

Edward L Braun Department of Biology University of Florida

Seminar: ICERM, Brown University, 18 September 2024

 Different ways of studying methods of phylogenetic estimation should complement each other

 Different ways of studying methods of phylogenetic estimation should complement each other

OUTLINE

 \odot Why are birds interesting for phylogenetics?

\odot Biological and technical challenges

- The "Usual Suspects"
- $\circ~$ Recombination landscape of genomes
- \circ Sequence assemblers
- Comparison of inference methods
 Including distance methods (METAL)

WHY BIRDS? PRIOR INFORMATION!

Large number of phylogenomic studies

Citation	# of Loci	Data Type(s)	# of Taxa ²
Multigene ¹			
Hackett et al. (2008)	19	Introns	169
Harshman et al. (2008)	20	Introns	14 (Palaeognathae)
Haddrath and Baker (2012)	27	Coding exons and introns	23 (Palaeognathae)
Wang et al. (2011)	30	Introns	28 (Telluraves)
Kimball et al. (2013)	31	Introns	77
Smith et al. (2013)	40	Introns	10 (Palaeognathae)
Reddy et al. (2017)	54	Introns	235
Liu et al. (2018)	63	Coding exons	48
Phylogenomic ¹			
McCormack et al. (2013)	1,541	UCEs ³	32 (Neoaves)
Jarvis et al. (2014)	11,839	Whole genomes ⁴	48
Baker et al. (2014)	1,448	Coding exons and UCEs	198
Prum et al. (2015)	259	Coding exons	198
Suh et al. (2015)	2,118	TE insertions ⁵	43
Cloutier et al. (2019)	20,850	Whole genomes ⁶	15 (Palaeognathae)
White and Braun (2019)	4,243	UCEs	23 (Strisores)
Kuhl et al. (2021)	7	3' UTRs ⁸	429
Wang et al. (2022b)	7	Whole genomes	16 (Palaeognathae)
This study	4,307	UCEs	394
Recent phylogenomic ¹			
Wu et al. (2024)	25,460	Whole genomes ⁹	124
Stiller et al. (2024)	63,430	Whole genomes ¹⁰	363

WHY BIRDS? PRIOR INFORMATION!

Large number of phylogenomic studies

Citation	# of Loci	Data Type(s)	# of Taxa ²
Multigene ¹			
Hackett et al. (2008)	19	Introns	169
Harshman et al. (2008)	20	Introns	14 (Palaeognathae)
Haddrath and Baker (2012)	27	Coding exons and introns	23 (Palaeognathae)
Wang et al. (2011)	30	Introns	28 (Telluraves)
Kimball et al. (2013)	31	Introns	77
Smith et al. (2013)	40	Introns	10 (Palaeognathae)
Reddy et al. (2017)	54	Introns	235
Liu et al. (2018)	63	Coding exons	48
Phylogenomic ¹			
McCormack et al. (2013)	1,541	UCEs ³	32 (Neoaves)
Jarvis et al. (2014)	11,839	Whole genomes ⁴	48
Baker et al. (2014)	1,448	Coding exons and UCEs	198
Prum et al. (2015)	259	Coding exons	198
Suh et al. (2015)	2,118	TE insertions ⁵	43
Cloutier et al. (2019)	20,850	Whole genomes ⁶	15 (Palaeognathae)
White and Braun (2019)	4,243	UCEs	23 (Strisores)
Kuhl et al. (2021)	7	3' UTRs ⁸	429
Wang et al. (2022b)	7	Whole genomes	16 (Palaeognathae)
-> This study	4,307	UCEs	394
Recent phylogenomic ¹			
Wu et al. (2024)	25,460	Whole genomes ⁹	124
🔶 Stiller et al. (2024)	63,430	Whole genomes ¹⁰	363

WHY BIRDS?

Avian phylogeny exhibits

- Rapid radiation
 - Many short branches
 - Discordance among gene trees (incomplete lineage sorting)
- Rate differences among taxa
 - Potential for long branch attraction
- Shifts in evolutionary models
 - Convergence in GC content

Long-branch attraction (an oldie but a baddie...)

• Convergence in base composition

WHAT ARE THE "USUAL SUSPECTS"?

• Heterotachy – mixtures of branch lengths

• Incomplete lineage sorting (ILS)

Deviation from strict multispecies coalescent is possible

WHY BIRDS?

