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Phylogenomics

Phylogeny + genomics = genome-scale phylogeny estimation
. 



Avian Phylogenomics Project 

Erich Jarvis, 

HHMI 
Guojie Zhang,  

BGI 

•  Approx. 50 species, whole genomes 

•  14,000 loci 

•  Multi-national team (100+ investigators) 

•  8 papers published in special issue of Science 2014 

Biggest computational challenges:  

 1. Multi-million site maximum likelihood analysis (~300 CPU years, 

  and 1Tb of distributed memory, at supercomputers around world) 

 2. Constructing “coalescent-based” species tree from 14,000  

  different gene trees 

  

MTP Gilbert, 

Copenhagen 
Siavash Mirarab,   Tandy Warnow, 

Texas                Texas and UIUC 

Major challenges:
• Multi-copy genes omitted
• Massive gene tree heterogeneity consistent with ILS
• Concatenation analysis took 250 CPU years



Large datasets are difficult

• Two dimensions: 
• Number of loci
• Number of species (or individuals)

• Missing data

• Heterogeneity

• Many analytical pipelines involve Maximum likelihood 
and Bayesian estimation  



• So many talks about large-scale phylogenetic tree estimation!

• Example topics

•  NP-hard problems, 

•  species tree estimation, 

•  likelihood-based statistical estimation, 

•  model complexity, 

•  assessing branch support 

•  estimating dates

•  distance-based estimation

•  visualization of large trees

•  

• And then the many talks about phylogenetic networks!



This talk: Scaling 
methods to large 
trees 

• Part I:  Divide-and-conquer using 
supertrees

• Part II: Divide-and-conquer using 
Disjoint Tree Mergers

• Part III: Discussion and open 
problems 



Part I: Divide-and-Conquer using Supertrees



DNA Sequence Evolution (Idealized)
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Phylogeny Problem
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Markov Models of Sequence Evolution

The different sites are assumed to evolve i.i.d. down the model tree, so it suffices to 
model a single site

Jukes-Cantor, 1969 (simplest DNA site evolution model):

• The state at the root is randomly drawn from {A,C,T,G} (nucleotides)

• The model tree T is binary and has substitution probabilities p(e) on each edge e, 
with 0<p(e)<3/4

• If a site (position) changes on an edge, it changes with equal probability to each of 
the remaining states

• The evolutionary process is Markovian.

More complex models are also considered, often with little change to the theory.  



Phylogeny estimation: statistical problem

• Assume DNA sequences are generated on an unknown model tree, infer 
the tree from the observed sequences seen at the leaves

• Many methods:
• Maximum likelihood: Find the model tree that maximizes the probability of 

generating the observed sequences
• Bayesian estimation 
• Distance-based methods (e.g., neighbor joining)
• Maximum parsimony

NP-hard optimization problems, heuristics

 



Phylogeny estimation method evaluation

• Statistical properties 
• consistency 

• sample complexity

• Computational performance 
• Most problems are NP-hard, so many methods are heuristics

• Accuracy 
• on simulated datasets

• on biological datasets



FN: false negative
      (missing edge)
FP: false positive
      (incorrect edge)

FN

FP50% error rate



Statistical Consistency under model G?

Error
in species tree 

inferred by  
method M

Amount of data
generated under model G and 

then given to method M as input

Question answered by 

mathematical proof



Sample Complexity 

The sequence length (number of sites) that suffices for a phylogeny 
reconstruction method M to reconstruct the true tree with 
probability at least 1- depends on 

• M (the method)

•  

• f = min w(e), 

• g = max w(e), and

• n, the number of leaves

We fix everything but n. 



Absolute Fast Converging (AFC) methods

A method M is “absolute fast converging”, or afc,  if for all positive f, g, 
and , there is a polynomial p(n) s.t. Pr(M(S)=T) > 1- , when S is a set 
of sequences generated on T of length at least p(n).

Notes: 

1. The polynomial p(n) will depend upon M, f, g, and .

2. The method M is not “told” the values of f and g.



Sample Complexity



Distance-based estimation



Theorem (Erdos et al., Atteson): 

Neighbor joining (and some other methods) will return the true 
tree w.h.p. provided sequence lengths are exponential in the 
evolutionary diameter of the tree.

Sketch of proof: 

• NJ (and other distance methods) guaranteed correct if all entries 
in the estimated distance matrix have sufficiently low error.

• Estimations of large distances require long sequences to have low 
error w.h.p.



NJ has high error on large diameter trees

Simulation study based 
upon fixed edge 
lengths, K2P model of 
evolution, sequence 
lengths fixed to 1000 
nucleotides.

