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Overview

1. Algorithmic Fairness & Multicalibration

2. Inference Challenge:

• Single source, many targets

• Universal Adaptability

3. MCBoost algorithm and applications

4. Expansion of MCBoost to CATE estimation
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Algorithmic Fairness
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Buolamwini 2019



Miscalibration leads to unfair decisions

• Predictions mean different things in different groups

[Obermeyer, Powers, Vogeli, Mullainathan ’19]
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[Barda et al. ’21]



Multicalibration

• Calibration for every “computationally-identifiable” group

Definition: For a class of functions 𝐶, a predictor 𝑝 is (𝐶, 𝛼)-

multicalibrated, if for every 𝑐 ∈ 𝐶

𝐸 𝑐 𝑋 ⋅ 𝑌 − 𝑝 𝑋 ≤ 𝛼

[Hébert-Johnson, Kim, Reingold, Rothblum ’18]

• Think of 𝐶 as:
• A collection of demographic subpopulations

• A learnable hypothesis class (e.g., decision trees, linear functions, etc.)
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Protecting subpopulations

• Multicalibration in prediction settings

• Prediction/ imputation of citizenship, wage, record linkage… 
[Beck, Dumpert, Feuerhake ’18]

Guarantees for multiple subgroups, defined by 

complex intersections!

• Multicalibration in estimation settings

• Estimation of mortality rates, voting or economic outcomes…

Guarantees for multiple target populations?
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Inference Challenge

Goal: Given access to

• labeld source data {(𝑋𝑖 , 𝑌𝑖)} ∼ 𝑠 (with outcome)
• unlabeled target data {(𝑋𝑖 , ? )} ∼ 𝑡

estimate average outcome 𝑌 in target.

Challenge: source/target populations differ in composition

→ Reweight source population to “look like” target population
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For a class of propensity scores Σ, we measure the estimation error as:

Target-Specific Inference

Propensity Score Reweighting:

Given a score 𝜎:𝒳 → [0,1], estimate 𝐸[𝑌|𝑍 = 𝑡] as

𝑃𝑆𝑠𝑡(𝜎) = 𝐸
1 − 𝜎(𝑋)

𝜎(𝑋)
⋅ 𝑌|𝑍 = 𝑠

• Fit propensity score 𝜎 ∈ Σ to minimize estimation error

error 𝑃𝑆𝑠𝑡(Σ) = 𝑚𝑖𝑛
𝜎∈Σ

|𝑃𝑆𝑠𝑡(𝑒𝑠𝑡) − 𝑃𝑆𝑠𝑡(𝜎)|
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Multi-Target Challenge

Single source →many different targets!

• s: large medical study run by Alpert Medical School
• t: different hospital populations across the country
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Multi-Target Challenge

Single source →many different targets!

• s: large medical study run by Alpert Medical School
• t: different hospital populations across the country

Challenge: Reweighting for every target is costly

Insight from study requires target-specific propensity score 

Burden lies with target communities to reweight

Goal: Provide insights in a “universal” format

Reorient responsibility to reweight at the source
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Universal Adaptability

• Set requirements for predictor trained on source to give well
performing estimates on targets

Definition: For a fixed source s, and a class of propensity scores Σ, a 
predictor 𝑝 is (Σ, 𝛽)-universally adaptable, if for any target t,

error Ƹ𝜇𝑡( 𝑝) ≤ error 𝑃𝑆𝑠𝑡(Σ) + 𝛽
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Multicalibration Guarantees
Universal Adaptability

• Given a class of propensity scoring functions Σ and a class of

propensity odds ratios 𝐶 Σ

Theorem: If 𝑝 is (𝐶(Σ), 𝛼)-multicalibrated over source 𝑠, then 
𝑝 is (Σ, 𝛽)-universally adaptable for 𝛽 ≤ 𝛼 + 𝛿𝑠𝑡(Σ).

where 𝛿𝑠𝑡(Σ) captures how well Σ fits the true propensity score
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MCBoost: Post-Processing for Multicalibration

Given:

• Initial predictor 𝑝

• Validation data D

• An auditor to search for subpopulations c

• Find largest residuals

• e.g. ridge regression, decision tree  (auditor defines collection 𝐶)

Repeat:

• Search over 𝑐 ∈ 𝐶

• If 𝐸𝑥~𝐷 𝑐 𝑥 ⋅ 𝑦 − 𝑝 𝑥 > 𝛼

• update as 𝑝 𝑥 ← 𝑝 𝑥 − 𝜂 ⋅ 𝑐(𝑥)

R package – https://github.com/mlr-org/mcboost
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Multi-Calibration Boosting for R (Pfisterer et al., 2021)

R package mcboost – https://github.com/mlr-org/mcboost

https://github.com/mlr-org/mcboost


Mitigating Bias Across Subpopulations

Analogy between two goals

Fairness goal: protect subpopulations from miscalibrated predictions

Statistical goal: ensure unbiased estimates on downstream targets

16



Mitigating Bias Across Subpopulations

Analogy between two goals

Fairness goal: protect subpopulations from miscalibrated predictions

Statistical goal: ensure unbiased estimates on downstream targets

The role of post-processing for multicalibration

Identifies qualified minority subpopulations

Identifies potential shifts in covariate distribution
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Empirical Evaluation

• Setting

• Source: US National Health and Nutrition Examination Survey

• Target: US National Health Interview Survey (weighted)

• Estimate 15-year mortality rate across demographic groups

• Inference Methods

• IPSW-Overall: Reweighting with global propensity scores (PS)

• IPSW-Subgroup: Reweighting with subgroup-specific PS

• RF-Naive: Mortality prediction with random forest

• RF-MCBoost: Mortality prediction with multicalibrated RF
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Empirical Evaluation – Results
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Semi-synthetic Simulation

• Setting

• A “non-probability” sample, 𝐷𝑛𝑝, based on 31,319 online opt-in panel
interviews

• A “reference population”, 𝐷𝑝, with 20,000 observations that combines
information from high quality surveys

• Estimate voting rates for the 2014 midterm election across different
degrees of covariate shift

1. We estimate the propensity score between 𝐷𝑛𝑝 and 𝐷𝑝 using different techniques (Logit-
linear, Logit-interaction, Tree)

2. For each propensity model, we generate synthetic data of various shift intensity (q) by
sampling from 𝐷𝑛𝑝 with weights
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Semi-synthetic Simulation – Results
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Summary and Takeaways

Multicalibration

Algorithmic fairness useful beyond “fairness”

Universal Adaptability

Valid inferences across a rich class of targets

General Result

Multicalibration persists under covariate shift
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Multi-CATE Zhou, Kern, Kim (2023)

Can we robustify conditional average treatment effect (CATE) estimation
via multi-calibration?



Problem Setup

CATE Estimation

Setup
Covariates X
Treatment T ∈ {0, 1}
(Potential) outcomes Y (T )

Estimand of interest
Conditional average treatment effect (CATE)

τ(X ) = E [Y (1)− Y (0) | X ]

Assumptions
Unconfoundedness
Consistency, SUTVA, overlap



Problem Setup

CATE Estimation

CATE learner
The T-learner differences treatment-conditional outcome regressions

τ̂(x) = µ̂1(x)− µ̂0(x)

µt(x) = E[Y | X = x ,T = t
]

X-learner (Künzel et al., 2019), R-learner (Nie and Wager, 2020), causal forests (Wager
and Athey, 2018)

Performance assessment
MSE of the CATE

E[(τ̂(X )− τ(X ))2]

Bias under a different distribution X ∼ Q
EQ[(τ̂(X )− τ(X ))]



Problem Setup



Multi-CATE

Meta-Algorithm

Algorithm 1 Multi-accuracy for CATE estimation for unknown covariate shifts

1: Input: (X ,T ,Y ) unconfounded data, F auditor function class, G function class for outcome
functions

2: Fit treatment-conditional outcome functions from the observational dataset:

µ̂t(x)← arg min
g∈G

E[(g − Y )2 | T = t], for t ∈ {0, 1}

3: Post-process µ̂t(X ) for t ∈ {0, 1} by multi-accuracy: Find µ̃t(x), for t ∈ {0, 1} s.t.

max
f ∈F
|E[f (X ) · (Y − µ̃(X )) | T = t]| ≤ α.