- But the problems don't include <u>all</u> the usual suspects...
 - Limited gene duplication and loss
 - Conservation of syntemy

✓ Orthology is (relatively) easy to establish

Book chapter: https://doi.org/10.1007/978-3-030-16477-5 6

MODEL SHIFTS

Science Advances MAAAS

SIGNIFICANT RESEARCH, GLOBAL IMPACT

Berv et al. 2024. Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction, Volume: 10, Issue: 31, DOI: (10.1126/sciadv.adp0114)

HETEROTACHY+ -- PPP2CB vs BDNF

- Comparison of two gene trees PPP2CB (left) vs BDNF (right)
 - Heterotachy + base composition variation (+ BDNF long-branch attraction)

Braun et al. (2019) chapter in "Avian Genomics" : <u>https://doi.org/10.1007/978-3-030-16477-5_6</u>

CHANGES IN EFFECTIVE POPULATION SIZE

- Note outliers in graph of timetree branch lengths divided by coalescent branch lengths (CBLs)
- Simplest explanation for elevated time/CBL values is increased N_e
 - Generation time shifts or errors in gene trees could explain as well
- Houde et al. (2019)
 Diversity came to similar conclusions regarding N_e
 - Sparse taxon sample, but accounted for generation time and used long indels to establish bipartitions in gene trees

Stiller, J., Feng, S., Chowdhury, AA. et al. Complexity of avian evolution revealed by family-level genomes. Nature 629, 851–860 (2024). https://doi.org/10.1038/s41586-024-07323-1

CHALLENGES FOR AVIAN PHYLOGENOMICS

- \odot Very short branches in some parts of the tree
- \odot Shifts in the relative rate of evolution
 - ✓ Potential for long-branch attraction
- Shifts in the model of sequence evolution
 - ✓ Base composition convergence (especially GC-content)
 - ✓ Model shifts are most extreme in coding exons
- \circ Gene tree discordance due to incomplete lineage sorting
 - ✓ Potentially exacerbated by periods of increased $N_{\rm e}$

BIRD PHYLOGENY DOES NOT PRESENT A UNIQUE CHALLENGE

\odot Challenging relationships probably exist in all clades

THE PREPRINT SERVER FOR BIOLOGY

New Results

The danger zone: the joint trap of incomplete lineage sorting and longbranch attraction in placing Rafflesiaceae

D Liming Cai, D Liang Liu, Charles C. Davis

doi: https://doi.org/10.1101/2024.08.07.606681

This article is a preprint and has not been certified by peer review [what does this mean?].

But we have a lot of information about bird phylogeny

SOME "UNUSUAL SUSPECTS"...

- Recombination landscape
- $\,\circ\,$ Sequence assembly and data quality

CURRENT BEST ESTIMATE OF THE BIRD TREE

Stiller et al. Nature, Volume 629, pages 851-860, April 2024, https://doi.org/10.1038/s41586-024-07323-1

CURRENT BEST ESTIMATE OF THE BIRD TREE

Columbimorphae (doves, mesites, and sandgrouse)

- United in some earlier trees (J1)

Mirandornithes (flamingos and grebes)

EARLIER (REDDY ET AL. 2017) PHYLOGENY

- o 54-locus tree
 - Strong support for clade J1
- Recent phylogenies reject clade J1

Analysis and data matrix	С	lade J	1
	EB2	KIM	JAR
RAxML, fast bootstrap, GTR+Γ model			
Early Bird II data, fully partitioned	99	99	99
Early Bird II data, optimal rcluster (PF)	97	97	100
Early Bird II data, unpartitioned	98	97	98
Non-coding data, fully partitioned	95	95	99
RAxML standard bootstrap, GTR+Γ mod	el		
Early Bird II data, optimal rcluster (PF)	96	97	98
IQ-TREE ultrafast bootstrap, I+Γ rates			
Early Bird II data, fully partitioned	100	99	99
Early Bird II data, optimal rcluster (PF)	100	100	100
Early Bird II data, unpartitioned	100	100	100
Non-coding data, fully partitioned	100	100	100
IQ-TREE ultrafast bootstrap, free rates			
Early Bird II data, fully partitioned	100	100	100
Non-coding data, fully partitioned	100	100	100

Reddy et al. Syst Biol, Volume 66, Issue 5, September 2017, Pages 857–879, https://doi.org/10.1093/sysbio/syx041

The content of this slide may be subject to copyright: please see the slide notes for details.

