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Level-1 networks

A rooted binary phylogenetic network N+ is called level-1 if no two cycles
share an edge.
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Semi-directed networks

A network is a semi-directed network on X if it can be obtained from a
rooted network on X by suppressing its root and undirecting all tree edges.
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Network multispecies coalescent model (NMSC)
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The network multispecies coalescent model (NMSC) is a stochastic
model of gene tree generation incorporating

hybridization (or other forms of lateral gene transfer);
incomplete lineage sorting (ILS).
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Quartets and concordance factors

For each 4-taxon set {A,B,C ,D}, the probability that a gene tree induces
each of the unrooted quartets AB|CD, AC |BD, AD|BC is called the
quartet concordance factor (CF), denoted

CFABCD = (CFAB|CD ,CFAC |BD ,CFAD|BC ).
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Empirical CFs

Image credit: Hector Baños
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Quartets and concordance factors

We use quartet concordance factors and statistical hypothesis tests to infer
the relationships between sets of 4 species.

Image credit: Hector Baños
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Tree of blobs
A blob of a network is a maximal connected subnetwork that has no
cut edges.
The (reduced) tree of blobs of a network is obtained by contracting
each blob to a node and suppressing non-root degree-2 vertices.
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Theorem (Allman, Baños, Mitchell, Rhodes (2023))
For generic numerial parameters, the reduced unrooted tree of blobs is
identifiable from the distribution of gene quartet topologies under the
NMSC model.
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TINNiK: Tree of blobs INference for a species NetworK
Allman, Baños, Mitchell, Rhodes (2024)

Algorithm for the statistically consistent inference of the tree of blobs
based on the analysis of gene quartet CFs and a combinatorial
inference rule.
Implemented in the MSCquartets 2.0 R package.
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Other ways of obtaining the tree of blobs

NANUQ: Network inference Algorithm via NeighbourNet Using
Quartet distance (Allman, Baños, Rhodes (2019))

−→ Obtain the tree of blobs from the NANUQ splits graph by
contracting cycles

Your method!
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From the tree of blobs to a level-1 network
Each multifurcation in the unrooted tree of blobs of a level-1 network
corresponds to a simple cycle in the network.
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From the tree of blobs to a level-1 network
Idea:

Focus on one multifurcation at a time and find an optimal cycle
resolution for it.
Repeat this for all multifurcations.
Combine the cycle resolutions into a full level-1 network (if possible).
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Inferring an optimal cycle structure
We use a least-squares approach, comparing an empirical quartet-based
distance relating groups of taxa around the multifurcation to an expected
one for each possible ordering of the groups and choice of hybrid node:

Exhaustive search can be done quickly for cycles of size ≤ 10;
Heuristic method for larger cycles.
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Sunlet networks
A semi-directed level-1 network on X with |X | = n is called an n-sunlet if
it contains precisely one cycle such that (i) all nodes in the cycle are
adjacent to precisely on element of X ; and (ii) each element of X is
adjacent to precisely one node in the cycle.
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A parametric family of quartet distances

Let Qxyzw be an induced quartet of a semi-directed level-1 network N−,
and let Q̃xyzw be the network obtained from it by contracting all 2- and
3-cycles, and suppressing degree-2 nodes, so Q̃xyzw is either a tree or has a
single 4-cycle. Fix any ρ ∈ (R≥0)4. With

ρxy (Qxyzw ) =


ρc if Q̃xyzw has form xy |zw ,

ρs if Q̃xyzw has form xz |yw or xw |yz ,
ρa if Q̃xyzw has a 4-cycle with x , y adjacent,
ρo if Q̃xyzw has a 4-cycle with x , y not adjacent,

the quartet distance dN−
ρ is defined as

dN−
ρ (x , y) = 2

∑
z,w ̸=x ,y

ρxy (Qxyzw ) + 2n − 4. (1)
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A parametric family of quartet distances

For example, consider taxa 4 and 5. Then, ρ45(Q2345) = ρc and
ρ45(Q1245) = ρa.
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The NANUQ and modified NANUQ distances
NANUQ distance (Allman et al., 2019):

