### Universal Adaptability A New Method to Draw Inference from Non-Probability Surveys and Other Data Sources

Christoph Kern Department of Statistics, LMU Munich christoph-kern@stat.uni-muenchen.de



### Frauke Kreuter Department of Statistics, LMU Munich JPSM, University of Maryland

with Michael Kim, Shafi Goldwasser, Omer Reingold Proceedings of the National Academy of Sciences 119(4) doi.org/10.1073/pnas.2108097119

### Overview

- 1. Algorithmic Fairness & Multicalibration
- 2. Inference Challenge:
  - Single source, many targets
  - Universal Adaptability
- 3. MCBoost algorithm and applications
- 4. Expansion of MCBoost to CATE estimation

### **Algorithmic Fairness**



### Miscalibration leads to unfair decisions

### • Predictions mean different things in different groups



[Obermeyer, Powers, Vogeli, Mullainathan '19]



[Barda et al. '21]

### Multicalibration

Calibration for every "computationally-identifiable" group

**Definition:** For a class of functions *C*, a predictor  $\tilde{p}$  is  $(C, \alpha)$ *multicalibrated*, if for every  $c \in C$  $|E[c(X) \cdot (Y - \tilde{p}(X))]| \leq \alpha$ 

[Hébert-Johnson, Kim, Reingold, Rothblum '18]

- Think of *C* as:
  - A collection of demographic subpopulations
  - A learnable hypothesis class (e.g., decision trees, linear functions, etc.)

# **Protecting subpopulations**

- Multicalibration in prediction settings
  - Prediction/ imputation of citizenship, wage, record linkage...

[Beck, Dumpert, Feuerhake '18]

Guarantees for multiple subgroups, defined by complex intersections!

- Multicalibration in **estimation settings** 
  - Estimation of mortality rates, voting or economic outcomes...

Guarantees for multiple target populations?

### Inference Challenge

**Goal:** Given access to

- *labeld* source data  $\{(X_i, Y_i)\} \sim s$  (with outcome)
- **unlabeled** target data  $\{(X_i, ?)\} \sim t$

estimate average outcome *Y* in target.

Challenge: source/target populations differ in composition → Reweight source population to "look like" target population

### **Target-Specific Inference**

• Fit propensity score  $\sigma \in \Sigma$  to minimize estimation error

# **Propensity Score Reweighting:** Given a score $\sigma: \mathcal{X} \to [0,1]$ , estimate E[Y|Z = t] as $PS_{st}(\sigma) = E\left[\left(\frac{1-\sigma(X)}{\sigma(X)}\right) \cdot Y|Z = s\right]$

For a class of propensity scores  $\Sigma$ , we measure the estimation error as:

$$\operatorname{error}(PS_{st}(\Sigma)) = \min_{\sigma \in \Sigma} |PS_{st}(e_{st}) - PS_{st}(\sigma)|$$

### Multi-Target Challenge

Single source  $\rightarrow$  many different targets!

- s: large medical study run by Alpert Medical School
- t: different hospital populations across the country



### Multi-Target Challenge

Single source  $\rightarrow$  many different targets!

- s: large medical study run by Alpert Medical School
- *t*: *different hospital populations across the country*

**Challenge:** Reweighting for every target is costly Insight from study requires target-specific propensity score Burden lies with target communities to reweight

**Goal:** Provide insights in a "universal" format

Reorient responsibility to reweight at the source

# Universal Adaptability

• Set requirements for predictor trained on source to give well performing estimates on targets

**Definition:** For a fixed source *s*, and a class of propensity scores  $\Sigma$ , a predictor  $\tilde{p}$  is  $(\Sigma, \beta)$ -*universally adaptable*, if for *any* target *t*,

 $\operatorname{error}(\hat{\mu}_t(\tilde{p})) \leq \operatorname{error}(PS_{st}(\Sigma)) + \beta$ 

### Multicalibration Guarantees Universal Adaptability

• Given a class of propensity scoring functions  $\Sigma$  and a class of propensity odds ratios  $C(\Sigma)$ 

**Theorem:** If  $\tilde{p}$  is  $(C(\Sigma), \alpha)$ -multicalibrated over source *s*, then  $\tilde{p}$  is  $(\Sigma, \beta)$ -universally adaptable for  $\beta \leq \alpha + \delta_{st}(\Sigma)$ .

where  $\delta_{st}(\Sigma)$  captures how well  $\Sigma$  fits the true propensity score