WHY DOES REDDY SUPPORT J1?

- Few large-scale trees support J1
 - Most phylogenomic trees (e.g.,
 Prum et al. 2015; Wu et al. 2024)
 have low support at the base
 - Stiller et al. 2024 has high support, but it contradicts J1
- Exception Jarvis et al. (2014)
 has 100% bootstrap support
 - $\,\circ\,\,$ Jarvis has a limited taxon sample
 - \circ But Reddy has many taxa
- Why is support so strong in Reddy and Jarvis?

Reddy et al. Syst Biol, Volume 66, Issue 5, September 2017, Pages 857–879, https://doi.org/10.1093/sysbio/syx041

The content of this slide may be subject to copyright: please see the slide notes for details.

TAXON SAMPLING MATTERS

- Smaller taxon samples tend to support J1
 - Explains Jarvis result
 - But not Reddy!
- Median quartet score
 supports Stiller (not J1)
- Produced smaller taxon
 samples by pruning trees
 - Gene trees estimated using >300 taxa
- Mean vs median quartet scores differ

GENE TREES SUPPORTING J1 ARE CLUSTERED

- Approximately 2% of the genome strongly supports clade J1
- Manhattan plot shows -log(P) that 20-locus (~200 kb) windows have unusual quadripartition quartet support

Mirarab et al. (2024) PNAS <u>https://doi.org/10.1073/pnas.231950612</u>

PPP2CB – REDDY ET AL. OUTLIER LOCUS

- Short region but 75% support for clade J1

 J1 = "Columbea"
- Result attributed to limited variation in base composition
 - PPP2CB has a "better" tree than BDNF
- BUT.. PPP2CB lies in the outlier region
 - Supports J1

Braun et al. (2019) chapter in "Avian Genomics" book

MODEL FOR CHROMOSOME 4 EVOLUTION

- ~ 2% of the bird genome have a specific gene tree
 - Recombination suppressed in the "outlier region"
 - Shifts estimates of the avian species tree to include clade J1
 - (for limited taxon samples)
 - ASTRAL and concatenation
- Reddy et al. (2017) recovered J1 because one of 54 loci is in the outlier region

Hypothesized rearrangement hemiplasy

Mirarab et al. (2024) PNAS

IMPACT OF CHROMOSOME 4 EVOLUTION

- Ancient (>60 mya) chromosomal rearrangement was polymorphic for a few million years
 - Detected by absence of ILS in the region
 - For birds, recombination will limit recombination free segments to a mean length of 5(!) to 5000 bp
- Persistence in population could reflect neutral evolution
 - Alternatively, could be balancing selection (weak evidence)

Mirarab et al. (2024) PNAS

RECOMBINATION

- Estimates of recombinationfree region lengths are ~5 kb for large chromosomes
 - Are the estimates realistic?
- Protein with changes at three functionally important amino acids
 - Encoded by gene on chr 1 (largest chromosome)
- Changes would have to occur twice given the species tree

Houghtaling et al. in preparation

RECOMBINATION

 Recombination-free segments are ~1 kb on chr 1

Houghtaling et al. in preparation

TECHNICAL ISSUES

- Sequence alignment
 - Including the extraction of orthologous data
- Sequence assembly

TECHNICAL ISSUES

 There are many (potentially) problematic steps in phylogenomic pipelines

Zhang et al. TAPER: Pinpointing errors in multiple sequence alignments despite varying rates of evolution Methods Ecol Evol, Volume: 12, Issue: 11, Pages: 2145-2158, First published: 02 August 2021, DOI: (10.1111/2041-210X.13696)

SEQUENCE ASSEMBLY

What is the potential for misassembly?

