# Analytic closure for M1 neutrino transport

Elena Murchikova Northwestern University & CIERA





e

## Disclaimer

My only contribution to this field:

### <u>E. M. Murchikova</u>, E. Abdikamalov, T. Urbatsch Analytic Closures for M1 Neutrino Transport MNRAS 2017

 $W^+$ 

v.

 $\nu_e$ 

W-

Ve

7

e

## Disclaimer Actually I work on black holes, accretion, and variability doing theory, and ALMA observations...



## Disclaimer

My only contribution to this field:

### <u>E. M. Murchikova</u>, E. Abdikamalov, T. Urbatsch Analytic Closures for M1 Neutrino Transport MNRAS 2017

 $W^+$ 



with Ernazar Abdikamalov (Nazarbayev University, Kazakhstan)

Ve

W-

e

## **Boltzmann equation**

$$\frac{dx^{\alpha}}{d\tau}\frac{\partial f}{\partial x^{\alpha}} + \frac{dp^{\alpha}}{d\tau}\frac{\partial f}{\partial p^{\alpha}} = \varepsilon S(x^{\mu}, p^{\mu}, f)$$

where  $f(x^{\mu}, p^{\mu})$  is neutrino distribution function,  $S(x^{\mu}, p^{\mu}, f)$  is collision term, is neutrino energy,  ${\cal E}$  $p^{\mu}$ is momentum, is affine parameter,  $\mathcal{T}$  $\alpha, \mu = 0, 1, 2, 4$ 

### **Boltzmann equation**



can be rewritten in terms of moments  $M[0] = \int \varepsilon f(x^{\mu}, p^{\mu}) \delta(h\nu - \varepsilon) d^{3}p = E_{\nu}$ energy density  $M[1] = p^{\alpha} f(x^{\mu}, p^{\mu}) \delta(h\nu - \varepsilon) d^{3}p = F_{\nu}^{\alpha}$ flux  $M[2] = \int p^{\alpha} p^{\beta} f(x^{\mu}, p^{\mu}) \,\delta(h\nu - \varepsilon) \frac{d^{3}p}{c} = P_{\nu}^{\ \alpha\beta} \quad \text{pressure tensor}$ 

 $M[N] = \int \varepsilon^2 \frac{p^{\alpha_1}}{\varepsilon} \dots \frac{p^{\alpha_N}}{\varepsilon} f(x^{\mu}, p^{\mu}) \,\delta(h)$ 

$$\approx S(x^{\mu}, p^{\mu}, f)$$
  $\times p^{\alpha} \dots \delta(h\nu - \varepsilon)d^{3}p$ 



$$h\nu - \varepsilon \frac{d^3p}{\varepsilon}$$



# **Moment equations** Instead of Boltzmann equation $\int \times \left| \left| \frac{dx^{\alpha}}{d\tau} \frac{\partial f}{\partial x^{\alpha}} + \frac{dp^{\alpha}}{d\tau} \frac{\partial f}{\partial p^{\alpha}} \right| = \varepsilon \right|$

we get an infinite tower of moment equations

set

Infinite

Diff Eq (M[0], M[1])Diff Eq (M[0], ..., M[2])Diff Eq (M[0], ..., M[3])

. . .

Diff Eq (M[0], ..., M[N + 1])



## More explicitly and in 1D These equations look like

 $\frac{\partial E_{\nu}}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_{\nu}^{\ r}) = S[0]$  $\frac{\partial F_{\nu}^{\ r}}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 P_{\nu}^{\ rr}) = S[1]$ 

Diff Eq (M[0], ..., M[3])

. . .

. . .

Diff Eq (M[0], ..., M[N + 1])

## **Truncating the system for M1 scheme**

We only keep two equations

 $\frac{\partial E_{\nu}}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_{\nu}^{\ r}) = S[0]$  $\frac{\partial F_{\nu}^{\ r}}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 P_{\nu}^{\ rr}) = S[1]$ Diff Eq (M[0], ..., M[3]). . . Diff Eq (M[0], ..., M[N + 1])

## Truncating the system for M1 scheme

We only keep two equations



### Two equations Three unknowns

## **Closing the system**

 $\frac{\partial E_{\nu}}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_{\nu}^r) = S[0]$  $\frac{\partial F_{\nu}^{r}}{\partial t} + \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2} P_{\nu}^{rr}) = S[1]$ 

Need one more equation to <u>close</u> th We choose it to be  $P_{\nu}^{\ rr} = \operatorname{Function}(E_{\nu}, F_{\nu}^{\ r}) \longleftarrow$ 

### Need one more equation to <u>close</u> the system. A function of $E_{\nu}, F_{\nu}^{r}, P_{\nu}^{rr}$ .

### Closure

## Set of equations for M1 scheme in 1D

 $\frac{\partial E_{\nu}}{\partial t} + \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 F_{\nu}^r)$ = S[0] $\frac{\partial F_{\nu}^{r}}{\partial t} + \frac{1}{r^{2}} \frac{\partial}{\partial r} (r^{2} P_{\nu}^{rr}) = S[1]$ = Function  $(E_{\nu}) F_{\nu}^{r}$ 

### Three equations Three unknowns

### Closure

### Set of equations for M1 scheme in 1D (The highest moment we are truly solving for is M1)



It is obvious that the quality of the solution depends on the quality of the closure, i.e. the quality of the extra equation we supplement the system with.

