A divide-and-conquer approach to phylogenetic network inference

Kristina Wicke <kristina.wicke@njit.edu>

Department of Mathematical Sciences New Jersey Institute of Technology

Joint work with Elizabeth Allman, Hector Baños, and John Rhodes

September 18, 2024

Big picture

Big picture

Level-1 networks

A rooted binary phylogenetic network N^{+} is called **level-**1 if no two cycles share an edge.

Semi-directed networks

A network is a semi-directed network on X if it can be obtained from a rooted network on X by suppressing its root and undirecting all tree edges.

Big picture

Network multispecies coalescent model (NMSC)

The network multispecies coalescent model (NMSC) is a stochastic model of gene tree generation incorporating

- hybridization (or other forms of lateral gene transfer);
- o incomplete lineage sorting (ILS).

Big picture

Quartets and concordance factors

For each 4-taxon set $\{A, B, C, D\}$, the probability that a gene tree induces each of the unrooted quartets $AB|CD$, $AC|BD$, $AD|BC$ is called the quartet concordance factor (CF), denoted

$$
CF_{ABCD} = (CF_{AB|CD}, CF_{AC|BD}, CF_{AD|BC}).
$$

Empirical CFs

Image credit: Hector Baños

Quartets and concordance factors

We use quartet concordance factors and statistical hypothesis tests to infer the relationships between sets of 4 species.

Image credit: Hector Baños

Big picture

Tree of blobs

- A blob of a network is a maximal connected subnetwork that has no cut edges.
- The (reduced) tree of blobs of a network is obtained by contracting each blob to a node and suppressing non-root degree-2 vertices.

Theorem (Allman, Baños, Mitchell, Rhodes (2023))

For generic numerial parameters, the reduced unrooted tree of blobs is identifiable from the distribution of gene quartet topologies under the NMSC model.

TINNiK: Tree of blobs INference for a species NetworK Allman, Baños, Mitchell, Rhodes (2024)

- Algorithm for the statistically consistent inference of the tree of blobs based on the analysis of gene quartet CFs and a combinatorial inference rule.
- Implemented in the MSCquartets 2.0 R package.

Other ways of obtaining the tree of blobs

NANUQ: Network inference Algorithm via NeighbourNet Using Quartet distance (Allman, Baños, Rhodes (2019))

 \rightarrow Obtain the tree of blobs from the NANUQ splits graph by contracting cycles

Other ways of obtaining the tree of blobs

NANUQ: Network inference Algorithm via NeighbourNet Using Quartet distance (Allman, Baños, Rhodes (2019))

$$
\sum_{\substack{a \text{ prime} \\ \text{ odd}}} \sum_{\substack{a \text{ prime} \\ \text{ odd}}} \longrightarrow \left(\begin{matrix} 0 & 2 & 3 & 4 & 5 \\ 2 & 0 & 3 & 2 & 1 \\ 3 & 3 & 0 & 5 & 2 \\ 5 & 1 & 2 & 3 & 0 \end{matrix} \right) \longrightarrow \bigoplus_{\substack{a \text{ prime} \\ \text{ odd}}} \longrightarrow \bigotimes_{\substack{a \text{ prime} \\ \text{ odd}}} \
$$

 \rightarrow Obtain the tree of blobs from the NANUQ splits graph by contracting cycles

Your method!

Big picture

From the tree of blobs to a level-1 network

Each multifurcation in the unrooted tree of blobs of a level-1 network corresponds to a simple cycle in the network.

From the tree of blobs to a level-1 network

Idea:

- Focus on one multifurcation at a time and find an optimal cycle resolution for it.
- Repeat this for all multifurcations.
- Combine the cycle resolutions into a full level-1 network (if possible).

Let $X^* = \{A, B, C, D, E, F, G, H, I, H, W\}$

Inferring an optimal cycle structure

We use a least-squares approach, comparing an empirical quartet-based distance relating groups of taxa around the multifurcation to an expected one for each possible ordering of the groups and choice of hybrid node:

- \bullet Exhaustive search can be done quickly for cycles of size \leq 10;
- Heuristic method for larger cycles.

Sunlet networks

A semi-directed level-1 network on X with $|X| = n$ is called an *n*-sunlet if it contains precisely one cycle such that (i) all nodes in the cycle are adjacent to precisely on element of X_i ; and (ii) each element of X is adjacent to precisely one node in the cycle.