Error rates reflect 
proportion of incorrect 
edges in inferred trees.

[Nakhleh et al. ISMB 2001]
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AFC methods (and related work)

• 1997: Erdos, Steel, Szekely, and Warnow (ICALP).

• 1999: Erdos, Steel, Szekely, and Warnow (RSA, TCS); Huson, Nettles and Warnow (J. Comp Bio.)

• 2001: Warnow, St. John, and Moret (SODA); Cryan, Goldberg, and Goldberg (SICOMP); Csuros and Kao (SODA); 
Nakhleh, St. John, Roshan, Sun, and Warnow (ISMB)

• 2002: Csuros (J. Comp. Bio.)

• 2006: Daskalakis, Mossel, Roch (STOC), Daskalakis, Hill, Jaffe, Mihaescu, Mossel, and Rao (RECOMB)

• 2007: Mossel (IEEE TCBB)

• 2008: Gronau, Moran and Snir (SODA)

• 2010: Roch (Science)

• 2017: Roch and Sly (Prob. Theory and Related Fields)

and others



DCM1: Divide-and-conquer AFC method

• DCM: disk-covering method

• Idea is to use divide-and-conquer to decompose a dataset into 
subsets, apply your favored method to construct trees on the subsets, 
and then combine these trees into a tree on the full dataset using a 
supertree method.

But, the details matter (see Stendhal)



DCM1-boosting

• The DCM1 phase produces a collection of trees (one for each 
threshold), and the SQS phase picks the “best” tree.

• For a given threshold, the base method is used to construct trees 
on small subsets (defined by the threshold) of the taxa. These small 
trees are then combined into a tree on the full set of taxa.

DCM1 SQS(base) method DCM1-boosted method

Warnow, St. John, and Moret, SODA 2001



DCM-boosting maintains statistical consistency

Error
in tree inferred by  

method M

Amount of data
generated under model G and 

then given to method M as input

Theorem: If M is 

statistically consistent 

for tree estimation, 

then its DCM-boosted 

version is also 

statistically consistent



DCM-boosting improves sample complexity

Error
in tree inferred by  

method M

Amount of data
generated under model G and 

then given to method M as input

Theorem: If M is 

exponentially 

converging, then its 

DCM-boosted version 

is AFC.



NJ is exp. convg., DCM-NJ is AFC

Error
in tree inferred by  

method M

Amount of data
generated under model G and 

then given to method M as input

Corollary: NJ is 

exponentially 

converging, and  

DCM-NJ is AFC.



NJ has high error on large diameter trees

Simulation study based 
upon fixed edge 
lengths, K2P model of 
evolution, sequence 
lengths fixed to 1000 
nucleotides.

Error rates reflect 
proportion of incorrect 
edges in inferred trees.

[Nakhleh et al. ISMB 2001]
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DCM1-boosting distance-based methods
[Nakhleh et al. ISMB 2001]

•Theorem (Warnow 
et al., SODA 2001): 
DCM1-NJ converges 
to the true tree 
from polynomial 
length sequences

NJ

DCM1-NJ
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Are we done? Unfortunately, no.



Maximum likelihood tree estimation

• Theory:
• Statistically consistent under standard models

• Excellent sample complexity (Roch & Sly, Prob. Theory and Related Fields, 
2017): phase transition (logarithmic then polynomial)  

• NP-hard 

• Empirical (based on heuristics) – using RAxML (leading ML heuristic)
• Outstanding accuracy on simulated data (e.g., better than DCM-NJ)

• Challenging on large datasets (best methods can take CPU years or fail to run 
on large datasets)



DCM-NJ vs. Maximum Likelihood

• DCM-NJ is polynomial time and scales to large datasets

• Maximum likelihood is an NP-hard optimization problem and its 
heuristics can be slow

• In simulation, Maximum Likelihood is usually more accurate than 
DCM-NJ

Question: Are there other Divide-and-Conquer approaches that 
improve maximum likelihood scalability and speed?