### Three equations Three unknowns

### Closure

## Common in literature expressions for closure Kershaw Maximum Entropy Fermi-Dirac (MEFD) $p = \frac{1}{3} + \frac{2}{3}f^2$ $p = \frac{1}{3} + \frac{2}{3}(1-e)(1-2e)\frac{x^2(3-x+3x^2)}{5}, \quad x = \frac{f}{1-e}$



 $p = \frac{1}{3}(1 + \frac{1}{2}f^{1.3064} + \frac{3}{2}f^{4.1342})$ 

Janka 2

 $p = \frac{1}{3}(1 + f^{1.3450} + f^{5.1717})$ 

Here  $e = \frac{E_{\nu}}{\nu^3}, f = \frac{F_{\nu}^{\ r}}{E_{\nu}}, p = \frac{P_{\nu}^{\ rr}}{E_{\nu}}$ 



## **Common in literature expressions for closure**



$$p = \frac{1}{3} + \frac{2}{3}f^{2}$$

$$p = \frac{1}{3} - \frac{1}{3}f + f^{2}$$

$$p = \frac{1}{3} - \frac{1}{3}f + f^{2}$$

$$p = \frac{1}{3} + \frac{2f^{2}}{5 + 2\sqrt{4 - 3f^{2}}}$$

$$p = \frac{1}{3} + \frac{2f^{2}}{15}(3 - f + 3f^{2})$$

$$p = \frac{1}{3} + \frac{2}{3}(1 - e)(1 - 2e)\frac{x^{2}(3 - x + 3x^{2})}{5}, \quad x = \frac{1}{3}(1 + \frac{1}{2}f^{1.3064} + \frac{3}{2}f^{4.1342})$$

$$p = \frac{1}{3}(1 + f^{1.3450} + f^{5.1717})$$





$$\Rightarrow \quad P_{\nu} = \frac{1}{3} E_{\nu}$$
$$\Rightarrow \quad P_{\nu} = E_{\nu}$$

$$\frac{1}{-P_{thin}^{ij}} + \frac{3(1-p)}{2}P_{thick}^{ij},$$

in thin limit the radiation exerts pressure only along the direction of the

$$j \neq n$$
.

## **Properties of the closu** $F_{\nu} = 0 =$ In 1D: $F_{\nu} = 1$ \_ Inability of M1 to describe colliding beams, whe or exerting pressure along the beam only They are issues of our choices of closures. $F_{\nu}^{n}F_{\nu}^{n}F_{\nu}^{n}=0, \text{ and }$ in th bean $P_{thin}^{nn} = E_{\nu} \frac{I_{\nu} \nu_{\nu}}{|F_{\nu}^2|}, P_{thin}^{ij} = 0 \text{ if } i \text{ or } J_{\mu}$

$$j \neq n$$
.

- are not the issues of M1 scheme.

$$\Rightarrow \quad P_{\nu} = \frac{-E_{\nu}}{3}$$
$$\Rightarrow \quad P_{\nu} = E_{\nu}$$

## **Closures obtained as fits to simulations**

Kershaw  $p = \frac{1}{3} + \frac{2}{3}f^2$ 



 $p = \frac{1}{3} + \frac{2}{3}(1)$ 

### simulations

# Levermore $p = \frac{3 + 4f^2}{5 + 2\sqrt{4 - 3f^2}}$

Maximum Entropy (ME)  $p = \frac{1}{3} + \frac{2f^2}{15}(3 - f + 3f^2)$  Maximum Entropy Fermi-Dirac (MEFD)

$$-e)(1-2e)\frac{x^2(3-x+3x^2)}{5}, \quad x=\frac{f}{1-e}$$



Janka

Here  $e = \frac{E_{\nu}}{\nu^3}, f = \frac{F_{\nu}^{r}}{E_{\nu}}, p = \frac{P_{\nu}^{rr}}{E_{\nu}}$ 







## **Closures obtained as fits to simulations**





 $p = \frac{1}{3} + \frac{2}{3}(1)$ 

### wild guess simulations

### Levermore

$$p = \frac{3 + 4f^2}{5 + 2\sqrt{4 - 3f^2}}$$

## Maximum Entropy (ME) $p = \frac{1}{3} + \frac{2f^2}{15}(3 - f + 3f^2)$

Maximum Entropy Fermi-Dirac (MEFD)

$$-e)(1-2e)\frac{x^2(3-x+3x^2)}{5}, \quad x=\frac{f}{1-e}$$



Janka

Here  $e = \frac{E_{\nu}}{\nu^3}, f = \frac{F_{\nu}^{r}}{E_{\nu}}, p = \frac{P_{\nu}^{rr}}{E_{\nu}}$ 







## **Closures obtained as fits to simulations**





Levermore

### wild guess

simulations

physical reasons



## Maximum Entropy Fermi-Dirac (MEFD) $p = \frac{1}{3} + \frac{2}{3}(1-e)(1-2e)\frac{x^2(3-x+3x^2)}{5}, \quad x = \frac{f}{1-e}$



Here  $e = \frac{E_{\nu}}{\nu^3}, f = \frac{F_{\nu}^{r}}{E_{\nu}}, p = \frac{P_{\nu}^{rr}}{E_{\nu}}$ 







### Levermore closure

Assumption:

In the rest frame of the fluid, i.e. the brake boosted to where  $F_{\nu} = 0$ we have





### By Levermore 1984





## **Maximum Entropy Fermi-Dirac** closure

Assumption:

Entropy is maximized. Statistics is Fermi-Dirac.

Bottom limiting curve is maximum packing limit.

Top limiting curve is where Fermi-Dirac statistics is not important.

It detents on two parameters.



By Chernohorsky & Bludman 1994



## **Maximum Entropy closure**

Assumption:

Entropy is maximized.

Boltzmann statistics.

Top limiting curve of MEFD.

## Maximum Entropy (ME) $p = \frac{1}{3} + \frac{2f^2}{15}(3 - f + 3f^2)$

By Minerbo 1978





### Kershaw closure

### Assumption:

## Smooth interpolation between - and 1. Nothing else.



### By Kershaw 1976







The purpose of the study was to test various closures and determine the best performer.

