a measure with density ρ(x, y),
then π−1

n converges to a measure with density ρ(y, x).

Thus if a sequence πn converges to a density ρ(., .) which is
not symmetric, the sequence which alternates between πn and
π−1
n provides a counter example.
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not symmetric, the sequence which alternates between πn and
π−1
n provides a counter example.
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Degree sequence of permutation graphs

Let (d1, · · · , dn) denote the degree sequence of Gπ.

A natural question is behavior of the degree sequence, when π
is chosen from some distribution.

Surprisingly, this question has not been studied before in
detail, even for the case when π is uniformly random.

We will now study the degree sequence when πn is from some
regular distribution Pn, under the assumption that {πn}n≥1

converges in probability to a non random measure µ with
continuous density ρ.
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Degree sequence of permutation graphs (Bhattacharya-M., AAP

2017)

For any t ∈ (0, 1] we have

1

n
dnt

d→ D(t) := t+ Z(t)− 2Fρ(t, Z(t)).

Here Z(t) has density ρ(t, .) as before, and Fρ(., , ) is the
distribution function corresponding to the density ρ.

Also for distinct real numbers t1, · · · , tk ∈ (0, 1], the random
vector 1

n(dnt1 , dnt2 , · · · , dntk) are asymptotically mutually
independent.

Finally, the empirical degree distribution converges:

1

n

n∑
i=1

δ di
n

d→ U + V − 2Fρ(U, V ),

where (U, V ) ∼ ρ.
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Part B: Degree sequence of Gπ for π uniform



Uniform distribution on Sn

In this case ρ ≡ 1, and so

1

n

n∑
i=1

δ di
n

p→ L(U + V − 2UV )

= L(U(1− V ) + V (1− U))

Here U, V are i.i.d. random variables with distribution U [0, 1].

By a direct calculation, the limiting distribution has a density
− log |1− 2x| for x ∈ [0, 1].

This density vanishes at x = 0, 1, and blows up at x = .5.
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Empirical degree distribution for n = 10, 000
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Degree Proportion

R
el

at
iv

e 
Fr

eq
ue

nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Sumit Mukherjee Permutation limits 27 / 49



Degree Sequence

Again invoking the general result, for any t ∈ (0, 1] we have

1

n
dnt

d→ D(t) = t+ U − 2Ut = t(1− U) + U(1− t),

where U ∼ U [0, 1].

Thus D(t) ∼ U [t, 1− t] if t < .5, and U [1− t, t] if t ≥ .5.

In particular the process is symmetric about .5, i.e.

D(t)
d
= D(1− t).

Also setting t = .5 we have D(.5) = .5, and so

1

n
dn/2

p→ 1

2
.
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Degree sequence for n = 10, 000
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Mid vertex

A natural follow up question is what is the fluctuation for the
mid vertex dn

2
.

In this case, going beyond permutation limits a finer
calculation gives (Bhattacharya-M., AAP 2017)

1√
n
(dn

2
− n/2)

d→ N(0, U(1− U)).

Here U ∼ U [0, 1], and so the limiting distribution is a mixture
of normal distributions.

We also show that 1√
n
mini∈[n] di converges in distribution to

a Rayleigh distribution.
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Part C: Examples



Conditions to verify

Recall, The main conditions for all the previous results to hold
are:

The sequence of random permutations πn converge in
probability to a non random measure µ with a continuous
density ρ.

The function Pn(πn(i) = j) is continuous in i, j ∈ [n].

The regularity condition on Pn has to be verified on a case by
case basis, but is usually easy.

The hard part is usually to verify that {πn}n≥1 indeed
converges, and finding the limiting density ρ.
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Handy tool: LDP for permutations

Suppose πn is a permutation chosen uniformly at random
from Sn.

Then L(πn) (or L̃(πn)) satisfies a large deviation principle on
the space M with speed n and the good rate function
I(µ) = D(µ||u), where D(.||.) is the Kullback Leibler
divergence (Trashorras, JTP 2008; M., AoS 2016;

Kenyon-Kral-Radin-Winkler, RSA 2020).

By Varadhan’s Lemma, if T : M 7→ R is a bounded
continuous function, then we have

lim
n→∞

1

n
logEenθT (L̃(πn)) = sup

µ∈M
{θT (µ)−D(µ||u)}.
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Exponential family on permutations

Define a one parameter exponential family on Sn by the p.m.f.

Pn,θ(πn) =
1

Zn(θ)
enθT (L̃(πn)).

Then the normalizing constant satisfies

Zn(θ) ≈ n!ecn+o(n), c := sup
µ∈M

{θT (µ)−D(µ||u)}.

If the optimization above has a unique maximizer µ, then

πn
p→ µ.

This framework can be used to deduce convergence of random
permutations in exponential families.
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Eg: Mallows model with Kendall’s Tau

Mallows model with Kendall’s Tau is a one parameter
exponential families on Sn with p.m.f.