Zhang et al. TAPER: Pinpointing errors in multiple sequence alignments despite varying rates of evolution Methods Ecol Evol, Volume: 12, Issue: 11, Pages: 2145-2158, First published: 02 August 2021, DOI: (10.1111/2041-210X.13696)

A UCE TREE ("ALLFAM")

- Typical patterns of branch length heterogeneity are evident...
- ...but there are also additional long branches evident
 - Taxa with red names had poor sequence recovery
 - The red arrows also indicate poor sequence recovery

Braun et al. (2024) bioRxiv https://doi.org/10.1101/2024.02.28.582627

A UCE TREE ("ALLFAM")

- Both circled taxa
 were from historical
 samples
 - Moho nobilis*
 (Hawai'i 'ō'ō)
 - Hypocolius ampelinus (Grey hypocolius)
 - Sister group:
 - Hylocitrea
 bonensis (yellowflanked whistler)
 - Short branch

*extinct

Braun et al. (2024) bioRxiv https://doi.org/10.1101/2024.02.28.582627

CONFLICTS BETWEEN ASSEMBLERS

- Re-assemble data using two different programs
 - SPAdes and Trinity
 - Original assemblies were SPAdes (different settings)
- Two historical
 - *Moho nobilis* (extinct)
 - Hypocolius ampelinus
 - Form a clade in "allfam"
- Three recent
 - Dulus dominicus
 - Hylocitrea bonensis*
 - Ptilogonys caudatus
- * Sister to "historical taxa clade"

Min Zhao et al. in preparation

LONG BRANCHES REFLECT ASSEMBLY

- Tree with different
 assemblies treated
 as taxa
- Moho and Hypocolius
 have shorter root-totip branches
 - Comparable to
 Hylocitrea
- Different topology (note red box)
- Terminal branches longer for historical samples!

ALIGNMENTS FROM BRAUN ET AL. 2024 (LEFT) VS REALIGNED DATA USING THE SAME ASSEMBLIES (RIGHT)

Min Zhao et al. in preparation

ASSEMBLY AND ALIGNMENT

- So...what are the relationships for *Hypocolius*, *Moho*, and *Hylocitrea*?
 - Hypocolius and Hylocitrea form a clade (with Moho sister) with all assemblies (and all taxon samples) where Hypocolius has a short branch
 - Hypocolius + Hylocitrea found if conflicts between assemblers recoded as N's
- Long branches are artifactual
- Interaction between assembly quality and alignment

PERFORMANCE OF VARIOUS METHODS

- Avian phylogeny has received extensive study
- It is possible to establish a set of "reliable clades" likely to be in the true bird species tree
- $\,\circ\,$ Can be divided into subsets based on their "easy"
 - Range from "<u>easy</u>" (typically supported by individual genes) to "<u>hard</u>" (only recovered in analyses of phylogenomic data)

	Easy	Medium	Hard	TOTAL
Families ¹	93	_	_	93
Superfamilies ²	3 / 1	14	4	21 / 1
Orders ^{1,2}	36 / 1	3	—	39 / 1
Superorders ²	7 / 5	12 / 11	9 / 8	28 / 24
TOTAL ²	139 / 7	29 / 11	13 / 8	181 / 26

Reliable clades that can be scored for "allfam" (left) and Jarvis (right) taxon samples

PERFORMANCE OF VARIOUS METHODS

 The number of reliable clades recovered can provide a way to evaluate methods

- Imperfect because we don't have knowledge of the true tree
- Less controlled than simulations...
- ...but still a useful method

	Easy	Medium	Hard	TOTAL
Families ¹	93	_	_	93
Superfamilies ²	3 / 1	14	4	21 / 1
Orders ^{1,2}	36 / 1	3	—	39 / 1
Superorders ²	7 / 5	12 / 11	9 / 8	28 / 24
TOTAL ²	139 / 7	29 / 11	13 / 8	181 / 26

Reliable clades that can be scored for "allfam" (left) and Jarvis (right) taxon samples

THE ALLFAM TREE

- Phylogram based on
 ML analysis of
 concatenated data
- 4307 UCE loci
- o 2,042,823 aligned sites
- o 852,768 informative sites
- Initial "species tree" analyses yielded trees with many fewer reliable clades than concatenation

Braun et al. (2024) bioRxiv https://doi.org/10.1101/2024.02.28.582627

THE ALLFAM TREE

- Decided to try a broad suite of species tree analyses
- o ASTRAL
- o ASTRID
- SVD quartets
- METAL (distances)
- -- Dasarathy et al. 2015 IEEE/ACM TCBB 12: 422-32
- -- Allman et al. 2019 *SIAM J Appl Algebra Geometry,* 3: 107-27.