### **MCBoost: Post-Processing for Multicalibration**

R package – https://github.com/mlr-org/mcboost

### Given:

- Initial predictor  $\tilde{p}$
- Validation data *D*
- An auditor to search for subpopulations c
  - Find largest residuals
  - e.g. ridge regression, decision tree (auditor defines collection *C*)

### **Repeat:**

- Search over  $c \in C$
- If  $|E_{x\sim D}[c(x) \cdot (y \tilde{p}(x))]| > \alpha$ 
  - update as  $\tilde{p}(x) \leftarrow \tilde{p}(x) \eta \cdot c(x)$

Multi-Calibration Boosting for R (Pfisterer et al., 2021)

R package mcboost - https://github.com/mlr-org/mcboost



# Mitigating Bias Across Subpopulations

Analogy between two goals **Fairness goal:** protect subpopulations from miscalibrated predictions **Statistical goal:** ensure unbiased estimates on downstream targets

# **Mitigating Bias Across Subpopulations**

Analogy between two goals **Fairness goal:** protect subpopulations from miscalibrated predictions **Statistical goal:** ensure unbiased estimates on downstream targets

The role of post-processing for multicalibration Identifies *qualified minority* subpopulations Identifies *potential shifts* in covariate distribution

## **Empirical Evaluation**

- Setting
  - Source: US National Health and Nutrition Examination Survey
  - Target: US National Health Interview Survey (weighted)
  - Estimate 15-year mortality rate across demographic groups
- Inference Methods
  - **IPSW-Overall**: Reweighting with global propensity scores (PS)
  - **IPSW-Subgroup**: Reweighting with subgroup-specific PS
  - **RF-Naive**: Mortality prediction with random forest
  - **RF-MCBoost**: Mortality prediction with multicalibrated RF

### Empirical Evaluation – Results

|            | IPSW         |              | RF           |              |
|------------|--------------|--------------|--------------|--------------|
|            | Overall      | Subgroup     | Naive        | MC-Boost     |
| Overall    | 2.37 (13.5%) |              | 1.11 (6.3%)  | 0.52 (3.0%)  |
| Male       | 2.51 (13.4)  | 0.91 (4.9)   | -0.34 (1.8)  | 0.11 (0.6)   |
| Female     | 2.40 (14.6)  | 3.99 (24.2)  | 2.43 (14.8)  | 0.90 (5.4)   |
| Age 18-24  | 0.00 (0.1)   | -0.39 (17.5) | 6.03 (270.2) | 1.76 (79.0)  |
| Age 25-44  | -0.20 (5.2)  | -0.41 (10.6) | 0.82 (21.2)  | 0.66 (17.2)  |
| Age 45-64  | -0.75 (4.2)  | -0.41 (2.3)  | 0.86 (4.8)   | -0.29 (1.6)  |
| Age 65-69  | -4.23 (9.3)  | -5.23 (11.5) | -3.52 (7.7)  | -1.99 (4.4)  |
| Age 70-74  | -1.36 (2.3)  | 0.47 (0.8)   | -3.02 (5.0)  | 0.61 (1.0)   |
| Age 75 $+$ | 3.53 (4.1)   | 2.85 (3.3)   | 0.51 (0.6)   | 2.19 (2.5)   |
| White      | 3.53 (18.9)  | 0.75 (4.0)   | 1.03 (5.5)   | 0.69 (3.7)   |
| Black      | -4.00 (21.1) | -0.48 (2.5)  | -0.66 (3.5)  | -0.52 (2.7)  |
| Hispanic   | 1.73 (17.0)  | 0.48 (4.7)   | 2.91 (28.6)  | 1.55 (15.2)  |
| Other      | -0.02 (0.2)  | -3.54 (39.5) | 3.52 (39.3)  | -2.06 (23.0) |

### **Semi-synthetic Simulation**

- Setting
  - A "non-probability" sample,  $D_{np}$ , based on 31,319 online opt-in panel interviews
  - A "reference population",  $D_p$ , with 20,000 observations that combines information from high quality surveys
  - Estimate voting rates for the 2014 midterm election across *different degrees of covariate shift* 
    - 1. We estimate the propensity score between  $D_{np}$  and  $D_p$  using different techniques (Logitlinear, Logit-interaction, Tree)
    - 2. For each propensity model, we generate synthetic data of various shift intensity (q) by sampling from  $D_{np}$  with weights

### Semi-synthetic Simulation – Results



# Summary and Takeaways

**Multicalibration** 

Algorithmic fairness useful beyond "fairness" **Universal Adaptability** Valid inferences across a rich class of targets

