Mixture models for phylogenetic analysis in IQ-TREE2

Thomas Wong

School of Computing, Australian National University

Algorithmic Advances and Implementation Challenges: Developing Practical Tools for Phylogenetic Inference (Nov 18 - 22, 2024)

Model-based Phylogenetics

Phylogenetic Tree

DNA/Amino acid Sequence Alignment

Bird	С	A	А	_	_	_	A	A	Τ	A
Crocodile	С	А	С	Α	_	Τ	А	С	_	Т
Turtle	С	А	С	Τ	А	Τ	А	А	G	Т
Human	С	Α	С	_	-	_	Α	С	А	А

Assumptions are:

- 1. Single model
- 2. Single tree
- 3. Sites evolve independently

4.

Markov model

Frequency array: $\pi_A \ \pi_C \ \pi_G \ \pi_T$

Assumption

All alignment sites evolve equally under the same phylogenetic process?

Bird	С	A	A	_	_	_	A	A	Т	A
Crocodile	С	A	С	А	_	Τ	A	С	_	Т
Turtle	С	Α	С	Τ	A	Τ	Α	Α	G	Т
Human	С	A	С		—		A	С	A	А
C	$\begin{array}{c} A \\ \uparrow \\ \uparrow \\ T \end{array}$		f	C G G T	d T _T					

Single model often not true

For example:

- Multiple genes
- On different chromosomes
- Encode different proteins
- Proteins have very different functions
- Under different biological constraints
- One model is not good enough to describe the evolutionary process along the alignment

		C	Gen	e A						
Bird	С	A	A	_	Ι	_	A	A	Т	А
Crocodile	С	А	С	А	_	Т	А	С	_	Т
Turtle	С	А	С	Τ	А	Т	А	А	G	Т
Human	С	A	С	—	—	_	A	С	A	A

 $\pi_{A}\pi_{C}\pi_{G}\pi_{T}$

Partition model

- Each partition has a separate model
- Often it can fit the data much better than a single model
- > However,
 - Gene information is absent
 - Gene boundary is not accurate
 - For protein, partition according to protein domain?

		0	Gen	e A			Ge	ene	Β		
Bird	С	A	А	_	-	_	A	А	Т	A	
Crocodile	С	А	С	А	_	Т	А	С	_	Т	
Turtle	С	А	С	Τ	А	Т	А	А	G	Т	
Human	С	A	С	_	_	_	А	С	A	A	

 $\pi_{A1}\pi_{C1}\pi_{G1}\pi_{T1}$ $\pi_{A2}\pi_{C2}\pi_{G2}\pi_{T2}$

Mixture model

It **does not need** any partition information

Assume each site evolves under a mixture of *k-class* models

Each class can have a **different** model For example: $Q_1 - GTR$; $Q_2 - HKY$; $Q_3 - GTR'$

Likelihood of each site is a **weighted sum** of likelihoods across all the models

For example, likelihood of site *i*:

$$L_i = \mathbf{w_1}L(Q_1|D_i) + \dots + \mathbf{w_k}L(Q_2|D_i)$$

Mixture model

Has been implemented in IQ-TREE for some years

However, this model is not popular

Gene A Gene B Bird C A A - - - A A TA C A C A - T A CCrocodile CACTATAA Т Turtle G C A C - - - A CHuman А A

Huaiyan Ren

Not easy to decide

- the number of classes (i.e. the value of k)?
- which model for each class? ۲

model **Q**_k model Q_1

- Introduce a new algorithm MixtureFinder
- > Automatically estimate
 - a. Optimal number of classes
 - b. Optimal model for each class

Is a single model good enough?

Is one model enough?

Results

Among **19,834** DNA partitions, in **19,106 (96.3%)** of them the **2-class** models have **better** BIC value.

MixtureFinder (for DNA)

Workflow

Evaluating MixtureFinder on Simulated data

Estimated number of classes vs simulated number of classes

Experiment 3

Apply the MixtureFinder on the empirical data:

16 vertebrate taxa,248 genes (187k sites)

Apply the MixtureFinder to the concatenated alignment

Download PDF 速

Ylenia Chiari Miccent Cahais, Nicolas Galtier & Frédéric Delsuc

 \bigcirc 37k Accesses \bigcirc 254 Citations \bigcirc 176 Altmetric \bigcirc 27 Mentions Explore all metrics →

Experiment 3

Conclusion

- A single substitution model is always not adequate to empirical data set.
- Model is matter! MixtureFinder can recover a better tree than a single model.
- MixtureFinder is available in IQ-TREE2.
- MixtureFinder now only supports DNA. We may extend it to amino acid in the future.