A parametric family of quartet distances

Let Q_{xyzw} be an induced quartet of a semi-directed level-1 network \mathcal{N}^- , and let Q_{xyzw} be the network obtained from it by contracting all 2- and 3-cycles, and suppressing degree-2 nodes, so $\widetilde{Q}_{x\vee z\wedge y}$ is either a tree or has a single 4-cycle. Fix any $\rho \in (\mathbb{R}^{\geq 0})^4$. With

$$
\rho_{xy}(Q_{xyzw}) = \begin{cases} \rho_c & \text{if } \widetilde{Q}_{xyzw} \text{ has form } xy|zw, \\ \rho_s & \text{if } \widetilde{Q}_{xyzw} \text{ has form } xz|yw \text{ or } xw|yz, \\ \rho_a & \text{if } \widetilde{Q}_{xyzw} \text{ has a 4-cycle with } x, y \text{ adjacent,} \\ \rho_o & \text{if } \widetilde{Q}_{xyzw} \text{ has a 4-cycle with } x, y \text{ not adjacent,} \end{cases}
$$

the **quartet distance** $d_{\bm{\rho}}^{\mathcal{N}^-}$ is defined as

$$
d_{\rho}^{N^{-}}(x,y) = 2 \sum_{z,w \neq x,y} \rho_{xy}(Q_{xyzw}) + 2n - 4.
$$
 (1)

A parametric family of quartet distances

For example, consider taxa 4 and 5. Then, $\rho_{45}(Q_{2345}) = \rho_c$ and $\rho_{45}(Q_{1245}) = \rho_a$.

The NANUQ and modified NANUQ distances

NANUQ distance (Allman et al., 2019):

$$
\rho_{\sf NQ}=(\rho_c,\rho_s,\rho_a,\rho_o)=(0,1,0.5,1)
$$

Modified NANUQ distance:

$$
\rho_{\sf MN} = (\rho_c, \rho_s, \rho_a, \rho_o) = (0.5, 1, 0.5, 1)
$$

$$
d_{\rho_{\mathbf{NQ}}}^{N^-} = \begin{pmatrix} 0 & 9 & 11 & 11 & 9 \\ 9 & 0 & 8 & 11 & 12 \\ 11 & 8 & 0 & 10 & 11 \\ 11 & 11 & 10 & 0 & 8 \\ 9 & 12 & 11 & 8 & 0 \end{pmatrix} \text{ and } d_{\rho_{\mathbf{M}N}}^{N^-} = \begin{pmatrix} 0 & 9 & 11 & 11 & 9 \\ 9 & 0 & 9 & 11 & 12 \\ 11 & 9 & 0 & 10 & 11 \\ 11 & 11 & 10 & 0 & 9 \\ 9 & 12 & 11 & 9 & 0 \end{pmatrix}
$$

The NANUQ and modified NANUQ distances

Both the NANUQ and modified NANUQ distances allow us to recover n-sunlets:

Theorem (Allman, Baños, Rhodes (2019))

Let N⁻ be an m-sunlet network. Then from $d_{\rho_{NQ}}^{N^-}$ the circular order of the taxa around the cycle are identifiable. If $m > 4$, then the hybrid taxon is also identifiable.

Theorem (Allman, Baños, Rhodes, W (2024+))

Let N⁻ be an m-sunlet network. Then from $d_{\rho_{\rm MN}}^{N^-}$ the circular order of the taxa around the cycle is identifiable. If $m > 4$, then the hybrid taxon is also identifiable.

Generalized sunlets

Let B be a blob of N^- . Let e_1,\ldots,e_m denote the cut edges incident with B yielding a partition $X_1 \sqcup \ldots \sqcup X_m$ of X. Then, the generalized sunlet network $N_R^ B_{B}^{-}$ induced by B is obtained from N^{-} as follows: Delete all nodes and edges not contained in or incident with B. Then label the degree-1 node of each cut edge e_i incident with B by X_i .

Here, $X_1 = \{1, 2\}$, $X_2 = \{4\}$, $X_3 = \{5, 6, 7, 8, 9\}$, and $X_4 = \{3\}$.

Group distances for a blob from the generalized sunlet

- For any choice of ρ , we have a distance d_{ρ} on the labels $\{X_i\}$ on $N_{\mathcal{B}}^-$ B using the form of the induced quartet network on 4 of these $X_i.$
- This induced quartet network must have the same form as the full network's induced quartet network on taxa x_i chosen from each $\mathsf{X}_i.$
- However, to estimate this distance from data, we must allow for the fact that different choices of $x_i \in X_i$ may in fact support different inferred quartet topologies.