4: Return τ̃(x) = µ̃1(x)− µ̃0(x)
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Multi-CATE

Meta-Algorithm

Algorithm 2 Multi-accuracy for CATE estimation for calibrating CATE on small Randomized
Controlled Trial data

1: Input: Dobs = (X ,T ,Y ) confounded observational data, Drct = (X ,T ,Y ) unconfounded
randomized data, F auditor function class, G function class for outcome functions

2: Fit treatment-conditional outcome functions from the observational dataset:

µ̂t(x)← arg min
g∈G

Eobs[(g − Y )2 | T = t], for t ∈ {0, 1}

3: Apply MCBoost to µ̂t(x), t ∈ {0, 1} using Drct as validation set
4: Return τ̃(x) = µ̃1(x)− µ̃0(x)



Multi-CATE

Multi-Accurate CATE Estimates

Characteristics of multi-accurate CATE T-learner
1 “Do-no-harm” property w.r.t. MSE
2 Bias guarantees under unknown shifts

Proposition

Let F = C ×H where C indexes subgroups and H is a collection of test functions. Then
multi-accuracy of the T-learner CATE estimate τ̃(X ) implies that, for all distributions Q such
that the likelihood ratios dQ0

dP0
, dQ1

dP1
∈ H,

EQ[τ̃(X )c(X )]− (EQ[Y c(X ) | T = 1]− EQ[Y c(X ) | T = 0]) ≤ 2α,∀c ∈ C



Experiments

Simulation Setup

1 Simulate data (X ,T ,Y )
Given propensity score and outcome functions with different degrees of complexity

2 Sample with weights to introduce distribution shift
Based on external shift function and different shift intensities

Setting 1
External shift, only observational data
No unobserved confounding
(Xtrain,Ttrain,Ytrain) ∼ Dos
(Xaudit ,Taudit ,Yaudit) ∼ Dos
(Xtest ,Ttest ,Ytest) ∼ Dos−shift

Setting 2
Observational data, small (shifted) RCT
Unobserved confounding in obs. data
(Xtrain,Ttrain,Ytrain) ∼ Dos
(Xaudit ,Taudit ,Yaudit) ∼ Drct
(Xtest ,Ttest ,Ytest) ∼ Dos



Experiments

Simulation Setup

Setting 1
CForest-OS

Causal forest trained in the observational
training data

T-learner-OS
T-learner using random forest trained in
the observational training data

T-learner-MC-Ridge
T-learner using random forest in the
observational training data is
post-processed with MCBoost using
ridge regression in the auditing data

CForest-wOS
T-learner-wOS

Setting 2
CForest-OS

Causal forest trained in the observational
training data

T-learner-OS
T-learner using random forest trained in
the observational training data

T-learner-MC-Tree
T-learner using random forest in the
observational training data is
post-processed with MCBoost using
decision trees in the RCT

CForest-RCT, CForest-wRCT
T-learner-RCT, T-learner-wRCT



Experiments

Simulation Results – Setting 1

no shift moderate shift strong shift
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Figure: Average MSE of CATE estimation by shift intensity and training set size for post-processed
(multi-calibrated) T-learners and benchmark methods in simulation studies (external shift)



Experiments

Simulation Results – Setting 2
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Figure: Average MSE of CATE estimation by shift intensity and training set size for post-processed
(multi-calibrated) T-learners and benchmark methods in simulation studies (observational data with
RCT)



Discussion

Discussion

Approach

Robustify CATE T-learners to unknown shifts via MCBoost post-processing
Utilize multi-accuracy to jointly learn from observational data and RCT

Results
General improvements in bias and MSE in simulations
Multi-CATE is robust, but not efficient

Extensive related work
Our focus: Show utility of “off-the-shelf” application of multi-accuracy in CATE
estimation domain
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