Setup:

Spherically symmetry (i.e. 1D problem)

GR1D with closure (O'Connor et al 2015) VS MC neutrino transport code (Abdikamalov et al 2012) as truth

# Three PNS post bounce configurations, and a uniform sphere.

### **Uniform sphere** Simplest test



### Has analytic solution

Neutrinos streaming from the center of the sphere





### **Uniform sphere**



## **Uniform sphere**





### Three models





### **Protoneutron star** Closure performances (integrated)



Spectrum weighted deviations

### **Protoneutron star** Closure performances (by flux value)



### energy

### **Protoneutron star** Closure performances (by flux value)



flux



0.015













| Closure      |              | 16                                | 0 ms                     |                          |              | 26                        | 0 ms                      |                           | 360 ms       |                          |                           |                           |  |
|--------------|--------------|-----------------------------------|--------------------------|--------------------------|--------------|---------------------------|---------------------------|---------------------------|--------------|--------------------------|---------------------------|---------------------------|--|
| prescription | <i>M</i> [0] | $\bar{\delta}f_{\nu}(\mathbf{r})$ | $\bar{\delta}p_{\nu}(r)$ | $\bar{\delta}p_{\nu}(f)$ | <i>M</i> [0] | $\bar{\delta} f_{\nu}(r)$ | $\bar{\delta} p_{\nu}(r)$ | $\bar{\delta} p_{\nu}(f)$ | <b>M</b> [0] | $\bar{\delta}f_{\nu}(r)$ | $\bar{\delta} p_{\nu}(r)$ | $\bar{\delta} p_{\nu}(f)$ |  |
|              |              |                                   |                          |                          |              | i                         | νe                        |                           |              |                          |                           |                           |  |
| Kershaw      | 0.074        | 0.102                             | 0.060                    | 0.069                    | 0.061        | 0.081                     | 0.062                     | 0.079                     | 0.052        | 0.068                    | 0.063                     | 0.086                     |  |
| Wilson       | 0.063        | 0.131                             | 0.054                    | 0.089                    | 0.049        | 0.085                     | 0.038                     | 0.074                     | 0.042        | 0.066                    | 0.029                     | 0.068                     |  |
| Levermore    | 0.068        | 0.112                             | 0.021                    | 0.018                    | 0.053        | 0.089                     | 0.025                     | 0.024                     | 0.045        | 0.076                    | 0.029                     | 0.031                     |  |
| ME           | 0.072        | 0.118                             | 0.026                    | 0.036                    | 0.058        | 0.092                     | 0.020                     | 0.026                     | 0.052        | 0.078                    | 0.020                     | 0.026                     |  |
| MEFD         | 0.071        | 0.116                             | 0.025                    | 0.038                    | 0.056        | 0.091                     | 0.018                     | 0.028                     | 0.047        | 0.078                    | 0.018                     | 0.026                     |  |
| Janka 1      | 0.084        | 0.124                             | 0.048                    | 0.062                    | 0.075        | 0.101                     | 0.037                     | 0.053                     | 0.072        | 0.087                    | 0.034                     | 0.052                     |  |
| Janka 2      | 0.079        | 0.115                             | 0.043                    | 0.052                    | 0.068        | 0.098                     | 0.042                     | 0.056                     | 0.063        | 0.087                    | 0.043                     | 0.063                     |  |
|              |              |                                   |                          |                          |              | i                         | $\bar{\nu}_{e}$           |                           |              |                          |                           |                           |  |
| Kershaw      | 0.056        | 0.064                             | 0.061                    | 0.076                    | 0.054        | 0.030                     | 0.066                     | 0.089                     | 0.056        | 0.022                    | 0.066                     | 0.097                     |  |
| Wilson       | 0.042        | 0.120                             | 0.052                    | 0.080                    | 0.028        | 0.052                     | 0.038                     | 0.066                     | 0.021        | 0.030                    | 0.030                     | 0.059                     |  |
| Levermore    | 0.045        | 0.075                             | 0.022                    | 0.024                    | 0.033        | 0.035                     | 0.027                     | 0.035                     | 0.034        | 0.027                    | 0.031                     | 0.043                     |  |
| ME           | 0.046        | 0.086                             | 0.027                    | 0.033                    | 0.032        | 0.047                     | 0.020                     | 0.025                     | 0.030        | 0.038                    | 0.023                     | 0.030                     |  |
| MEFD         | 0.048        | 0.085                             | 0.027                    | 0.034                    | 0.036        | 0.046                     | 0.019                     | 0.026                     | 0.038        | 0.040                    | 0.023                     | 0.030                     |  |
| Janka 1      | 0.057        | 0.095                             | 0.049                    | 0.061                    | 0.044        | 0.062                     | 0.038                     | 0.051                     | 0.041        | 0.056                    | 0.038                     | 0.052                     |  |
| Janka 2      | 0.055        | 0.076                             | 0.046                    | 0.059                    | 0.043        | 0.046                     | 0.046                     | 0.066                     | 0.043        | 0.043                    | 0.049                     | 0.075                     |  |
|              |              |                                   |                          |                          |              | i                         | $\nu_{\rm X}$             |                           |              |                          |                           |                           |  |
| Kershaw      | 0.067        | 0.019                             | 0.056                    | 0.075                    | 0.057        | 0.020                     | 0.067                     | 0.091                     | 0.042        | 0.022                    | 0.071                     | 0.103                     |  |
| Wilson       | 0.072        | 0.027                             | 0.056                    | 0.092                    | 0.060        | 0.019                     | 0.034                     | 0.071                     | 0.039        | 0.015                    | 0.024                     | 0.068                     |  |
| Levermore    | 0.065        | 0.026                             | 0.019                    | 0.026                    | 0.053        | 0.019                     | 0.027                     | 0.032                     | 0.036        | 0.020                    | 0.032                     | 0.044                     |  |
| ME           | 0.067        | 0.030                             | 0.026                    | 0.040                    | 0.053        | 0.017                     | 0.012                     | 0.016                     | 0.034        | 0.016                    | 0.013                     | 0.019                     |  |
| MEFD         | 0.064        | 0.028                             | 0.027                    | 0.041                    | 0.050        | 0.016                     | 0.011                     | 0.015                     | 0.031        | 0.015                    | 0.012                     | 0.018                     |  |
| Janka 1      | 0.072        | 0.041                             | 0.048                    | 0.065                    | 0.061        | 0.026                     | 0.029                     | 0.042                     | 0.042        | 0.022                    | 0.022                     | 0.040                     |  |
| Janka 2      | 0.075        | 0.045                             | 0.038                    | 0.056                    | 0.061        | 0.034                     | 0.036                     | 0.059                     | 0.043        | 0.032                    | 0.036                     | 0.069                     |  |