Braun et al. (2024) bioRxiv https://doi.org/10.1101/2024.02.28.582627

CLADE RECOVERY

-- Broken in subsets by "ease" of recovery

Hard

- Easy at top
- Uncertain at the bottom
- Bold clade have **TE** support

-- Only method with consistently good performance was ML concatenation

-- Potentially unfair due to missing data

	•		Ĵ	Э Ш					ME	TA	L (I	NJ)		
(a))	Qiada	IL concat (ExaMI	IL concat (IQ-TR	eighted ASTRAI	eighted ASTRID	<u>VD</u> quartets	-distances	IL distances	race distances	gdet i.r.	gdet-inv	gdet inf sites	
-	#		Σ	Δ	Š	Š	Ś	þ	Σ	Tr	Ō	Ō	<u>o</u>	
	1 2 4 5	Notopalaeognathae NEOGNATHAE Galloanserae												
asy ++)	6	Neoaves												
ш÷	7	Mirandornithes (VII)												
	16	Daedalornithes												
	33	Passeriformes												
-	34	Eupasseres	0	0	0	0	1	2	2	2	2	2	0	
_			0	0	0	0		2	2	2	2	2	0	
	3 12 19	Novaeratitae Strisores (V)												(0
	20	Feraequornithes												
c	21	Procellariimorphae												
+ tiun	24	Telluraves (I)												
(+ Aec	26	Cavitaves												
2	27	Eucavitaves												2
	28	Picocoraciae												. as
	30	Australaves												ш.
	31	Eufaiconimorphae												
-	32	Psillacopasserae	1	1	1	0	5	8	a	a	8	8	5	
-				'			0	0		5	0	0		
	8 9 11	Columbimorphae (VI) Pteroclimesites												
	17	Phaethoquornithes												F
+)	18	Phaethontimorphae (III)												diur
ΤÚ	22	Pelecanimorphae												dec
	23	Pelecanes												~
	25	Coraciimorphae												
-	29	Picodynastornithes												
			1	1	1	1	5	7	7	7	7	7	5	
_	10 13	Otidimorphae (IV) Vanescaves												
tair	14	Sedentaves												
-)	15	Letornithes												T
'n	-	Afroaves												larc
	-	Accipitriformes+Strigiformes												<u> </u>
-	-	Coraciimorphae+Australaves		I		<u> </u>								

/}	h				Ν	lor	ו-n	nor	10	ph	yle	tic	;
•	"	Tree	•			Or	de	rs	F	an	nili	es	-
		ML concate IQ-TREE ExaML	natio	on			0 0				0 0		_
		MSC methods weighted ASTRAL weighted ASTRID SVD quartets									6 4 1		
		METAL (NJ)p-distances4ML distances5Trace distances5logdet i.r.4logdet-inv4logdet inf sites0							4 4 4 4 3				
c))	Clade	ML concat (IQ-TREE)	ML concat (ExaML)	weighted ASTRAL	weighted ASTRID	SVD quartets	p-distances	ML distances	Trace distances	logdet i.r.	logdet-inv (f	logdet inf sites
(+++)	Tyrar Pass	nni (suboscines eri (oscines))	0	0	0	0	0	0	0	0	0	0
(++)	Euryl Tyrar Furna Tyrar Mala Corvo Sylvii Sylvio Bomb Musc Certh Pass Embe	aimides anides ariida noida conotoidea oidea oidea oicapida oycilloidea oicapoidea nioidea erida erida	0							5			
(+)	Corvi Oriolo Passo Aegit	ides oidea erides haloidea	0		3	1	0	3	3	3	3	3	3
	Locu	stelloidea				'						0	

