Cherry reduction sequences and linear extensions

Joan Carles Pons

Department of Mathematics and Computer Science University of the Balearic Islands

From Phylogenetics to Phylogenomics: Mathematical and Statistical Challenges in the Era of Big Data, 22/10/2024

Table of contents

- Basic definitions and terminology
- The problem to solve
- Some lemmas
- The main result
- The algorithm
- Future directions

Basic definitions and terminology

Basics on networks

- Rooted binary phylogenetic networks
- Cherries and reticulated cherries. Terminal nodes. Cherry reduction CR(N, u)• Cherry reduction sequence of N is $(N_0, ..., N_s)$ where $N_{i+1} = CR(N_i, u_i)$ Orchard networks (and tree-child networks)
- CR Seq(N) is the set of cherry reduction sequences of N
- T(N) is the set of tree nodes of N
- N is the result of removing pendant arcs on N

Basics on posets

- Order \leq and poset (X, \leq)
- Order-dual \leq^{op} and order-dual poset (X, \leq^{op})
- LinExt(X) is the set of linear extensions of (poset) X

• Linear extension of $(X, \leq x)$ is a bijection $\pi : \{1, \dots, |X|\} \to X$ s.t. $x \leq y \to \pi^{-1}(x) \leq \pi^{-1}(y)$

• Cover graph of a poset (X, \leq) is the graph $(X, \{xy \mid \text{if } x \prec y \text{ and } \nexists z : x \prec z \prec y\})$

Posets on networks

- Reachability relation on V(N): $u \nleftrightarrow v$ when u is an ancestor of v in N
- Poset (V(N), \rightarrow) or its restriction (T(N), \rightarrow). What are the maximals?
- Linear extensions on $(T(N), \rightsquigarrow)$
- Cover graph of $(T(N), \rightsquigarrow)$

when *u* is an ancestor of *v* in *N* ∘ N), →). What are the maximals?

The question

What's the question?

From Erdös, P. L., Semple, C., and Steel, M. (2019) in Mathematical Biosciences "A class of phylogenetic networks reconstructable from ancestral profiles".

In other words, if N is a tree-child network, what is |CR - Seq(N)|?

- Can we count the number of cherry reduction sequences on orchard networks?
- Can we count the number of cherry reduction sequences on tree-child networks?

Why this question?

1. CR-Seq represents different ways to simplify evolutionary information 2. Yule process on tree generation. The probability $P_{Y}(T)(n-1)! = |CR - Seq(T)^*|$ 3. Cherry reductions are used for different purposes: identification, generation, etc 4. ...

Impossible to resist for one interested in phylogenetic combinatorics

The lemmas

Lemma 1

0 Let N be an orchard network, $u \in T(N)$ a terminal node, and N' = CR(N, u).

Then $T(N) = T(N') \sqcup \{u\}.$

Lemma 2

Let *N* be an orchard network.

 $N_{i+1} = CR(N_i, u_i)$, is well-defined and injective.

Moreover, σ can be restricted to linear extensions of $(T(N), \rightsquigarrow^{op})$.

The assignment $\sigma : CR - Seq(N) \to \mathfrak{S}_{T(N)}^{\circ}$ that maps each cherry reduction sequence (N_0, \ldots, N_s) of N to the permutation of internal tree nodes $(u_0 \cdots u_{s-1})$ of N, where

Lemma 3

Let *N* be a tree-child network. Let $u \in T(N)$.

Then *u* is terminal in *N* if, and only if, *u* is maximal in $(T(N), \rightsquigarrow)$.

Note. That is not true for (general) orchard networks.

The main result

Let N be a tree-child network.

Theorem

0 Then, there is a bijection between CR - Seq(N) and $LinExt((T(N), \rightsquigarrow))$.

The algorithm(s)

Network parameters

- Tree-width

- Level

Both terms are related: For a level-*k* network *N*, $tw(N) \le k + 1$

Counting linear extensions

The problem of counting linear extensions of a poset is #P-complete in general (Brightwell and Winkler, 1991).

The problem of counting linear extensions of a poset of p elements parameterized by the tree-width of its underlying *cover graph* is not FPT.

There is an algorithm to count the number of linear extensions of a poset with p elements with complexity $O(p^{tw+4})$ where tw is the tree-width of the cover graph of the poset (Kangas et al., 2016).

In our context

Our poset is $(T(N), \rightsquigarrow)$.

Note that |T(N)| = n - 1 in tree-child networks.

The cover graph of $(T(N), \rightsquigarrow)$ is easy to compute and it is a minor of N.

For the tree-width, we have $tw(\mathscr{C}(T(N))) \leq tw(N) \leq k+1$.

Then we have an algorithm that runs in $O(n^{k+5})$.

Tree-width and level in tree-child networks

The restriction to tree-child networks simplify the problem?

No. We can build a tree-child network whose level is quadratic with respect to its tree-width, and remember that the level is unbounded.

Conclusions

Future directions

- Find an algorithm that exploits topological features of tree-child networks to count their linear extensions.

- Which kind of posets tree-child networks define? The problem becomes easier to be solved than in general posets?

- Our strategy does not work for orchard networks. The problem remains open.

Thanks! Time for questions