Protoneutron star. Spectrum weighted deviation of energy density, flux factor, Eddington factors and the closure for the chosen M1 closure prescription from the values obtained from MC neutrino transport calculations. The averaging is calculated with respect to the radial coordinate, between 30 and 200 km.

| Closure      |              | 16                       | 0 ms                      |                           |              | 20                        | 60 ms                     |                           |              | 30                                | 60 ms                     |                           |
|--------------|--------------|--------------------------|---------------------------|---------------------------|--------------|---------------------------|---------------------------|---------------------------|--------------|-----------------------------------|---------------------------|---------------------------|
| prescription | <i>M</i> [0] | $\bar{\delta}f_{\nu}(r)$ | $\bar{\delta} p_{\nu}(r)$ | $\bar{\delta} p_{\nu}(f)$ | <i>M</i> [0] | $\bar{\delta} f_{\nu}(r)$ | $\bar{\delta} p_{\nu}(r)$ | $\bar{\delta} p_{\nu}(f)$ | <i>M</i> [0] | $\bar{\delta}f_{\nu}(\mathbf{r})$ | $\bar{\delta} p_{\nu}(r)$ | $\bar{\delta} p_{\nu}(f)$ |
|              |              |                          |                           |                           |              |                           | $\nu_{\rm e}$             |                           |              |                                   |                           |                           |
| Kershaw      | 0.074        | 0.102                    | 0.060                     | 0.069                     | 0.061        | 0.081                     | 0.062                     | 0.079                     | 0.052        | 0.068                             | 0.063                     | 0.086                     |
| Wilson       | 0.063        | 0.131                    | 0.054                     | 0.089                     | 0.049        | 0.085                     | 0.038                     | 0.074                     | 0.042        | 0.066                             | 0.029                     | 0.068                     |
| Levermore    | 0.068        | 0.112                    | 0.021                     | 0.018                     | 0.053        | 0.089                     | 0.025                     | 0.024                     | 0.045        | 0.076                             | 0.029                     | 0.031                     |
| ME           | 0.072        | 0.118                    | 0.026                     | 0.036                     | 0.058        | 0.092                     | 0.020                     | 0.026                     | 0.052        | 0.078                             | 0.020                     | 0.026                     |
| MEFD         | 0.071        | 0.116                    | 0.025                     | 0.038                     | 0.056        | 0.091                     | 0.018                     | 0.028                     | 0.047        | 0.078                             | 0.018                     | 0.026                     |
| Janka 1      | 0.084        | 0.124                    | 0.048                     | 0.062                     | 0.075        | 0.101                     | 0.037                     | 0.053                     | 0.072        | 0.087                             | 0.034                     | 0.052                     |
| Janka 2      | 0.079        | 0.115                    | 0.043                     | 0.052                     | 0.068        | 0.098                     | 0.042                     | 0.056                     | 0.063        | 0.087                             | 0.043                     | 0.063                     |
|              |              |                          |                           |                           |              |                           | $\bar{\nu}_{ m e}$        |                           |              |                                   |                           |                           |
| Kershaw      | 0.056        | 0.064                    | 0.061                     | 0.076                     | 0.054        | 0.030                     | 0.066                     | 0.089                     | 0.056        | 0.022                             | 0.066                     | 0.097                     |
| Wilson       | 0.042        | 0.120                    | 0.052                     | 0.080                     | 0.028        | 0.052                     | 0.038                     | 0.066                     | 0.021        | 0.030                             | 0.030                     | 0.059                     |
| Levermore    | 0.045        | 0.075                    | 0.022                     | 0.024                     | 0.033        | 0.035                     | 0.027                     | 0.035                     | 0.034        | 0.027                             | 0.031                     | 0.043                     |
| ME           | 0.046        | 0.086                    | 0.027                     | 0.033                     | 0.032        | 0.047                     | 0.020                     | 0.025                     | 0.030        | 0.038                             | 0.023                     | 0.030                     |
| MEFD         | 0.048        | 0.085                    | 0.027                     | 0.034                     | 0.036        | 0.046                     | 0.019                     | 0.026                     | 0.038        | 0.040                             | 0.023                     | 0.030                     |
| Janka 1      | 0.057        | 0.095                    | 0.049                     | 0.061                     | 0.044        | 0.062                     | 0.038                     | 0.051                     | 0.041        | 0.056                             | 0.038                     | 0.052                     |
| Janka 2      | 0.055        | 0.076                    | 0.046                     | 0.059                     | 0.043        | 0.046                     | 0.046                     | 0.066                     | 0.043        | 0.043                             | 0.049                     | 0.075                     |
|              |              |                          |                           |                           |              |                           | $\nu_{\rm X}$             |                           |              |                                   |                           |                           |
| Kershaw      | 0.067        | 0.019                    | 0.056                     | 0.075                     | 0.057        | 0.020                     | 0.067                     | 0.091                     | 0.042        | 0.022                             | 0.071                     | 0.103                     |
| Wilson       | 0.072        | 0.027                    | 0.056                     | 0.092                     | 0.060        | 0.019                     | 0.034                     | 0.071                     | 0.039        | 0.015                             | 0.024                     | 0.068                     |
| Levermore    | 0.065        | 0.026                    | 0.019                     | 0.026                     | 0.053        | 0.019                     | 0.027                     | 0.032                     | 0.036        | 0.020                             | 0.032                     | 0.044                     |
| ME           | 0.067        | 0.030                    | 0.026                     | 0.040                     | 0.053        | 0.017                     | 0.012                     | 0.016                     | 0.034        | 0.016                             | 0.013                     | 0.019                     |
| MEFD         | 0.064        | 0.028                    | 0.027                     | 0.041                     | 0.050        | 0.016                     | 0.011                     | 0.015                     | 0.031        | 0.015                             | 0.012                     | 0.018                     |
| Janka 1      | 0.072        | 0.041                    | 0.048                     | 0.065                     | 0.061        | 0.026                     | 0.029                     | 0.042                     | 0.042        | 0.022                             | 0.022                     | 0.040                     |
| Janka 2      | 0.075        | 0.045                    | 0.038                     | 0.056                     | 0.061        | 0.034                     | 0.036                     | 0.059                     | 0.043        | 0.032                             | 0.036                     | 0.069                     |

