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Motivating example1

• Moving to Opportunity study (MTO) was a large-scale housing voucher experiment
conducted by the US Department of Housing and Urban Development in the 1990s-2000s
in five cities.

• Families living in high-rise public housing developments in five US cities could sign up to be
randomized to receive a Section 8 housing voucher.

• The vouchers can be used by families to move out of public housing into a rental on the
private market.

• Participating MTO families were followed up for 10-15 years after randomization and
economic, educational, and healthrelated outcomes were assessed.

1This research was conducted as a part of the U.S. Census Bureau’s Evidence Building Project Series. Any opinions
and conclusions expressed herein are those of the author and do not represent the views of the U.S. Census Bureau.
The Census Bureau has ensured appropriate access and use of confidential data and has reviewed these results for
disclosure avoidance protection (Project P-7504667: CBDRB-FY22-CES018-013, CBDRB-FY24-CES018-002)
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Motivating example

• Multiple studies have contributed evidence of effect heterogeneity across MTO sites.

• It is natural to want to understand why: what components of the causal process are
contributing to such heterogeneity?

• Is this heterogeneity explained largely by differences in the distribution of baseline
compositional characteristics (e.g., sociodemographic variables) between sites?

• Or, are differences large due to differences in the mediating mechanisms?

• Or, are they due to differences in the outcome mechanisms across sites?
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This is a common problem

Randomized trials of the same therapies often produce different results:

• E.g., in treatments to reduce blood pressure in patients with cardiovascular disease.2

• E.g., in prevention of preterm delivery3

• E.g., in the treatment of sepsis4

2Basu, S., Sussman, J.B. and Hayward, R.A., 2017. Detecting heterogeneous treatment effects to guide
personalized blood pressure treatment: a modeling study of randomized clinical trials. Annals of internal Medicine,
166(5), pp.354-360.

3Blackwell, Sean C., et al. "17-OHPC to prevent recurrent preterm birth in singleton gestations (PROLONG
study): a multicenter, international, randomized double-blind trial." American journal of perinatology 37.02 (2020):
127-136.

4Kalil, Andre C., and Diana F. Florescu. "Severe sepsis: are PROWESS and PROWESS-SHOCK trials
comparable? A clinical and statistical heterogeneity analysis." Critical Care 17.4 (2013): 167.
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Causal model
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Figure 1: Causal selection diagram under mediation and intermediate confounding.

• For example:
• A is randomization to receiving the voucher
• X denotes actual use of the voucher to move
• Z denotes confounders of treatment uptake and outcomes
• Y denotes behavioral problems in adolescent children

• In what follows we will consider a bundled mediator M “ pX , Zq

5 / 20



Counterfactual variables of interest

We define three counterfactual variables of interest:

• Y paq is the counterfactual outcome that would have been observed if, possibly contrary to
fact, A “ a had been assigned w.p. 1

• Y pa, mq is the counterfactual outcome that would have been observed if, possibly contrary
to fact, A “ a and M “ m had been assigned w.p. 1

• Mpa, sq is the counterfactual outcome that would have been observed if, possibly contrary
to fact, A “ a and S “ s had been assigned w.p. 1
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Effect heterogeneity decomposition for two studies

Let

δ “ ErY p1q ´ Y p0q | S “ 1s ´ ErY p1q ´ Y p0q | S “ 0s,

denote the difference between the treatment effects in the two studies, and consider the
decomposition

δ “ δEH ` δCM,

where

δEH “

ż
"

E rY p1q ´ Y p0q | W , S “ 1s ´ E rY p1q ´ Y p0q | W , S “ 0s

*

dPpW | S “ 0q

δCM “

ż

ErY p1q ´ Y p0q | W , S “ 1s

"

dPpW | S “ 1q ´ dPpW | S “ 0q

*

.

• δEH is a parameter that measures the extent of differential effect heterogeneity between
the studies by comparing their conditional average treatment effects,

• δCM measures the extent to which the two studies represent different a different case-mix
from the population.
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Decomposing conditional average treatment effect heterogeneity

When δEH is non-zero, it is also of interest to understand whether the differential effect
heterogeneity is due to

• between-study variations in effect modification by W , or

• between-study variation on the effect of treatment on the intermediate variables
M “ pX , Zq.