**General Result** 

Multicalibration persists under covariate shift

### Can we robustify conditional average treatment effect (CATE) estimation via multi-calibration?

#### **CATE** Estimation

#### Setup

- Covariates X
- Treatment  $T \in \{0,1\}$
- (Potential) outcomes Y(T)

#### Estimand of interest

• Conditional average treatment effect (CATE)

 $\tau(X) = \mathsf{E}\left[Y(1) - Y(0) \mid X\right]$ 

Assumptions

- Unconfoundedness
- Consistency, SUTVA, overlap

#### **CATE** Estimation

CATE learner

• The *T-learner* differences treatment-conditional outcome regressions

 $\hat{\tau}(x) = \hat{\mu}_1(x) - \hat{\mu}_0(x)$ 

$$\mu_t(x) = \mathsf{E}[Y \mid X = x, T = t]$$

• X-learner (Künzel et al., 2019), R-learner (Nie and Wager, 2020), causal forests (Wager and Athey, 2018)

Performance assessment

MSE of the CATE

$$\mathsf{E}[(\hat{\tau}(X) - \tau(X))^2]$$

• Bias under a different distribution  $X \sim Q$ 

$$\mathsf{E}_Q[(\hat{\tau}(X) - \tau(X))]$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Problem Setup



#### Meta-Algorithm

Algorithm 1 Multi-accuracy for CATE estimation for unknown covariate shifts

- Input: (X, T, Y) unconfounded data, F auditor function class, G function class for outcome functions
- 2: Fit treatment-conditional outcome functions from the observational dataset:

$$\hat{\mu}_t(x) \leftarrow \arg\min_{g \in \mathcal{G}} \mathsf{E}[(g - Y)^2 \mid T = t], \text{ for } t \in \{0, 1\}$$

3: Post-process  $\hat{\mu}_t(X)$  for  $t \in \{0,1\}$  by multi-accuracy: Find  $\tilde{\mu}_t(x)$ , for  $t \in \{0,1\}$  s.t.

$$\max_{f\in\mathcal{F}} |\mathsf{E}[f(X)\cdot(Y-\tilde{\mu}(X))| \ T=t]| \leq \alpha.$$

4: Return  $\tilde{\tau}(x) = \tilde{\mu}_1(x) - \tilde{\mu}_0(x)$ 



...possibly for deployment on unknown P(X) covariate distributions

#### Meta-Algorithm

**Algorithm 2** Multi-accuracy for CATE estimation for calibrating CATE on small Randomized Controlled Trial data

- 1: Input:  $\mathcal{D}_{obs} = (X, T, Y)$  confounded observational data,  $\mathcal{D}_{rct} = (X, T, Y)$  unconfounded randomized data,  $\mathcal{F}$  auditor function class,  $\mathcal{G}$  function class for outcome functions
- 2: Fit treatment-conditional outcome functions from the observational dataset:

$$\hat{\mu}_t(x) \leftarrow \arg\min_{g \in \mathcal{G}} \mathsf{E}_{\mathsf{obs}}[(g - Y)^2 \mid T = t], \text{ for } t \in \{0, 1\}$$

3: Apply MCBoost to  $\hat{\mu}_t(x), t \in \{0, 1\}$  using  $\mathcal{D}_{rct}$  as validation set

4: Return  $ilde{ au}(x) = ilde{\mu}_1(x) - ilde{\mu}_0(x)$ 

・ロト < 団ト < 三ト < 三ト < ロト</li>

#### Multi-Accurate CATE Estimates

Characteristics of multi-accurate CATE T-learner

- ① "Do-no-harm" property w.r.t. MSE
- 2 Bias guarantees under unknown shifts

#### Proposition

Let  $\mathcal{F} = \mathcal{C} \times \mathcal{H}$  where  $\mathcal{C}$  indexes subgroups and  $\mathcal{H}$  is a collection of test functions. Then multi-accuracy of the T-learner CATE estimate  $\tilde{\tau}(X)$  implies that, for all distributions Q such that the likelihood ratios  $\frac{dQ_0}{dP_0}, \frac{dQ_1}{dP_1} \in \mathcal{H},$ 

$$\mathsf{E}_{Q}[\tilde{\tau}(X)\boldsymbol{c}(X)] - (\mathsf{E}_{Q}[\boldsymbol{Y}\boldsymbol{c}(X) \mid T = 1] - \mathsf{E}_{Q}[\boldsymbol{Y}\boldsymbol{c}(X) \mid T = 0]) \leq 2\alpha, \forall \boldsymbol{c} \in \mathcal{C}$$