Protoneutron star. Spectrum weighted deviation of energy density, flux factor, Eddington factors and the closure for the chosen M1 closure prescription from the values obtained from MC neutrino transport calculations. The averaging is calculated with respect to the radial coordinate, between 30 and 200 km.



|                     | Closure      |              | 16                       | 0 ms                      |                           |              | 26                       | 60 ms                     |                           |              | 36                       | 50 ms                    |                           |                                           |   |
|---------------------|--------------|--------------|--------------------------|---------------------------|---------------------------|--------------|--------------------------|---------------------------|---------------------------|--------------|--------------------------|--------------------------|---------------------------|-------------------------------------------|---|
| -                   | prescription | <i>M</i> [0] | $\bar{\delta}f_{\nu}(r)$ | $\bar{\delta} p_{\nu}(r)$ | $\bar{\delta} p_{\nu}(f)$ | <i>M</i> [0] | $\bar{\delta}f_{\nu}(r)$ | $\bar{\delta} p_{\nu}(r)$ | $\bar{\delta} p_{\nu}(f)$ | <i>M</i> [0] | $\bar{\delta}f_{\nu}(r)$ | $\bar{\delta}p_{\nu}(r)$ | $\bar{\delta} p_{\nu}(f)$ |                                           |   |
|                     |              |              |                          |                           |                           |              |                          | $\nu_{\rm e}$             |                           |              |                          |                          |                           |                                           |   |
|                     | Kershaw      | 0.074        | 0.102                    | 0.060                     | 0.069                     | 0.061        | 0.081                    | 0.062                     | 0.079                     | 0.052        | 0.068                    | 0.063                    | 0.086                     |                                           |   |
|                     | Levermore    | 0.063        | 0.131                    | 0.054                     | 0.089                     | 0.049        | 0.085                    | 0.038                     | 0.074                     | 0.042        | 0.066                    | 0.029                    | 0.068                     |                                           |   |
|                     | ME           | 0.072        | 0.112                    | 0.021                     | 0.016                     | 0.058        | 0.092                    | 0.020                     | 0.024                     | 0.052        | 0.078                    | 0.029                    | 0.026                     |                                           |   |
| <b>_</b>            | MEFD         | 0.071        | 0.116                    | 0.025                     | 0.038                     | 0.056        | 0.092                    | 0.018                     | 0.028                     | 0.032        | 0.078                    | 0.018                    | 0.026                     |                                           |   |
| <b>Crossing out</b> | Janka 1      | 0.084        | 0.124                    | 0.048                     | 0.062                     | 0.075        | 0.101                    | 0.037                     | 0.053                     | 0.072        | 0.087                    | 0.034                    | 0.052                     | ,                                         |   |
|                     | Janka 2      | 0.079        | 0.115                    | 0.043                     | 0.052                     | 0.068        | 0.098                    | 0.042                     | 0.056                     | 0.063        | 0.087                    | 0.043                    | 0.063                     |                                           |   |
| closures with       |              |              |                          |                           |                           |              |                          | $\bar{\nu}_{ m e}$        |                           |              |                          |                          |                           |                                           |   |
|                     | Kershaw      | 0.056        | 0.064                    | 0.061                     | 0.076                     | 0.054        | 0.030                    | 0.066                     | 0.089                     | 0.056        | 0.022                    | 0.066                    | 0.097                     | P. C. |   |
| Norst fits          | Wilson       | 0.042        | 0.120                    | 0.052                     | 0.080                     | 0.028        | 0.052                    | 0.038                     | 0.066                     | 0.021        | 0.030                    | 0.030                    | 0.059                     |                                           |   |
|                     | Levermore    | 0.045        | 0.075                    | 0.022                     | 0.024                     | 0.033        | 0.035                    | 0.027                     | 0.035                     | 0.034        | 0.027                    | 0.031                    | 0.043                     |                                           |   |
|                     | MEED         | 0.040        | 0.085                    | 0.027                     | 0.035                     | 0.032        | 0.047                    | 0.020                     | 0.025                     | 0.030        | 0.038                    | 0.023                    | 0.030                     |                                           |   |
|                     | Janka 1      | 0.057        | 0.005                    | 0.027                     | 0.054                     | 0.030        | 0.062                    | 0.038                     | 0.020                     | 0.038        | 0.056                    | 0.023                    | 0.050                     |                                           |   |
|                     | Janka 2      | 0.055        | 0.076                    | 0.046                     | 0.059                     | 0.043        | 0.046                    | 0.046                     | 0.066                     | 0.043        | 0.043                    | 0.049                    | 0.075                     | 1                                         |   |
| -                   |              |              |                          |                           |                           |              |                          | $\nu_{\rm X}$             |                           |              |                          |                          |                           |                                           |   |
|                     | Kershaw      | 0.067        | 0.019                    | 0.056                     | 0.075                     | 0.057        | 0.020                    | 0.067                     | 0.091                     | 0.042        | 0.022                    | 0.071                    | 0.103                     | ,                                         |   |
|                     | Wilson       | 0.072        | 0.027                    | 0.050                     | 0.092                     | 0.060        | 0.019                    | 0.034                     | 0.071                     | 0.039        | 0.015                    | 0.024                    | 0.068                     |                                           |   |
|                     | Levermore    | 0.065        | 0.026                    | 0.019                     | 0.026                     | 0.053        | 0.019                    | 0.027                     | 0.032                     | 0.036        | 0.020                    | 0.032                    | 0.044                     |                                           |   |
|                     | ME           | 0.067        | 0.030                    | 0.026                     | 0.040                     | 0.053        | 0.017                    | 0.012                     | 0.016                     | 0.034        | 0.016                    | 0.013                    | 0.019                     |                                           | > |
|                     | MEFD         | 0.064        | 0.028                    | 0.027                     | 0.041                     | 0.050        | 0.016                    | 0.011                     | 0.015                     | 0.031        | 0.015                    | 0.012                    | 0.018                     |                                           |   |
|                     | Jalika I     | 0.072        | 0.041                    | 0.040                     | 0.005                     | 0.001        | 0.020                    | 0.029                     | 0.042                     | 0.042        | 0.022                    | 0.022                    | 0.040                     | $\bigcirc$                                | > |