Group distances around a blob from quartets

Suppose $X = X_1 \sqcup ... \sqcup X_m$ is a partition of the taxa induced by an m-blob and Q is a collection of quartet networks on X such that for all distinct i,j,k,l and $x_i\in X_i$, $x_j\in X_j$, $x_k\in X_k$, $x_l\in X_l$, $\mathcal Q$ contains a level-1 quartet network $Q_{\textsf{x}_i \textsf{x}_j \textsf{x}_\textsf{k} \textsf{x}_l}$ on $\textsf{x}_i, \textsf{x}_j, \textsf{x}_k, \textsf{x}_l$. Then, the **parametric group distance** between $X_i\neq X_j$ for $\mathcal Q$ is

$$
d_{\rho}^{\mathcal{Q}}(X_i, X_j) = 2 \sum_{k, l \neq i, j} \frac{1}{|X_i||X_j||X_k||X_l|} \sum_{\substack{x \in X_i, y \in X_j, \\ z \in X_k, w \in X_l}} \rho_{xy}(Q_{xyzw}) + 2m - 4,
$$

Group distances around a blob from quartets

Suppose $X = X_1 \sqcup ... \sqcup X_m$ is a partition of the taxa induced by an m-blob and Q is a collection of quartet networks on X such that for all distinct i,j,k,l and $x_i\in X_i$, $x_j\in X_j$, $x_k\in X_k$, $x_l\in X_l$, $\mathcal Q$ contains a level-1 quartet network $Q_{\textsf{x}_i \textsf{x}_j \textsf{x}_\textsf{k} \textsf{x}_l}$ on $\textsf{x}_i, \textsf{x}_j, \textsf{x}_k, \textsf{x}_l$. Then, the **parametric group distance** between $X_i\neq X_j$ for $\mathcal Q$ is

$$
d_{\rho}^{\mathcal{Q}}(X_i, X_j) = 2 \sum_{k, l \neq i, j} \frac{1}{|X_i||X_j||X_k||X_l|} \sum_{\substack{x \in X_i, y \in X_j, \\ z \in X_k, w \in X_l}} \rho_{xy}(Q_{xyzw}) + 2m - 4,
$$

Proposition (Allman, Baños, Rhodes, W (2024+))

For a generalized sunlet $N_R^ B_B^{\text{L}}$ on $\{X_i\}$ induced from a level-1 network N^- on X, let Q denote the set of induced quartet networks Q_{xyzw} for all choice of $x,y,z,w\in X$ from four distinct $X_i.$ Then

$$
d_{\rho}^{N_B^-}=d_{\rho}^{\mathcal{Q}}.
$$

Cycle resolution

Algorithm ResolveCycle

Input: Unrooted tree of blobs T on X with a designated m-multifurcation representing a blob B ; a collection Q of level-1 quartet topologies for each set of 4 taxa drawn from different taxon groups around the blob; ρ . **Output:** A circular order of the taxon groups for B and, if $m > 4$, a designation of the hybrid group.

- 1 Compute $d_{\rho}^{\mathcal{Q}}$ and $d_{\rho}^{\mathcal{C}}$ for an m -sunlet $\mathcal{C}.$
- $\mathfrak o$ For each circular order of the $\mathcal X_i$, and if $m>4$, a designated hybrid group, compute the ordinary least-squares residual r between $d_{\bm{\rho}}^{\mathcal{Q}}$ and the reordered $d^{\, \mathcal{C}}_{\bm{\rho}}$.
- 3 Return the circular order and, if $m > 4$, the hybrid group giving the minimal r.

Cycle resolution

Algorithm ResolveCycle

Input: Unrooted tree of blobs T on X with a designated m-multifurcation representing a blob B ; a collection Q of level-1 quartet topologies for each set of 4 taxa drawn from different taxon groups around the blob; ρ . **Output:** A circular order of the taxon groups for B and, if $m > 4$, a designation of the hybrid group.

- 1 Compute $d_{\rho}^{\mathcal{Q}}$ and $d_{\rho}^{\mathcal{C}}$ for an m -sunlet $\mathcal{C}.$
- $\mathfrak o$ For each circular order of the $\mathcal X_i$, and if $m>4$, a designated hybrid group, compute the ordinary least-squares residual r between $d_{\bm{\rho}}^{\mathcal{Q}}$ and the reordered $d^{\, \mathcal{C}}_{\bm{\rho}}$.
- 3 Return the circular order and, if $m > 4$, the hybrid group giving the minimal r.

Step 2 is potentially limiting computationally. For larger cycles, we use a heuristic.

Tree of blobs resolution

Algorithm Tree of Blobs Resolution

Input: Unrooted tree of blobs T on X; a collection Q of level-1 quartet topologies for each set of 4 taxa drawn from different taxon groups around the blob; ρ .

Output: A binary level-1 network resolving the tree of blobs, or FAIL

- \bullet Resolve each blob on T:
- ² Determine if the designated hybrid nodes are compatible (in the sense of permitting a rooting of the network);
- ³ If so, return this level-1 network; otherwise return FAIL.