ρNQ = (ρc , ρs , ρa, ρo) = (0, 1, 0.5, 1)

Modified NANUQ distance:

ρMN = (ρc , ρs , ρa, ρo) = (0.5, 1, 0.5, 1)

dN−

ρNQ
=


0 9 11 11 9
9 0 8 11 12
11 8 0 10 11
11 11 10 0 8
9 12 11 8 0

 and dN−

ρMN
=


0 9 11 11 9
9 0 9 11 12
11 9 0 10 11
11 11 10 0 9
9 12 11 9 0


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The NANUQ and modified NANUQ distances

Both the NANUQ and modified NANUQ distances allow us to recover
n-sunlets:

Theorem (Allman, Baños, Rhodes (2019))

Let N− be an m-sunlet network. Then from dN−
ρNQ

the circular order of the
taxa around the cycle are identifiable. If m > 4, then the hybrid taxon is
also identifiable.

Theorem (Allman, Baños, Rhodes, W (2024+))

Let N− be an m-sunlet network. Then from dN−
ρMN

the circular order of the
taxa around the cycle is identifiable. If m > 4, then the hybrid taxon is also
identifiable.
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Generalized sunlets
Let B be a blob of N−. Let e1, . . . , em denote the cut edges incident with
B yielding a partition X1 ⊔ . . . ⊔ Xm of X . Then, the generalized sunlet
network N−

B induced by B is obtained from N− as follows: Delete all
nodes and edges not contained in or incident with B . Then label the
degree-1 node of each cut edge ei incident with B by Xi .

Here, X1 = {1, 2}, X2 = {4}, X3 = {5, 6, 7, 8, 9}, and X4 = {3}.
24 / 43



Group distances for a blob from the generalized sunlet

For any choice of ρ, we have a distance dρ on the labels {Xi} on N−
B

using the form of the induced quartet network on 4 of these Xi .
This induced quartet network must have the same form as the full
network’s induced quartet network on taxa xi chosen from each Xi .
However, to estimate this distance from data, we must allow for the
fact that different choices of xi ∈ Xi may in fact support different
inferred quartet topologies.
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Group distances around a blob from quartets
Suppose X = X1 ⊔ . . .⊔Xm is a partition of the taxa induced by an m-blob
and Q is a collection of quartet networks on X such that for all distinct
i , j , k , l and xi ∈ Xi , xj ∈ Xj , xk ∈ Xk , xl ∈ Xl , Q contains a level-1 quartet
network Qxixjxkxl on xi , xj , xk , xl . Then, the parametric group distance
between Xi ̸= Xj for Q is

dQ
ρ (Xi ,Xj) = 2

∑
k,l ̸=i ,j

1
|Xi ||Xj ||Xk ||Xl |

∑
x∈Xi ,y∈Xj ,
z∈Xk ,w∈Xl

ρxy (Qxyzw ) + 2m − 4,

Proposition (Allman, Baños, Rhodes, W (2024+))

For a generalized sunlet N−
B on {Xi} induced from a level-1 network N− on

X , let Q denote the set of induced quartet networks Qxyzw for all choice of
x , y , z ,w ∈ X from four distinct Xi . Then

d
N−

B
ρ = dQ

ρ .
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Cycle resolution

Algorithm ResolveCycle
Input: Unrooted tree of blobs T on X with a designated m-multifurcation
representing a blob B ; a collection Q of level-1 quartet topologies for each
set of 4 taxa drawn from different taxon groups around the blob; ρ.
Output: A circular order of the taxon groups for B and, if m > 4, a
designation of the hybrid group.

1 Compute dQ
ρ and dC

ρ for an m-sunlet C .
2 For each circular order of the Xi , and if m > 4, a designated hybrid

group, compute the ordinary least-squares residual r between dQ
ρ and

the reordered dC
ρ .