Preprint: https://www.biorxiv.org/content/10.1101/2024.03.20.586035v2

MAST model, a multi-tree mixture model

Traditional phylogenetic analyses always make this assumption:

Biological processes:

Different genomic loci may have evolved under different trees

Incomplete lineage sorting

Introgression

Recombination

S1:	А	А	А	—	Τ	А	А	А	Τ	Т	А	С
S2:	С	Т	А	А	С	С	Т	Т	Т	Т	А	С
S3:	С	Τ	А	Т	Α	А	G	Τ	Τ	Т	Τ	Α
S4:	С	А	С	—	А	С	А	А	А	Τ	А	С

Gene A

A 100 - 100

Gene B

18

Existing approaches

- Multi-species coalescent model
- Phylogenetic network

We suggest a new approach: a Mixture Across Sites and Trees (MAST) model

MAST model

 S1:
 A
 A
 A
 T
 A
 A
 C

 S2:
 C
 T
 A
 A
 C
 C
 T
 T
 A
 C

 S3:
 C
 T
 A
 A
 T
 A
 A
 C

 S4:
 C
 A
 A
 C
 A
 A
 C
 A
 C

 S4:
 C
 A
 A
 A
 A
 A
 A
 C
 A
 C

 S4:
 C
 A
 A
 A
 A
 A
 A
 A
 C

MAST model

Concatenated alignment

A toy example - Likelihood values along the sites

- The MAST model has been implemented in IQ-TREE
- We've done lots of simulations to verify its correctness.
- Tutorial: http://www.iqtree.org/doc/Complex-Models#multitreemodels

Three empirical experiments

Apply to Human-Chimp-Gorilla data

Number of genes: 1,595 Total length: 1,618,506

- Well-studied four-taxon grouping of human, chimpanzee, gorilla, and orangutan
- The accepted species tree: T₃

The frequencies of the minor trees from the MAST analysis are very similar
Good indication of the existence of incomplete lineage sorting in this data set

27

Apply to Macaques data

The minor trees are substantially different in frequency from the MAST analysis
 Good indication of the existence of introgression in this data set

Apply to New World Monkeys

Number of genes: 1,557

- > The MAST model reported T_{D1} as the topology with the highest weight
- The MAST model can analyse a concatenated alignment using maximum likelihood, but without the biases 28 that come with the single-tree assumption

Conclusion

- 1. The MAST model can overcome biases for a maximum likelihood method with single-tree assumption.
- 2. The weights estimated by the MAST model can be a good indication of some biological processes, like incomplete lineage sorting or introgression.

Published in Systematic Biology in March 2024 (https://doi.org/10.1093/sysbio/syae008) HMM-MAST model, considering dependence between topologies along the adjacent sites (Preliminary results)

HMM-MAST: HMM on multi-tree model

- MAST model does not consider the dependence between the sites.
- Topologies along the sites should have dependence.
- The model is based on the paper:

J Felsenstein, G A Churchill, A Hidden Markov Model approach to variation among sites in rate of evolution., *Molecular Biology and Evolution*, Volume 13, Issue 1, Jan 1996, Pages 93–

104, <u>https://doi.org/10.1093/oxfordjournals.molbev.a025575</u>

HMM-MAST: HMM on multi-tree model

О

 \cap

 \cap

1	2	3	4		n

- - $c_1 \qquad c_2 \qquad c_3 \qquad c_4 \ldots$

- Assume each site has evolved under any of three trees {T₁, T₂, T₃}.
- However, this information is hidden.
- For each site, define the state c_i as the trees the site *i* may belong to.

Parameters of the HMM-MAST

Transition probability matrix :

- Transition probability of going from c_{i-1} to c_i

$$P_{3x3} = \begin{pmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{pmatrix}$$

The transition probability between the trees along the sites.

	2	3	4		n
 →0∕₽			0		0
0	0	Р ₁ О	0		0

Backward probability formula

$$\Pr(D|T_1, T_2, T_3) = \sum_{c_1} \sum_{c_2} \dots \sum_{c_n} \Pr(c_1, c_2, \dots, c_n) \Pr(D|T_{c_1}, T_{c_2}, \dots, T_{c_n})$$

 $\sum_{c_1=1}^{k} f_{c_1} Pr\{D_1|T_{c_1}\} \sum_{c_2=1}^{k} p_{c_1c_2} Pr\{D_2|T_{c_2}\} \sum_{c_4=1}^{k} \dots \sum_{c_n=1}^{k} p_{c_{n-1}c_n} Pr\{D_n|T_{c_n}\}$

Difference between our method and PhyML-multi

- PhyML-multi also implemented HMM on phylogenetic.
- PhyML-multi assumes each site evolves under each topology with equal probability.
- PhyML-multi has difficulty in handling long (> 5K) alignments

Simulated data sets with partitions

- Various numbers of partitions with different numbers of sequences
- Each partition was simulated using a different tree
- The model used to simulate the data sets: GTR+G
- Every trees have different GTR and Gamma models
- For example:

• Alignment length: 5K

Simulation results

Evaluate the proportion of sites belonging each tree

Alignment length: 5K

6 ⊨ 7 ¢ 10 白 20

Simulated data sets with very short blocks

- Number of trees = 10
- Number of tips = 10
- Alignment length = 50K
- Block lengths: 1, 10, 100, 1000
- Each block was randomly assigned one tree
- The model used to simulate the data sets: GTR+G
- Every tree has different GTR and Gamma models
- For example (for 3 trees):

Results on simulated data sets with short blocks

Alignment lengths: 50K; Number of input trees = 10

Next direction.....

- HMM-MAST works well in simulated data sets
- Will perform testing on empirical data sets

Acknowledgements

Collaborators:

Indiana University, USA

• Matthew W Hahn

University of Auckland, New Zealand

• Allen G Rodrigo

Australian National University

- Minh Bui
- Rob Lanfear

- Caitlin Cherryh
- Huaiyan Ren
- Jeremias Ivan
- Nhan Trong Ly
- Rahil Vora