Big picture

Our divide-and-conquer approach for resolving a tree of blobs into a level-1 network will be added to the R package MSCquartets. It will be possible to

- Resolve individual cycles,
- Combine cycle resolutions for different cycles,
- Resolve the full tree of blobs.

Simulation study

 \circ Simulated *m* gene trees with PhyloCoalSimulations (Fogg et al., 2023)

 $m = 300, 500, 1000, 10000$

Varied amount of ILS by scaling network branch lengths $k = 1.0, 1.5, 2.0, 4.0$

Network should be semidirected; Rooting is arbitrary.

Network should be semidirected; Rooting is arbitrary. Hybrid node on 4−cycle is not identifiable.

Network should be semidirected; Rooting is arbitrary.

C

L K J

Network should be semidirected; Rooting is arbitrary.

Blobs b_1 , b_2 , b_3 as before, but tie for b_4 :

Blobs b_1 , b_2 , b_3 as before, but tie for b_4 :

E D M N

We will present more extensive results in a forthcoming preprint. Overall observations so far:

- Given the true tree of blobs, the approach works very well across a variety of tested settings and model networks.
- Sample size and branch lengths matter.
- Given the gene trees, the approach is very fast.

Lescroart et al. (2023) Extensive Phylogenomic Discordance and the Complex Evolutionary History of the Neotropical Cat Genus Leopardus

- \bullet 16 taxa
- 23,136 gene trees

- Running TINNiK (with $\alpha = 5e 29$ and $\beta = 0.95$), we obtain a tree of blobs with 2 multifurcations.
- We obtain a unique resolution for one cycle, and a 5-tie for the other cycle.
- Combining the cycle resolutions into 5 "candidate" networks, we use functionality of PhyloNetworks to optimize parameters under pseudolikelihood.

 \Rightarrow This is very quick (\sim 30 seconds for finding candidate networks; 5 mins per candidate for optimizing parameters)!

Solis-Lemus C, Bastide P, Ane, C (2017): PhyloNetworks: a package for phylogenetic networks. Mol Biol Evol 34(12):3292–3298.

Southern tiger cat

254.0

406.0

490.3

• Comparison with SNaQ (Solís-Lemus and Ané, 2016) with $h_{\text{max}} = 2$. Runtime ∼ 9 hours (default settings).

0.393

234.6

364.7

486.1

Our best-scoring candidate network agrees with the best-scoring network found by SNaQ (in terms of topology):

Future directions

Networks of higher level

- Our theoretical results for identifying the circular order and hybrid taxon on an m-sunlet from the (modified) NANUQ distance are for level-1 networks.
- Future work: Extend the approach to networks of higher level (if possible).

Future directions

Visualizing consensus among cycle resolutions

Sometimes different cycle resolutions are tied. How do we visualize their consensus?

Network should be semidirected; Rooting is arbitrary.

Network should be semidirected; Rooting is arbitrary.

Thank you!

Bibliography I

F Allman, Elizabeth S., Hector Baños, and John A. Rhodes (2019). "NANUQ: a method for inferring species networks from gene trees under the coalescent model". In: Algorithms for Molecular Biology 14.1. **Allman, Elizabeth S, Jonathan D Mitchell, and John A Rhodes (2021).** "Gene Tree Discord, Simplex Plots, and Statistical Tests under the

Coalescent". In: Systematic Biology 71.4, 929–942.

- Allman, Elizabeth S. et al. (2022). "The tree of blobs of a species network: identifiability under the coalescent". In: Journal of Mathematical Biology 86.1.
- Allman, E.S. et al. (2024). "TINNiK: Inference of the Tree of Blobs of 早 a Species Network Under the Coalescent". In: bioarxiv.
- 計 Baños, Hector (2018). "Identifying Species Network Features from Gene Tree Quartets Under the Coalescent Model". In: Bulletin of Mathematical Biology 81.2, 494–534.

Bibliography II

量 Fogg, John, Elizabeth S Allman, and Cécile Ané (2023). "PhyloCoalSimulations: A Simulator for Network Multispecies Coalescent Models, Including a New Extension for the Inheritance of Gene Flow". In: Systematic Biology 72.5, 1171–1179. Lescroart, Jonas et al. (2023). "Extensive Phylogenomic Discordance 手 and the Complex Evolutionary History of the Neotropical Cat Genus Leopardus". In: Molecular Biology and Evolution 40.12. Rhodes, John A. (2020). "Topological Metrizations of Trees, and New 暈 Quartet Methods of Tree Inference". In: IEEE/ACM Transactions on Computational Biology and Bioinformatics 17.6, 2107–2118. Solís-Lemus, Claudia and Cécile Ané (2016). "Inferring Phylogenetic Networks with Maximum Pseudolikelihood under Incomplete Lineage Sorting". In: PLOS Genetics 12.3, e1005896.