Protoneutron star. Spectrum weighted deviation of energy density, flux factor, Eddington factors and the closure for the chosen M1 closure prescription from the values obtained from MC neutrino transport calculations. The averaging is calculated with respect to the radial coordinate, between 30 and 200 km.



|          | Closure      |              | 16                       | 0 ms                     |                          |              | 20                       | 60 ms                    |                           |              | 36                                | 50 ms                     |                          |          |      |    |
|----------|--------------|--------------|--------------------------|--------------------------|--------------------------|--------------|--------------------------|--------------------------|---------------------------|--------------|-----------------------------------|---------------------------|--------------------------|----------|------|----|
|          | prescription | <i>M</i> [0] | $\bar{\delta}f_{\nu}(r)$ | $\bar{\delta}p_{\nu}(r)$ | $\bar{\delta}p_{\nu}(f)$ | <i>M</i> [0] | $\bar{\delta}f_{\nu}(r)$ | $\bar{\delta}p_{\nu}(r)$ | $\bar{\delta} p_{\nu}(f)$ | <i>M</i> [0] | $\bar{\delta}f_{\nu}(\mathbf{r})$ | $\bar{\delta} p_{\nu}(r)$ | $\bar{\delta}p_{\nu}(f)$ |          |      |    |
|          | V 1          | 0.074        | 0.102                    | 0.000                    | 0.070                    | 0.0(1        | 0.001                    | Ve                       | 0.070                     | 0.050        | 0.070                             | 0.000                     | 0.000                    |          |      |    |
|          | Kershaw      | 0.074        | 0.102                    | 0.060                    | 0.069                    | 0.061        | 0.081                    | 0.062                    |                           | 0.052        | 0.068                             | 0.063                     | 0.086                    |          |      |    |
|          | Levermore    | 0.065        | 0.131                    | 0.034                    | 0.018                    | 0.049        | 0.085                    | 0.038                    | 0.074                     | 0.042        | 0.076                             | 0.029                     | 0.000                    |          |      |    |
| Only the | ME           | 0.072        | 0.118                    | 0.026                    | 0.036                    | 0.058        | 0.092                    | 0.020                    | 0.026                     | 0.052        | 0.078                             | 0.020                     | 0.026                    |          |      |    |
|          | MEFD         | 0.071        | 0.116                    | 0.025                    | 0.038                    | 0.056        | 0.091                    | 0.018                    | 0.028                     | 0.047        | 0.078                             | 0.018                     | 0.026                    |          |      |    |
| three    | Janka 1      | 0.084        | 0.124                    | 0.048                    | 0.062                    | 0.075        | 0.101                    | 0.037                    | 0.053                     | 0.072        | 0.087                             | 0.034                     | 0.052                    |          |      |    |
|          | Janka 2      | 0.079        | 0.115                    | 0.043                    | 0.052                    | 0.068        | 0.098                    | - 0.042                  | 0.056                     | 0.063        | 0.087                             | 0.043                     | 0.063                    |          |      |    |
| physical |              | 0.05(        | 0.004                    | 0.0/1                    | 0.076                    | 0.054        | 0.020                    | $\nu_{\rm e}$            | 0.000                     | 0.057        | 0.000                             | 0.0((                     | 0.007                    |          |      |    |
|          | Wilson       | 0.030        | 0.004                    | 0.001                    | 0.070                    | 0.034        | 0.052                    | 0.000                    | 0.065                     | 0.030        | 0.022                             | 0.030                     | 0.050                    |          |      |    |
| closures | Levermore    | 0.045        | 0.075                    | 0.022                    | 0.024                    | 0.033        | 0.035                    | 0.027                    | 0.035                     | 0.034        | 0.027                             | 0.031                     | 0.043                    |          |      |    |
|          | ME           | 0.046        | 0.086                    | 0.027                    | 0.033                    | 0.032        | 0.047                    | 0.020                    | 0.025                     | 0.030        | 0.038                             | 0.023                     | 0.030                    |          |      |    |
| Survive  | MEFD         | 0.048        | 0.085                    | 0.027                    | 0.034                    | 0.036        | 0.046                    | 0.019                    | 0.026                     | 0.038        | 0.040                             | 0.023                     | 0.030                    |          |      |    |
|          | Janka 1      | 0.057        | 0.095                    | 0.049                    | 0.061                    | 0.044        | 0.062                    | 0.038                    | 0.051                     | 0.041        | 0.056                             | 0.038                     | 0.052                    |          |      |    |
|          | Janka 2      | 0.055        | 0.076                    | 0.046                    | 0.059                    | 0.043        | 0.046                    | 0.046                    | 0.006                     | 0.043        | 0.045                             | 0.049                     | 0.075                    |          |      |    |
|          | Varshow      | 0.067        | 0.010                    | 0.056                    | 0.075                    | 0.057        | 0.020                    | VX                       | 0.001                     | 0.042        | 0.022                             | 0.071                     | 0.102                    |          |      |    |
|          | Wilson       | 0.007        | 0.017                    | 0.050                    | 0.015                    | 0.060        | 0.020                    | 0.034                    | 0.071                     | 0.012        | 0.022                             | 0.024                     | 0.068                    |          |      |    |
|          | Levermore    | 0.065        | 0.026                    | 0.019                    | 0.026                    | 0.053        | 0.019                    | 0.027                    | 0.032                     | 0.036        | 0.020                             | 0.032                     | 0.044                    |          |      |    |
|          | ME           | 0.067        | 0.030                    | 0.026                    | 0.040                    | 0.053        | 0.017                    | 0.012                    | 0.016                     | 0.034        | 0.016                             | 0.013                     | 0.019                    |          |      | -  |
|          | MEFD         | 0.064        | 0.028                    | 0.027                    | 0.041                    | 0.050        | 0.016                    | 0.011                    | 0.015                     | 0.031        | 0.015                             | 0.012                     | 0.018                    |          | > De | S  |
|          | Janka 1      | 0.072        | 0.041                    | 0.048                    | 0.065                    | 0.061        | 0.026                    | 0.029                    | 0.042                     | 0.042        | 0.022                             | 0.022                     | 0.040                    | $\frown$ | > WC | ۶r |
|          | Janka 2      | 0.015        | 0.045                    | 0.038                    | 0.056                    | 0.001        | 0.034                    | 0.036                    | 0.059                     | 0.043        | 0.032                             | 0.036                     | 0.069                    |          |      | -  |