CLADE RECOVERY

-- Eliminating taxa with large amounts of missing data did improve all methods

-- Is the issue simply the amount of data

-- NJ analyses had worst performance

			ŝ						МС	:тл	1 /1	NI 11		u)
(a)			RE	Ł		(qn	$\widehat{\mathbf{x}}$:14	L (I	NJ)		
(a) Hard Hard Hard Hard Hard Hard Hard Hard	,		_concat (IQ-T	eighted ASTR/	eighted ASTRI	/D quartets (si	/D quartets (e	distances	_ distances	ace distances	<u>j</u> det i.r.	<u>j</u> det-inv	jdet inf sites	
-	#	Clade	M	Ŵ	Ŵ	Ś	Ś	ď	M	цТ	ğ	ğ) Ö	
Easy (+++)	1 2 4 5 6 7	PALAEOGNATHAE Notopalaeognathae NEOGNATHAE Galloanserae Neoaves Mirandornithes (VII)												
	16	Daedalornithes												
	33	Passeriformes												
-	34	Eupasseres	0	0	0	1	1	0	0	0	0	0	0	
-	3 12	Novaeratitae Strisores (V)			-									(c)
	19	Aequornithes (II)												(•)
	20	Feraequornithes												
Ę 🦳	21	Procellariimorphae												
ledii (++	24 26	Cavitaves												
Ž	27	Eucavitaves												
	28	Picocoraciae												-+ asy
	30	Australaves												ш <u>т</u>
	31	Eufalconimorphae												_
-	32	Psittacopasserae				_								E
_			1	1	0	5	4	3	3	3	3	3	3	F
	8 9	Columbimorphae (VI) Pteroclimesites												T N
_	17	Phaethoquornithes												E C
(+)	18	Phaethontimorphae (III)												diul
ΙŬ	22	Pelecanimorphae												Ŭ Ŭ Ŭ V
	23	Pelecanes												
	25	Coraciimorphae												N
-	29	Picodynastornithes	4	4	0	-	4	-		0	_		0	C
_			1	4	2	5	4	5	4	3	5	4	3	F
	10	Otidimorphae (IV)												<u> </u>
ці.	13	Vanescaves												
erta	14	Letornithes												C
))	-	Afroaves				-								br 🕂 🖯
د	-	Accipitriformes+Strigiformes												₽÷F
	-	Coraciimorphae+Australaves												<u> </u>
-		•												

Hard Medium (+) (-) (++) (++) (++) (-) (-) (++) (++	•												-
)	T			<u>r</u>	lor	1-n	101	<u>וסו</u>	on	yle	tic	-
\ _	- /	I ree	<u></u>			Or	ael	rs	F	an	niii	es	-
			alio	11			0				0		
			~				U				0		
		weighted AS	STR	ΔI			0				1		
		weighted AS	STR	ID			0				0		
		SVD quartet	s (s	ub)		3						
		SVD quartet	s (e	ex)	,		3				0		
		METAL (NJ)											
		p-distances					0						
		ML distance	s				0				0		
		Trace distar	nces	3			0				0		
		logdet I.r.					0		0				
		logdet inf sit	es				0						
							0				0		
			Ш Ш	$\widehat{}$					ME	TA	L (I	NJ)	
C)			Яİ	aMI	SAL	ЯD				ŝ			
,			ã	Щ	STI	STI	ets	s	ses	ance			ites
			Icat	Icat	≥d ⊳	≥d ⊳	Jart	nce	anc	lista	÷	in<	infs
			- S	5	ght	ghti	Б. О.	ista	dist	e	det	det-	det
		Clade	ML	R	We	we	SV	p-d	ML	Tra	bol	log	log
$\widehat{2}$	Tyrar	nni (suboscines)											
í ±	Pass	eri (oscines)	0	0	0	0	0	0	0	0	0	0	0
		aimidaa								U			
	Tvrar	nides											
	Furna	ariida											
	Tyrar	nnida											
	Mala	conotoidea											
Ë 🤶	Sylvi	ida											
1eai ++	Sylvi	oidea											
2	Muso	cicapida											
	Bomi	vicanoidea											
	Certh	nioidea											
	Pass	erida											
	Embe	erizoidea	0	0	0	0	0	0	0	0	0	0	0
	0		10				0	0	0	0		0	0
	Oriol	laes oidea											
таг (+)	Pass	erides											
-	Aegit	haloidea											
			0	0	1	0	0	0	0	0	0	0	0
		stelloidea											

LONG BRANCH ATTRACTION IN "LANDBIRDS"? (THE GREEN CLADE)

 Note the branch length heterogeneity
 -- even if we ignore the artifactual long branches

Braun et al. (2024) bioRxiv https://doi.org/10.1101/2024.02.28.582627

IS METAL PRONE TO LONG BRANCH ATTRACTION?