Pn,θ(πn) =
1

Zn(θ)
e−

θ
n
Inv(πn)

Here

Inv(πn) :=
∑

1≤i<j≤n

1
{
(i− j)(πn(i)− πn(j)) < 0

}
is the number of inversions in πn.

This model was first introduced by C. Mallows in 1957, and
has been widely studied in Statistics and Probability literature.
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Eg: Mallows model with Kendall’s Tau

One reason is that for this model the normalizing constant is
available in closed form.

Also this model has nice independence properties built in,
which makes it tractable for theoretical analysis.

The law of large numbers for the LIS for this model has been
established in Mueller-Starr, JTP 2013.

However, the behavior of almost every other permutation
statistics for this model was unknown.
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Eg: Mallows model with Kendall’s Tau

This fits our generalized exponential family framework for the
choice

T (L̃(πn)) :=
1

n2

∑
1≤i<j≤n

1{(i− j)(πn(i)− πn(j)) < 0}

=
1

2n2

n∑
i,j=1

1{(i− j)(πn(i)− πn(j)) < 0}

=
1

2
(L̃(πn)× L̃(πn))(A).

Here the set A is

{(x1, y1, x2, y2) ∈ [0, 1]4 : (x1 − x2)(y1 − y2) < 0}.

Thus one only needs to check that the map µ 7→ (µ× µ)(A)
is continuous with respect to weak topology on M.
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Eg: Mallows model with Kendall’s Tau

The boundary of A is

∂A := {(x1, y1, x2, y2) ∈ [0, 1] : x1 = x2 or y1 = y2}.

∂A has measure 0 under µ× µ for any µ ∈ M.

This guarantees continuity of the map µ 7→ (µ× µ)(A) on
M, and so it suffices to show that the optimization problem

sup
µ∈M

{−θ

2
(µ× µ)(A)−D(µ||u)}

has a unique optimizer.

This was shown in Starr, JMP 2009, where the author also finds
an explicit density for the optimizing measure.
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Eg: Exponential family with Linear Statistics

Consider an exponential family on Sn with the p.m.f.

Pn,θ(π) =
1

Zn(θ)
eθ

∑n
i=1 f(i/n,π(i)/n).

Assume that f is a continuous function on the unit square.

In particular, the choices f(x, y) = −|x− y| and
f(x, y) = −(x− y)2 have been studied in Statistics literature
under the subclass of general Mallows models.

This class of models based on linear Statistics was introduced
in M., AoS 2016 to study the above examples in a unified
framework.
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Eg: Exponential family with Linear Statistics

This fits our exponential family framework with

T (L̃(π)) =
1

n

n∑
i=1

f(i/n, π(i)/n) =

ˆ
fdL̃(π).

Thus one needs to check that the map µ 7→
´
fdµ is

continuous with respect to weak topology on M, which is
obvious.

Also, the optimization problem

sup
µ∈M

{θµ(f)−D(µ||u)}

has a unique maximizer, as the argument inside is strictly
concave in µ.

There is an iterative Sinkhorn type algorithm to compute the
density of the optimizing measure in M., AoS 2016, but no
closed form formula is known for the density in this case.
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Limiting density for f(x, y) = −(x− y)2, θ = 10
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Eg: µ random permutations (Hoppen et al., JCT(B) 2013)

Both the examples of exponential families can be thought of
as parametric models, controlled by a single scaler parameter
θ.

Our next example is a non parametric distribution on Sn,
where the underlying parameter is itself a measure µ ∈ M.

Given a measure µ ∈ M with a continuous density ρ, let
(X1, Y1), · · · , (Xn, Yn) be i.i.d. random vectors from ρ.

Suppose there exists a pair (Xl, Yl) such that Xl = X(i) and
Yl = Y(j), then set πn(i) = j.
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Eg: µ random permutations (Hoppen et al., JCT(B) 2013)

This defines the permutation πn ∈ Sn uniquely.

For an alternative definition, let σx and σy be the (random)
permutations which sort (X1, · · · , Xn) and (Y1, · · · , Yn)
respectively, and set πn = σ−1

y ◦ σx.

Here σx is defined by Xσx(i) = X(i), and σy is defined
similarly.

In this case, it was shown in Hoppen et al., JCT(B) 2013 that πn
converges in probability to µ, and so all our results apply.
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What about more general models?

Let µ be a permuton.

Define a Gibbs measure on [0, 1]2 by setting

dPn,θ

dµ⊗n
((x1, y1), . . . , (xn, yn))

=
1

Zn(θ)
exp

(
− θ

n

∑
1≤i<j≤n

1{(xi − xj)(yi − yj) < 0}
)
.

Let πn denote the random permutation formed by the points
(X1, Y1), . . . , (Xn, Yn), obtained from this Gibbs measure.

We call πn as the Gibbs random permutation, noting that its
law depends on θ, µ (and the fact that we chose inversions in
the Gibbs Hamiltonian).
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Special cases of Gibbs random permutations

If µ is Lebesgue measure, πn has the Mallows distribution
with Kendall’s Tau.