Protoneutron star. Spectrum weighted deviation of energy density, flux factor, Eddington factors and the closure for the chosen M1 closure prescription from the values obtained from MC neutrino transport calculations. The averaging is calculated with respect to the radial coordinate, between 30 and 200 km.





Protoneutron star. Spectrum weighted deviation of energy density, flux factor, Eddington factors and the closure for the chosen M1 closure prescription from the values obtained from MC neutrino transport calculations. The averaging is calculated with respect to the radial coordinate, between 30 and 200 km.

| )]                  | $\frac{26}{\delta f_{\nu}(r)}$            | $0 \text{ ms} \\ \overline{\delta p_{\nu}(r)}$           | $\bar{\delta} p_{\nu}(f)$                          | <i>M</i> [0]                                                         | $\frac{36}{\delta f_{\nu}(r)}$                                                | $0 \text{ ms} \\ \bar{\delta} p_{\nu}(r)$                                              | $\bar{\delta} p_{\nu}(f)$                                                                                         |  |      |
|---------------------|-------------------------------------------|----------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|------|
| 1                   | ,,<br>,,                                  | νe                                                       | 10.07                                              |                                                                      | ,,                                                                            | 1                                                                                      |                                                                                                                   |  |      |
| 1                   | 0.081                                     | 0.062                                                    | 0.079                                              | 0.052                                                                | 0.068                                                                         | 0.062                                                                                  |                                                                                                                   |  |      |
| 3                   | 0.085                                     | 0.038                                                    | 0.074                                              | 0.042                                                                |                                                                               |                                                                                        |                                                                                                                   |  |      |
| 58                  | 0.092                                     | 0.020                                                    | 0.021                                              |                                                                      |                                                                               | ne                                                                                     |                                                                                                                   |  |      |
| 6                   | 0.091                                     | 0                                                        |                                                    |                                                                      |                                                                               |                                                                                        |                                                                                                                   |  |      |
| 5                   |                                           | 11/                                                      | OC                                                 |                                                                      |                                                                               |                                                                                        |                                                                                                                   |  |      |
|                     |                                           | $\mathbf{W}$                                             |                                                    |                                                                      |                                                                               |                                                                                        |                                                                                                                   |  |      |
|                     | .5                                        |                                                          |                                                    |                                                                      |                                                                               |                                                                                        |                                                                                                                   |  |      |
|                     |                                           |                                                          |                                                    |                                                                      |                                                                               |                                                                                        |                                                                                                                   |  |      |
|                     |                                           |                                                          | A                                                  | 0                                                                    |                                                                               |                                                                                        |                                                                                                                   |  |      |