• Long branch taxa clustered in NJ analysis of "landbirds" (Telluraves)

Braun et al. (2024) bioRxiv https://doi.org/10.1101/

LARGER DATASET

- -- UCE data from Jarvis et al. (2014)
- Fewer loci (3158) but longer flanks
- 9.2 million sites
- 4.5x the number of informative sites as allfam
- -- Pink clades are nonmonophyletic if longbranc are clu

h taxa in landbirds	тŬ	18 23	Pn
		25	Cc
ustered		29	Pic
	-		
		# no	n-m
	ain _	10	Oti
0021) hic Priv	erta -)	-	Afr
) L	-	Ac
101/2024.02.28.582627	\supset	-	Cc

Easy (+++)

Medium (++)

+ (+

		÷	(EE)		_			METAL (NJ)					
		arvis et al. (2014	IL concat (IQ-TR	eighted ASTRAI	eighted ASTRID	VD quartets	-distances	IL distances	race distances	igdet i.r.	gdet-inv	ogdet inf sites	
#	Name	ŗ	2	3	3	S	à	2	F	0	р	0	
1	PALAEUGNATHAE												
4													
5	Galloanserae												
0 7	Neoaves Mircodorpitheo ()(II)												
1													
აა ე⊿	Funces												
34	Eupasseres	0	0	0	0	0	0	0	0	0	0		
# nor	n-monophyletic in allfam	-	0	0	0	1	0	0	0	0	0	0	
12	Strisores (V)												
19	Aequornithes (II)												
20	Feraequornithes												
21	Procellariimorphae												
24	Telluraves (I)												
26	Cavitaves												
27	Eucavitaves												
28	Picocoraciae												
30	Australaves												
31	Eufalconimorphae												
32	Psittacopasserae												
# nor	n-monophyletic in allfam	0 -	0	0 1	0	4	6 3	2 3	2 3	4 3	4 3	1 3	
8	Columbimorphae (VI)												
9	Pteroclimesites												
11	Musophagotides												
17	Phaethoquornithes												
18	Phaethontimorphae (III)												
23	Pelecanes												
25	Coraciimorphae												
29	Picodynastornithes												
		2	1	0	0	5	5	2	2	3	3	1	
# nor	n-monophyletic in allfam	-	1	4	2	4	5	4	3	5	4	3	
10													
-	Alluaves												
-		<u> </u>											
-	Coraciimorphae+Australaves												

LARGER DATASET

- -- Jarvis et al. (2014) intronic data
- -- 3x more parsimony informative sites than Jarvis UCEs

			L concat	eighted ASTRAL	eighted ASTRID	<u>V</u> D quartets	-distance	L distance	ace distance 🖌 🥇	gdet i.r.	gdet inf sites * 5
_	#	Name	Σ	≥	≥	Ś	à	Σ	Ţ	익	2
	1	NEOGNATHAE									
$\sim \sim$	5	Galloanserae									
as) ++	6	Neoaves									
Шţ	7	Mirandornithes (VII)									
	33	Passeriformes									
_	34	Eupasseres									
_	# n	on-monophyletic in allfam	0	0	0	1	0	0	0	0	0
	12	Strisores (V)									
	19	Aequornithes (II)									
	20	Feraequornithes									
F	21										
+ Jiur	24	Cavitavos							~		~
÷ Je	20	Fucavitaves							1		*
2	28	Picocoraciae									
	30	Australaves							*		*
	31	Eufalconimorphae							*		*
_	32	Psittacopasserae									
			0	0	0	4	5	0	0	2	1
	# n	ion-monophyletic in allfam	0	1	0	4	3	3	3	3	3
	8	Columbimorphae (VI)									
	9	Pteroclimesites									
_	11	Musophagotides									
ard +)	17	Phaethoquornithes									
ΙŬ	18	Phaethontimorphae (III)									
	23	Pelecanes									.
	20 20	Diracimorphae Bicodynastornithos							不		*
	29	Ficodynastornities	1	1	1	4	4	2	2	3	2
_	# n	on-monophyletic in allfam	1	4	2	4	5	4	3	5	3
ain	10	Otidimorphae (IV)									
-)	-	Afroaves		<u> </u>							
) Juci	-	Accipitritormes+Strigiformes	<u> </u>	<u> </u>							
<u> </u>	-	Coraciimorphae+Australaves									
									*		*

METAL (NI)

-- METAL has relatively good performance

- -- Best distances are:
- GTR+G
- logdet of inf sites
- Indicated with asterisks