Divide-and-conquer using supertree methods

• Given input dataset
• Divide into overlapping subsets

• Construct trees on subsets

• Combine the overlapping subset trees using a supertree method

• Studied most in comparison to maximum parsimony and maximum 
likelihood on sequence alignments



Divide-and-conquer using supertree methods

• Examples of standard supertree methods:
• Robinson-Foulds Supertrees (minimize total RF distance to source trees)
• Matrix Representation using Parsimony (MRP): represent the input source 

trees as a matrix with 0,1,?, and then solve for maximum parsimony
• Matrix Representation using Likelihood (MRL): construct same matrix, but 

then run solve for maximum likelihood

• All NP-hard problems, so heuristics are used

• Excellent accuracy but slow and not scalable

Summary: insufficient scalability/accuracy for large-scale phylogeny



Part II: Divide-and-conquer using DTMs



Decompose 

species set into 

pairwise disjoint 

subsets.Full

species

set

Build a tree on each

subset

Compute tree on entire set of species 

using “Disjoint Tree Merger” method

Tree

on full

species set

Auxiliary

Info
(e.g., distance

matrix)

Divide-and-Conquer using Disjoint Tree Mergers

Note: use most 
accurate method 
on subsets, and 
treat as absolute 
constraints

Erin Molloy,
Introduced this
approach



Bioinformatics, Volume 35, Issue 14, July 2019, Pages i417–i426, https://doi.org/10.1093/bioinformatics/btz344

The content of this slide may be subject to copyright: please see the slide notes for details.

DTMs Merge Subset Trees

Notes: 
• Subset trees are requirements (constraint trees)
• Blending is permitted!



Decompose 

species set into 

pairwise disjoint 

subsets.Full

species

set

Build a tree on each

subset

Compute tree on entire set of species 

using “Disjoint Tree Merger” method

Tree

on full

species set

Auxiliary

Info
(e.g., distance

matrix)

Divide-and-Conquer using Disjoint Tree Mergers

Note: use most 
accurate method 
on subsets, and 
treat as absolute 
constraints

Erin Molloy,
Introduced this
approach

Theorem: 
If the subtree 
method is 
statistically 
consistent, then 
many DTM 
methods are 
statistically 
consistent.



Disjoint Tree Mergers (DTMs)

• NJMerge (Molloy and Warnow, Alg Mol Biol 2019)

• TreeMerge (Molloy and Warnow, Bioinf 2019)

• Constrained-INC (Zhang, Rao, and Warnow, Alg Mol Biol 2019)
• The only one that allows full blending

• Guide Tree Merger (Smirnov and Warnow, 2020)
• Does not allow blending



Guide Tree Merger 

• Input: 
• set T of trees Ti on leafset Si (disjoint sets)
• “guide tree” T on union of Si

• Output: Tree T* that induces each Ti  and minimizes the bipartition 
distance to T

• NP-hard 

• If we constrain T* to be formed by adding edges between the trees T i 
(i.e., no blending allowed), then solvable in polynomial time.

• Smirnov and Warnow, BMC Genomics 2020



Orangutan Gorilla Chimpanzee Human

From the Tree of the Life Website,

University of Arizona

Species Tree Estimation  



Gene tree discordance

3

Orang.Gorilla ChimpHuman Orang.Gorilla Chimp Human

gene1000gene 1

Multiple causes for discord, 
including 
• Incomplete Lineage Sorting 

(ILS), 
• Gene Duplication and Loss 

(GDL), and
• Horizontal Gene Transfer (HGT)



Gene tree discordance

3

Orang.Gorilla ChimpHuman Orang.Gorilla Chimp Human

gene1000gene 1

Multiple causes for discord, 
including 
• Incomplete Lineage Sorting 

(ILS), 
• Gene Duplication and Loss 

(GDL), and
• Horizontal Gene Transfer (HGT)



OrangutanGorilla ChimpHuman

Gene evolution model

Orang.
GorillaChimp

Human Orang.

Gorilla ChimpHuman
Orang.

Gorilla
Chimp

Human
Orang.

Chimp Human

ACTGCACACCG 
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ATGAGC-TC- 
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AGCAGCATCGTG 

AGCAGC-TCGTG 

AGCAGC-TC-TG 

C-TA-CACGGTG

CAGGCACGCACGAA 

AGC-CACGC-CATA 

ATGGCACGC-C-TA 

AGCTAC-CACGGAT

Sequence evolution model

 1

Species tree

Gene tree

Sequence data

(Alignments)

Gene tree Gene tree Gene tree

Sequence data

(Alignments)

MSC+GTR Hierarchical Model

1. Gene trees evolve 
within the species 
tree (under the 
Multi-Species 
Coalescent model)

2. Sequences evolve 
down the gene 
trees (under GTR 
model)



Gene trees inside the species tree (Coalescent Process)

Present

Past

Courtesy James Degnan

Gorilla and Orangutan are not siblings in the species tree, 
but they are in the gene tree.