|                     |                                           | ~C                                                       | Ct                                                 | er                                                                   |                                                                               |                                                                                        | 0.043                                                                                                             |  |      |
|                     | 56                                        | 00                                                       | Ct                                                 | 6                                                                    | 0.040                                                                         | 0.023                                                                                  | 0.043                                                                                                             |  |      |
| • €                 | 25                                        | pe                                                       | Ct                                                 | 0.041                                                                | 0.040                                                                         | 0.023<br>0.023<br>0.038                                                                | 0.043<br>0.030<br>0.030<br>0.052                                                                                  |  |      |
| •                   | 25                                        | pe                                                       | 0.066                                              | 0.041<br>0.043                                                       | 0.040<br>0.056<br>0.043                                                       | 0.023<br>0.023<br>0.038<br>0.049                                                       | 0.043<br>0.030<br>0.030<br>0.052<br>0.075                                                                         |  |      |
| •                   | 25                                        |                                                          |                                                    | 0.041<br>0.043                                                       | 0.040<br>0.056<br>0.043                                                       | 0.023<br>0.023<br>0.038<br>0.049                                                       | 0.043<br>0.030<br>0.030<br>0.052<br>0.075                                                                         |  |      |
| 7                   | 0.020                                     | ν <sub>x</sub><br>0.067                                  | 0.0001                                             | 0.041<br>0.043<br>0.042                                              | 0.040<br>0.056<br>0.043<br>0.022                                              | 0.023<br>0.023<br>0.038<br>0.049<br>0.071                                              | 0.043<br>0.030<br>0.030<br>0.052<br>0.075<br>0.103                                                                |  |      |
| 7                   | 0.020<br>0.019<br>0.019                   | ν <sub>x</sub><br>0.067<br>0.034<br>0.027                | 0.0001<br>0.071<br>0.032                           | 0.041<br>0.043<br>0.042<br>0.039<br>0.036                            | 0.040<br>0.056<br>0.043<br>0.043<br>0.022<br>0.015<br>0.020                   | 0.023<br>0.023<br>0.038<br>0.049<br>0.071<br>0.024<br>0.032                            | 0.043<br>0.030<br>0.030<br>0.052<br>0.075<br>0.075<br>0.103<br>0.068<br>0.044                                     |  |      |
| 7<br>10<br>13       | 0.020<br>0.019<br>0.017                   | 0.067<br>0.034<br>0.027<br>0.012                         | 0.091<br>0.071<br>0.032<br>0.016                   | 0.041<br>0.043<br>0.043<br>0.039<br>0.036<br>0.034                   | 0.040<br>0.056<br>0.043<br>0.043<br>0.022<br>0.015<br>0.020<br>0.016          | 0.023<br>0.023<br>0.038<br>0.049<br>0.071<br>0.024<br>0.032<br>0.013                   | 0.043<br>0.030<br>0.030<br>0.052<br>0.075<br>0.075<br>0.068<br>0.044<br>0.019                                     |  |      |
| 7<br>10<br>13<br>13 | 0.020<br>0.019<br>0.017<br>0.016          | νx<br>0.067<br>0.034<br>0.027<br>0.012<br>0.011          | 0.091<br>0.071<br>0.032<br>0.016<br>0.015          | 0.041<br>0.043<br>0.043<br>0.039<br>0.036<br>0.034<br>0.031          | 0.040<br>0.056<br>0.043<br>0.043<br>0.022<br>0.015<br>0.020<br>0.016<br>0.015 | 0.023<br>0.023<br>0.038<br>0.049<br>0.071<br>0.024<br>0.032<br>0.013<br>0.012          | 0.043<br>0.030<br>0.030<br>0.052<br>0.075<br>0.075<br>0.075<br>0.068<br>0.044<br>0.019<br>0.018                   |  | best |
| 7<br>10<br>13<br>13 | 0.020<br>0.019<br>0.017<br>0.016<br>0.026 | νx<br>0.067<br>0.034<br>0.027<br>0.012<br>0.011<br>0.029 | 0.091<br>0.071<br>0.032<br>0.016<br>0.015<br>0.042 | 0.041<br>0.043<br>0.043<br>0.039<br>0.036<br>0.034<br>0.031<br>0.042 | 0.040<br>0.056<br>0.043<br>0.022<br>0.015<br>0.020<br>0.016<br>0.015<br>0.022 | 0.023<br>0.023<br>0.038<br>0.049<br>0.071<br>0.024<br>0.032<br>0.013<br>0.012<br>0.022 | 0.043<br>0.030<br>0.030<br>0.052<br>0.075<br>0.075<br>0.075<br>0.068<br>0.044<br>0.019<br>0.018<br>0.018<br>0.040 |  | best |



## Conclusions

There is no single best closure.

Best closure is a function of neutrino type, neutrino energy and neutrino specie.

Deviations of energy, flux, pressure, and closure are non-linear. Sometimes the worst fitting closure produces the best fitting flux.

One may want to choose the closure depending on what quantity they want to estimate with the highest accuracy.

It useful to obtain closure from MC calculations and then feeding the result to M1 code. However this may not be worth for small corrections especially in spectral case. It is only clearly when deviation of closure from the previously estimated is getting large.











Instead of Boltzmann equation

 $\int \times | \left| \frac{dx^{\alpha}}{d\tau} \frac{\partial f}{\partial x^{\alpha}} + \frac{dp^{\alpha}}{d\tau} \frac{\partial f}{\partial p^{\alpha}} = \varepsilon \right|$ 

we get an infinite tower of moment equations

Diff Eq (M[0], M[1])Diff Eq (M[0], ..., M[2])Diff Eq (M[0], ..., M[3])

. . .

Diff Eq (M[0], ..., M[N+1])





Instead of Boltzmann equation

 $\left[\begin{array}{c|c} \times & \left| \begin{array}{c} \frac{dx^{\alpha}}{d\tau} \frac{\partial f}{\partial x^{\alpha}} + \left| \frac{dp^{\alpha}}{d\tau} \frac{\partial f}{\partial n^{\alpha}} \right| = \varepsilon \\ \end{array} \right]$ 

we get an infinite tower of moment equations

Diff Eq (M[0], M[1], M[2])Diff Eq  $(M[0], \ldots, M[2], M[3])$ Diff Eq  $(M[0], \ldots, M[3], M[4])$ 

Diff Eq  $(M[0], \ldots, M[N+1], M[N+2])$ 

### We'd need two closures

(See e.g. Richers, at al Phys Rev D (2020))

But we will ignore this here.