LARGER DATASET

-- Subsampling to yield datasets comparable to the Jarvis UCE dataset yield results that resemble the Jarvis UCE results

Braun et al. (2024) bioRxiv https://doi.org/10.1101/2024.02.28.582627

			(a)			Standard Analyses						((b)			* Subsamples							(c)		s	* Subsamples						
			RAL				METAL (NJ)							٦	Гra	M ce	METAL e distances						ME logdet inf si				/E sit	TAL tes distances				
			<u>//</u> concat	veighted AST	veighted AST	<u>SV</u> D quartets	o-distance	<u> 1L</u> distance	race distance	ogdet i.r.	ogdet inf sites	0.000	1-3,958,088	-3,936,604	-3,917,029	<u> -</u> 3,854,821	9-3,836,848	-3,832,922	<u> </u>	1-3,713,993	-3,698,555	-3,650,480	1-3,958,088	-3,936,604	-3,917,029	<u> -</u> 3,854,821	-3,836,848	-3,832,922	<u> </u>	1-3,713,993		
Easy (+++)	# 1	Name PALAEOGNATHAE		>	>	0)	d	2	-	×	×		0.	0	0	0	Ð	÷	6	2		· —	0	ρ	0	0	θ	Ψ.	6	،• ⊇		
	4	NEOGNATHAE																														
	5	Galloanserae																														
	6	Neoaves											_	_															_			
	33	Passeriformes												_																		
	34	Eupasseres																														
_	#	non-monophyletic in allfam	0	0 0	0 0	1 1	0	0	0	0	0 0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 () 0	
Medium (++)	12 19 20 21 24	Strisores (V) Aequornithes (II) Feraequornithes Procellariimorphae Telluraves (I)																														
	26	Cavitaves							*		*																					
	27	Eucavitaves																														
	28	Picocoraciae																														
	30	Australaves							*		*		_				_	_	_													
	32	Psittaconasserae							不		*																					
_	#1	non-monophyletic in allfam	0	0 1	0	4	5 3	0 3	0 3	2 3	1 3		0	1	1	1	0	0	1	1	0	1	0	1	0	1	0	1	1	1 () 1	
Hard (+)	8 9 11 17	Columbimorphae (VI) Pteroclimesites Musophagotides Phaethoguornithes																														
	18	Phaethontimorphae (III)																														
	23	Pelecanes																														
	25	Coracilmorphae							*		*					_																
-	29	Ficodynastornities	1	1	1	4	4	2	2	3	2		3	3	3	3	2	1	2	3	2	2	3	3	2	3	2	1	1	2 '	2 2	
certain (-)	# 1	non-monophyletic in allfam	1	4	2	4	5	4	3	5	3		- 1	~ 1	-	-	_	·	_	-	_					, , , , , , , , , , , , , , , , , , ,			· 1			
	10	Otidimorphae (IV)										_																				
	-	Anuaves	_	-											-									-					+			
Unc	-	Coraciimorphae+Australaves	-	+																				-								
-									*		*																					

METAL ANALYSIS OF INTRON DATASET

(a) NJ of GTR+F distances

(b) ML concatenation (IQ-TREE)

- METAL does not recover "J1" (Neoaves root matches Stiller et al. 2024)
- $\circ~$ ML concatenation does recover J1

Braun et al. (2024) bioRxiv https://doi.org/10.1101/2024.02.28.582627

THANKS!

$\,\circ\,$ Rebecca Kimball and Kimball-Braun lab

- Min Zhao, Dawson Houghtaling
- "OpenWings" (UCE data collection)
 - Brian Smith, Brant Faircloth, Robb Brumfield, Carl Oliveros
- $\,\circ\,$ Many other collaborators
 - Especially the B10K consortium
 - Siavash Mirarab, Chao Zhang, Josefin Stiller, Mike Braun, Jake Berv

\circ NSF grant DEB-1655683

OPEN QUESTIONS

- What is the best way to deal with variation over time in the recombination landscape?
- Are there principled ways to address problems caused by misassembly?
 - Including the interaction of incorrect assembly and alignment
- Can the performance of METAL be improved?
 - Reduce data requirement (generalized least squares?)
 - Improve the selection of distance metrics
 - Deal with among-sites rate heterogeneity