#### Simulation Setup

- Simulate data (X, T, Y)
  - Given propensity score and outcome functions with different degrees of complexity
- ② Sample with weights to introduce distribution shift
  - Based on external shift function and different shift intensities

Setting 1

- External shift, only observational data
- No unobserved confounding

 $egin{aligned} & (X_{train}, T_{train}, Y_{train}) \sim \mathcal{D}_{os} \ & (X_{audit}, T_{audit}, Y_{audit}) \sim \mathcal{D}_{os} \ & (X_{test}, T_{test}, Y_{test}) \sim \mathcal{D}_{os-shift} \end{aligned}$ 

Setting 2

- Observational data, small (shifted) RCT
- Unobserved confounding in obs. data

 $\begin{array}{l} (X_{train}, T_{train}, Y_{train}) \sim \mathcal{D}_{os} \\ (X_{audit}, T_{audit}, Y_{audit}) \sim \mathcal{D}_{rct} \\ (X_{test}, T_{test}, Y_{test}) \sim \mathcal{D}_{os} \end{array}$ 

#### Simulation Setup

#### Setting 1

#### • CForest-OS

• Causal forest trained in the observational training data

#### • T-learner-OS

• T-learner using random forest trained in the observational training data

#### T-learner-MC-Ridge

- T-learner using random forest in the observational training data is post-processed with MCBoost using ridge regression in the auditing data
- CForest-wOS
- T-learner-wOS

#### Setting 2

#### • CForest-OS

• Causal forest trained in the observational training data

#### • T-learner-OS

• T-learner using random forest trained in the observational training data

#### T-learner-MC-Tree

- T-learner using random forest in the observational training data is post-processed with MCBoost using decision trees in the RCT
- CForest-RCT, CForest-wRCT
- T-learner-RCT, T-learner-wRCT

#### Simulation Results – Setting 1



Figure: Average MSE of CATE estimation by shift intensity and training set size for post-processed (multi-calibrated) T-learners and benchmark methods in simulation studies (external shift)

・ロト・4日ト・4日ト・4日ト・900

#### Simulation Results – Setting 2



Figure: Average MSE of CATE estimation by shift intensity and training set size for post-processed (multi-calibrated) T-learners and benchmark methods in simulation studies (observational data with RCT)

#### Discussion

Approach

- Robustify CATE T-learners to unknown shifts via MCBoost post-processing
- Utilize multi-accuracy to jointly learn from observational data and RCT

Results

- General improvements in bias and MSE in simulations
- Multi-CATE is robust, but not efficient

Extensive related work

• Our focus: Show utility of "off-the-shelf" application of multi-accuracy in CATE estimation domain

### References

Barda, N., Yona, G., Rothblum, G.N., Greenland, P., Leibowitz, M., Balicer, R., Bachmat, E., Dagan. N. (2021). Addressing bias in prediction models by improving subpopulation calibration. *Journal of the American Medical Informatics Association 28*(3), 549-558.

Beck, M., Dumpert, F., Feuerhake, J. (2018). *Machine Learning in Official Statistics*. https://arxiv.org/abs/1812.10422.

Buolamwini, T., Gebru T. (2018). Gender shades: Intersectional accuracy dispartities in commercial gender classification. FACCT Conference

Hebert-Johnson, U., Kim, M., Reingold, O., Rothblum, G. (2018). Multicalibration: Calibration for the (Computationally-Identifiable) Masses. *Proceedings of the 35<sup>th</sup> International Conference on Machine Learning 80*, 1939-1948.

Kim, M.P., Kern, C., Goldwasser, S., Kreuter, F., Reingold, O. (2022). Universal Adaptability: Target-Independent Inference that Competes with Propensity Scoring. *Proceedings of the National Academy of Sciences of the United States of America (PNAS), 119*(4).

Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. *Science 366*(6464), 447-453.

#### References

- Künzel, S. R., Sekhon, J. S., Bickel, P. J., and Yu, B. (2019). Metalearners for estimating heterogeneous treatment effects using machine learning. *Proceedings of the National Academy of Sciences*, 116(10):4156–4165.
- Nie, X. and Wager, S. (2020). Quasi-oracle estimation of heterogeneous treatment effects. *Biometrika*, 108(2):299–319.
- Pfisterer, F., Kern, C., Dandl, S., Sun, M., Kim, M. P., and Bischl, B. (2021). mcboost: Multi-calibration boosting for r. *Journal of Open Source Software*, 6(64):3453.
- Wager, S. and Athey, S. (2018). Estimation and inference of heterogeneous treatment e ects using random forests. *Journal of the American Statistical Association*, 113(523):1228–1242.