3 Return the circular order and, if m > 4, the hybrid group giving the
minimal r .

Step 2 is potentially limiting computationally. For larger cycles, we use a
heuristic.
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Tree of blobs resolution

Algorithm Tree of Blobs Resolution
Input: Unrooted tree of blobs T on X ; a collection Q of level-1 quartet
topologies for each set of 4 taxa drawn from different taxon groups around
the blob; ρ.
Output: A binary level-1 network resolving the tree of blobs, or FAIL

1 Resolve each blob on T ;
2 Determine if the designated hybrid nodes are compatible (in the sense

of permitting a rooting of the network);
3 If so, return this level-1 network; otherwise return FAIL.

28 / 43



Big picture
& a

[ · B ·F
& D A a

&
& *

W S
*

W B D = *
~ AD & Be AA EL & A

W & A
W& A B 2 DE A ~ 8

#· W &
Ca

-L &
T

⑨ ~
i A B <DE 4 - taxon

T i networks
L↑&

W · Ba DE I
* A

A BC D E
A B[

collection of & ↓ & &

unknown network gene trees &

&

*
*

-

t D
*

⑨ tree of blobs
⑧E

&

&

*
&

A a D

⑤

B [

cyce resolution

29 / 43



Implementation

Our divide-and-conquer approach for resolving a tree of blobs into a level-1
network will be added to the R package MSCquartets. It will be possible
to

Resolve individual cycles,
Combine cycle resolutions for different cycles,
Resolve the full tree of blobs.
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Simulation study

Simulated m gene trees with
PhyloCoalSimulations (Fogg
et al., 2023)
m = 300, 500, 1000, 10000
Varied amount of ILS by scaling
network branch lengths
k = 1.0, 1.5, 2.0, 4.0
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Simulation study – Results
k = 1.0, m = 10, 000, α = 0.01, β = 0.05
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Simulation study – Results
k = 1.0, m = 10, 000, α = 1e − 24, β = 0.05

Blobs b1, b2, b3 as before, but tie for b4:
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Simulation study – Results

We will present more extensive results in a forthcoming preprint. Overall
observations so far:

Given the true tree of blobs, the approach works very well across a
variety of tested settings and model networks.
Sample size and branch lengths matter.
Given the gene trees, the approach is very fast.
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Leopardus

Lescroart et al. (2023)
Extensive Phylogenomic Discordance and the Complex Evolutionary History of
the Neotropical Cat Genus Leopardus

16 taxa

23,136 gene trees
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Leopardus

Running TINNiK (with α = 5e − 29 and β = 0.95), we obtain a tree of
blobs with 2 multifurcations.
We obtain a unique resolution for one cycle, and a 5-tie for the other
cycle.
Combining the cycle resolutions into 5 “candidate" networks, we use
functionality of PhyloNetworks to optimize parameters under
pseudolikelihood.

⇒ This is very quick (∼ 30 seconds for finding candidate networks; 5 mins
per candidate for optimizing parameters)!

Solis-Lemus C, Bastide P, Ane, C (2017): PhyloNetworks: a package for phylogenetic networks. Mol Biol Evol
34(12):3292–3298.
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Leopardus
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Leopardus

Comparison with SNaQ (Solís-Lemus and Ané, 2016) with hmax = 2.
Runtime ∼ 9 hours (default settings).
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Leopardus
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Leopardus

Our best-scoring candidate network agrees with the best-scoring network
found by SNaQ (in terms of topology):
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Future directions
Networks of higher level

Our theoretical results for identifying the circular order and hybrid
taxon on an m-sunlet from the (modified) NANUQ distance are for
level-1 networks.
Future work: Extend the approach to networks of higher level (if
possible).

& &

&
Ld ⑤

&

T - de - Vo

L ~ Id T
E

of T
~ ~ W V ~ ~ ~
* · z & * & · &

*

A B C D E A B CD E

level-1 not level-1
41 / 43



Future directions
Visualizing consensus among cycle resolutions

Sometimes different cycle resolutions are tied. How do we visualize their
consensus?

Resolution 1 of Node 20; RSS=16

Network should be semidirected; Rooting is arbitrary.
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Resolution 2 of Node 20; RSS=16

Network should be semidirected; Rooting is arbitrary.
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Thank you!
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