Deep coalescence  =
INCOMPLETE 
LINEAGE
SORTING (ILS):
gene tree can be different
from the species tree





ASTRAL 
[Mirarab, et al., ECCB/Bioinformatics, 2014]

• Optimization Problem (NP-Hard):

• Theorem: Statistically consistent under the multi-

species coalescent model when solved exactly

15

Find the species tree with the maximum number of induced 

quartet trees shared with the collection of input gene trees

Set of quartet trees 

induced by T

a gene tree

Scor e(T ) =
X

t 2 T

|Q(T ) \  Q(t)|

all input gene trees

ASTRAL runs in 
O(|X|2kn) 
where there 
are n species 
and k genes, 
and X is the set 
of allowed 
bipartitions



Main Approaches for Species Tree Estimation



Decompose 

species set into 

pairwise disjoint 

subsets.Full

species

set

Build a tree on each

subset

Compute tree on entire set of species 

using “Disjoint Tree Merger” method

Tree

on full

species set

Auxiliary

Info
(e.g., distance

matrix)

Divide-and-Conquer Gene Tree Estimation

Note: use most 
accurate method 
on subsets, and 
treat as absolute 
constraints

Guide Tree Merger

ASTRAL

NJst for 
guide tree



GTM+ASTRAL: 
faster and more 
accurate than ASTRAL



What about scaling Maximum Likelihood?



Decompose 

species set into 

pairwise disjoint 

subsets.Full

species

set

Build a tree on each

subset

Compute tree on entire set of species 

using “Disjoint Tree Merger” method

Tree

on full

species set

Auxiliary

Info
(e.g., distance

matrix)

Divide-and-Conquer Gene Tree Estimation

Note: use most 
accurate method 
on subsets, and 
treat as absolute 
constraints

Guide Tree Merger

RAxML, 
IQ-TREE, 
etc

FastTree or 
IQ-Tree
for guide tree



Figure 2 from  “Disjoint Tree Mergers 
for Large-Scale Maximum Likelihood 
Tree Estimation”,  Park et al., 
Algorithms 2021

GTM pipeline: 
• starting tree is IQ-Tree or FastTree 

(smaller datasets), 
• IQ-tree used to compute subset 

trees, 
• Guide Tree = Starting Tree



GTM-pipeline:
• Scales to large datasets
• Is competitive with RAxML 

and IQ-TREE for accuracy
• Is only slightly slower than 

starting tree (but more 
accurate) 



Trends
• On RNASim10k: GTM most accurate topology
• On RNASim50K: 

• IQTree failed
• RAxML had nearly 100% error
• GTM most accurate



Analysis of Kelly Williams 
dataset (Minhyuk Park et al., 
NYP)

Choice of starting tree matters!
 
RAxML continues to improve its 
ML score during the entire 8 day 
period (but most gains are in the 
first 4 days)

GTM takes a bit more than 24 
hours



On this dataset, 
• Default RAxML worst
• FastTree is a better 

starting tree
• GTM is much better

Large datasets need 
long running times and 
very good starting 
trees!



Overall summary

• Large-scale phylogenetic tree estimation is becoming truly feasible!
• Large numbers of sequences no longer a major impediment

• Heterogeneity across the genome presents challenges, but methods are being 
developed that address biological heterogeneity

• Not discussed here (and still needs work): 
• Phylogenetic networks

• Genome rearrangement phylogeny

• Multiple whole genome alignment



Disjoint Tree Mergers (summary)

• “Disjoint tree mergers” (DTMs) are generic methods, that can be used 
with any phylogeny estimation method (for any kind of data).

• DTMs enable scalability to large datasets.

• DTMs maintain statistical consistency

• DTM-ASTRAL improves speed and accuracy compared to ASTRAL  

• Potential for improving maximum likelihood

• GTM is the current leading DTM technique, based on empirical performance. 
However, because it does NOT allow blending, it is unlikely GTM is the best 
that can be done. 



Open problems

• Empirical: 
• Develop better Divide-and-Conquer strategies (e.g., improve on DTM)

• Develop scalable and accurate supertree methods, and study them within 
divide-and-conquer pipelines.

• Develop divide-and-conquer for phylogenetic network estimation

• Theoretical:
• Are any divide-and-conquer pipelines AFC? 

• Can we bound error in Divide-and-Conquer pipelines analytically?

• Develop theoretical framework for why GTM-boosting improves ASTRAL 
accuracy



Resources

Papers available at http://tandy.cs.illinois.edu/papers.html 

Presentations available at http://tandy.cs.illinois.edu/talks.html 

Software on github, links at http://tandy.cs.illinois.edu/software.html 

                   Write to me: warnow@Illinois.edu

http://tandy.cs.illinois.edu/papers.html
http://tandy.cs.illinois.edu/talks.html
http://tandy.cs.illinois.edu/software.html
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