On the other hand if θ = 0, then πn is distributed as a µ
random distribution.

Thus the above model generalizes both the Mallows model,
and µ random permutations.

Also (as indicated above), one can replace the Hamiltonian by
general sub permutation counts.
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LDP for µ random measures (Borga-Das-M.-Winkler,
IMRN 2023)

To analyze such models, we need LDP for µ random
permutations.

Suppose πn = πn,µ is a µ random permutation, for some
permuton µ.

Then L(πn) satisfies an LDP on M with rate n and good rate
function Iµ, where

Iµ(ν) = inf
γ∈O(ν)

D(γ|µ).

Here O(ν) is the set of all probability measures on the unit
square with continuous marginals, which has the same pattern
counts as that of ν.

In particular if µ = u, then the minimizer is γ = ν, thus giving
Iu(ν) = D(ν|u) (LDP rate function for uniform
permutations).

Sumit Mukherjee Permutation limits 46 / 49



LDP for µ random measures (Borga-Das-M.-Winkler,
IMRN 2023)

To analyze such models, we need LDP for µ random
permutations.

Suppose πn = πn,µ is a µ random permutation, for some
permuton µ.

Then L(πn) satisfies an LDP on M with rate n and good rate
function Iµ, where

Iµ(ν) = inf
γ∈O(ν)

D(γ|µ).

Here O(ν) is the set of all probability measures on the unit
square with continuous marginals, which has the same pattern
counts as that of ν.

In particular if µ = u, then the minimizer is γ = ν, thus giving
Iu(ν) = D(ν|u) (LDP rate function for uniform
permutations).

Sumit Mukherjee Permutation limits 46 / 49



LDP for µ random measures (Borga-Das-M.-Winkler,
IMRN 2023)

To analyze such models, we need LDP for µ random
permutations.

Suppose πn = πn,µ is a µ random permutation, for some
permuton µ.

Then L(πn) satisfies an LDP on M with rate n and good rate
function Iµ, where

Iµ(ν) = inf
γ∈O(ν)

D(γ|µ).

Here O(ν) is the set of all probability measures on the unit
square with continuous marginals, which has the same pattern
counts as that of ν.

In particular if µ = u, then the minimizer is γ = ν, thus giving
Iu(ν) = D(ν|u) (LDP rate function for uniform
permutations).

Sumit Mukherjee Permutation limits 46 / 49



LDP for µ random measures (Borga-Das-M.-Winkler,
IMRN 2023)

To analyze such models, we need LDP for µ random
permutations.

Suppose πn = πn,µ is a µ random permutation, for some
permuton µ.

Then L(πn) satisfies an LDP on M with rate n and good rate
function Iµ, where

Iµ(ν) = inf
γ∈O(ν)

D(γ|µ).

Here O(ν) is the set of all probability measures on the unit
square with continuous marginals, which has the same pattern
counts as that of ν.

In particular if µ = u, then the minimizer is γ = ν, thus giving
Iu(ν) = D(ν|u) (LDP rate function for uniform
permutations).

Sumit Mukherjee Permutation limits 46 / 49



LDP for µ random measures (Borga-Das-M.-Winkler,
IMRN 2023)

To analyze such models, we need LDP for µ random
permutations.

Suppose πn = πn,µ is a µ random permutation, for some
permuton µ.

Then L(πn) satisfies an LDP on M with rate n and good rate
function Iµ, where

Iµ(ν) = inf
γ∈O(ν)

D(γ|µ).

Here O(ν) is the set of all probability measures on the unit
square with continuous marginals, which has the same pattern
counts as that of ν.

In particular if µ = u, then the minimizer is γ = ν, thus giving
Iu(ν) = D(ν|u) (LDP rate function for uniform
permutations).

Sumit Mukherjee Permutation limits 46 / 49



Application (Borga-Das-M.-Winkler, IMRN 2023)

Utilizing the LDP from last slide, we can show that any limit
point of L(πn) for the Gibbs permutation must satisfy a fixed
point equation.

We show that there exists θc > 0 such that for |θ| < θc the
fixed point equation has a unique solution.

Consequently permutation convergence follows, and all our
results apply.

We give an example to show a sharp phase transition,
i.e. uniqueness for θ small and non uniqueness for θ large.

Thus, for θ large, there may or may not be a unique
maximizer, and convergence of permutations is not
guaranteed.
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Conclusions



Future Scope

One possible direction is to show convergence of random
permutations under different probability distributions on Sn.

How to show uniqueness? Also, there are many other models
that people care about.

Another direction is to find properties of the limiting
permuton, and characterize it as much as possible.

The explicit limiting density for the Mallows model with
Kendall’s Tau was computed by Starr, JMP 2009

.

A third direction is to bring more permutation statistics under
this approach.

LIS seems a very good candidate.
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Thank you!