By definition, we have that Y paq “ Y pa, Mpa, Sqq, so that

E rY p1q ´ Y p0q | W , S “ 1s ´ E rY p1q ´ Y p0q | W , S “ 0s “

E rY p1, Mp1, 1qq ´ Y p0, Mp0, 1qq | W , S “ 1s ´ E rY p1, Mp1, 0qq ´ Y p0, Mp0, 0qq | W , S “ 0s ,

The left hand side of this expression makes it clear that:

• The CATE may be different across studies due to different effect modification by W , or

• due to effects of A on the intermediate variables M that vary with S.

8 / 20



Decomposing conditional average treatment effect heterogeneity

To address the above, we propose the decomposition

δEH “ δEM ` δMV,

where

δEM “

ż
"

E rY p1, Mp1, 1qq ´ Y p0, Mp0, 1qq | W , S “ 1s

´E rY p1, Mp1, 1qq ´ Y p0, Mp0, 1qq | W , S “ 0s

*

dPpW | S “ 0q

δMV “

ż
"

E rY p1, Mp1, 1qq ´ Y p0, Mp0, 1qq | W , S “ 0s

´E rY p1, Mp1, 0qq ´ Y p0, Mp0, 0qq | W , S “ 0s

*

dPpW | S “ 0q,

• δEM denotes a parameter measuring between-study differences in pure effect modification,
and

• δMV denotes a parameter that measures the between-study heterogeneity of treatment
effects on intermediate variables.
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Identification

Define

θpsY , sM , sW q “

ż

ErY p1, Mp1, sMqq ´ Y p0, Mp0, sMqq | W , S “ sY sdPpW | S “ sW q,

Then

δCM “ θp1, 1, 1q ´ θp1, 1, 0q

δEH “ θp1, 1, 0q ´ θp0, 0, 0q,

and

δEM “ θp1, 1, 0q ´ θp0, 1, 0q

δMV “ θp0, 1, 0q ´ θp0, 0, 0q.

So that identifying θpsY , sM , sW q will be sufficient
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Identification assumptions

Assumption 1

Assume there exists ϵ ą 0 such that, for s P t0, 1u and with probability 1 over draws of W :

(i) ϵ ă PpA “ 1 | S “ s, W q ă 1 ´ ϵ, and

(ii) ϵ ă PpS “ 1 | W q ă 1 ´ ϵ.

Assumption 2 (No unmeasured confounding in study S “ s)

For all a and m, assume Y pa, mq KK A | W , S “ s and Mpaq KK A | W , S “ s.

Assumption 3 (Conditional exchangeability of study assignment)

For all a and s, assume Mpa, sq KK S | W .

Assumption 4 (Counterfactual independences in study S “ s)

For s 1 P t0, 1u and all a and m, assume Y pa, mq KK Mpa, s 1q | pW , S “ sq and
Y pa, mq KK M | pA, W , S “ sq.
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Identification assumptions

I personally find it difficult to reason about validity of assumptions using counterfactuals.

The following are sufficient conditions for to hold in terms of the errors U of a non-parametric
structural causal model:

Proposition 1
The following statements are true:

(i) Assume UA KK pUY , UMq | W , S “ s. Then Ass.2 holds.

(ii) Assume US KK UM | W . Then Ass.3 holds.

(iii) Assume UY KK UM | W , S “ s. Then Ass.4 holds.

Note: Assumption (ii), for example, can be read as W contains all common causes of S and M.

Note 2: If we use X instead of M “ pX , Zq, neither (iii) nor Ass.4 hold.
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Identification

Under the above assumptions, we have

θpsY , sM , sW q “

ż

“

EpY | A “ 1, m, w , sY qdPpm | A “ 1, w , sMq

´EpY | A “ 0, m, w , sY qdPpm | A “ 0, w , sMq
‰

dPpw | sW q.

For estimation of this parameter, we want two main things:

• The ability to use flexible, data-adaptive regression methods in case M or W are continuous
or multivariate

• The ability to study the sampling distribution of the estimator to construct frequentist valid
uncertainty measures (confidence intervals, etc.)
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Constructing estimators for θ

A crucial object to achieve this goals is a so-called von Mises expansion:

Definition 1 (First-order von Mises expansion)

A function φpO; Pq that depends on the data and a distribution P satisfies a first-order von Mises
expansion if the following holds

θpFq ´ θpPq “ ´EPrφpO; Fqs ` RpF, Pq

for any two distributions F and P, where RpF, Pq is a second order term of the type ||F ´ P||2.

To see why this is so important, notice that:

• We can construct an estimate of the distribution P̂
• The von Mises expansion tells us that the first-order bias of a plug-in estimator is given by

´EPrφpO; P̂qs

• We can correct for this bias using one of two strategies:
• Targeted minimum loss based estimation
• One-step estimation
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Extension to multiple studies

Recall the definition

θpsY , sM , sW q “

ż

ErY p1, Mp1, sMqq ´ Y p0, Mp0, sMqq | W , S “ sY sdPpW | S “ sW q,

• Assume we now have K studies

• psY , sM , sW q now take values in t1, . . . , Ku3

• When sM “ sY “ sW , θ is the effect in the corresponding study.

• Let PS denote a user-given joint distribution of SY , SM , and SW (e.g., independent,
uniform).

We define the total between-study variability as

τ2 “ VarS rθpSY .SM , SW qs
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Extension to multiple studies

By using the law of total variance as

τ2 “ τ2
EH ` τ2

CM,

where
τ2

CM “ ES tVarS rθpSY , SM , SW q | SY , SM su

τ2
EH “ VarS tκpSY , SMqu,

where κpSY , SMq “ ES rθpSY , SM , SW q | SY , SM s.

Likewise, we decompose τ2
EH into a pure effect modification parameter and a mediator variability

parameter as
τ2

EH “ τ2
EM ` τ2

MV,

where
τ2

EM “ ES tVarS rκpSY , SMq | SY su

τ2
MV “ VarS tErκpSY , SMq | SY suu.
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Application to MTO

• Baseline variables:
• Child: race/ethnicity, age, history of behavioral problems, enrollment in programs for

gifted and talented students.
• Adult and neighborhood: education, married, was under 18 when child was born,

currently working, currently receiving welfare, neighborhood safety perception,
satisfaction with neighborhood, disability, size of household, poverty rate of
neighborhood, etc.

• Intermediate variable: did the child ever attend a school that was not high-poverty during
followup?

Parameter S.D. S.E. of S.D. % S.E. of %
τ 0.023 0.018 100.000
τCM 0.016 0.014 49.620 11.160
τEH 0.016 0.013 50.380 11.160
τEM 0.005 0.006 5.911 5.713
τMV 0.015 0.013 44.470 12.960

Table 1: Results of our analyses5

5All results were approved for release by the U.S. Census Bureau, authorization number
CBDRB-FY22-CES018-013, CBDRB-FY24-CES018-002

17 / 20



Thank you
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Estimation details

We denote η “ pqY , qM , e, eM , g , gM , hq and

qY pm, a, w , sY q “ EpY | a, m, w , sY q

qMpa, w , sY , sMq “ ErqY pM, a, W , sY q | a, w , sM s

eps | wq “ Pps | wq

eMps | m, wq “ Pps | mwq

gpa | w , sq “ Ppa | w , sq

gMpa | m, w , sq “ Ppa | m, w , sq

hpsq “ Ppsq.
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Estimation details

Lemma 2 (von-Mises expansion)

Let θpFq denote the parameter evaluated at an arbitrary distribution F. Let ηF denote the
parameters corresponding to distribution F. Then we have

θpFq ´ θpPq “ ´EPrφpO; ηFqs ` RpηP, ηFq,

where we add the index P to the expectation for clarity, and where R is a second-order term of
the form

RpηP, ηFq “

ż

c1pP, FqtqY ,P ´ qY ,Fu
“

teP ´ eFu ` tgP ´ gFu ` thF ´ hPu
‰

dP

`

ż

c2pP, FqtqM,P ´ qM,Fu
“

teM,P ´ eM,Fu ` tgM,P ´ gM,Fu
‰

dP,

where c1 and c2 are some transformations of F and P, and

φpO; Pq “
gM pA | M, L, sM q

gM pA | M, L, sY q

eM psM | M, W q

eM psY | M, W q

epsW | W q

epsM | W q

p2A ´ 1qIpS “ sY q

gpA | W , sM qhpsW q
tY ´ qY pM, A, W , sY qu

`
epsW | W q

epsM | W q

p2A ´ 1qIpS “ sM q

gpA | W , sM qhpsW q
tqY pM, A, W , Sq ´ qM pA, W , sY , sM qu

`
IpS “ sW q

hpsW q
tqM p1, W , sY , sM q ´ qM p0, W , sY , sM q ´ θpsY , sM , sW qu
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