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Overview

Development of efficient and accurate algorithms for simulating multidimensional flows of non-continuum
non-equilibrium gases reflecting real gas effects

Advantage of BE: Physics modelled on level of individual particles. Most accurate description.
Disadvantage: high dimensionality and high computational costs, esp. to account for particle interactions
• DSMC methods have been largely successful in providing scalable simulations
• Adaptive/high order methods (Arslanbekov, Kolobov, & Frolova, 2013; Taitano, Chacón, & Simakov, 2018, 

Boscheri & Dimarco, 2021)
• Low rank tensor representation of solutions (Boelens, Venturi, & Tartakovsky, 2020; Guo & Qiu, 2022; 

Chikitkin, Kornev, & Titarev, 2021, Taitano and Araki, 2024)
• Use of machine learning (Xiao & Frank, 2021, Miller, Roberts, Bond, & Cyr, JCP 2022)
• Methods of moments (Struchtrup & Frezzotti, 2022; Claydon, etal, 2017; Lockerby, B Collyer 2016; 

Djordjić, Pavić-Čolić, & Torrilhon, 2021)

 This talk will focus on use of low rank/compressed approximations of solutions/equations and machine learning 
approaches to accelerate solutions of BE/collision operator 



The Collision Operator

Rarefied Gas Dynamics: 
• Boltzmann collision integral

• Relaxation models (BGK, ES-BGK, Shakhov) 

Simulation of Plasma: 
• Fokker-Plank with Rosenbluth potential
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Fast Evaluation of the Collision Operator

• Optimal basis/moments to represent the solution are learned from data. 
• Reduced models is a Galerkin discretization with some additional tricks to address stability and truncation errors
• Approach is suitable when many similar simulations need to be performed, e.g., in a grid parameter search. 

• Advantage: accounts to interactions of individual molecules, most accurate physics 
• Difficulty:  O(𝑛8) evaluation at one point in space.  𝑛 is # of points in each velocity/mom. dim.
• Fast spectral methods: (Wu, etal. 2013; Mouhot & Pareschi, 2006; Gamba, Haack, Hauck, Hu, 2017)
•  Nodal discontinuous Galerkin: 𝑂 𝑛6  (A. & Josyula, 2014, A., Nguyen & Wood, 2015, A. & Limbacher, 2019)

 
     

𝑄𝑘 = σ𝑖,𝑗 𝑓𝑖−𝑘𝑓𝑗−𝑘𝐴𝑖𝑗  
(will become a single sum after a discrete Fourier transform)

Can an approximate low rank/fast collision model be learned for an application at hand?
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T. Kolda and B. Bader, Tensor Decompositions and Applications SIAM Review 2009

• Tensor is a multi-index array: e.g., discrete kernel of collision 
operator  𝐴𝑖𝑗𝑘𝑙𝑚𝑛  is an order 6 tensor (not using the Einstein 
notations)

• Rank One tensors:

 𝑎𝑖𝑏𝑗𝑐𝑘

• CP Decomposition: 
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𝜎  smallest 𝑟 is rank of the tensor

• CP: storage 𝑟𝑑𝑛 vs. 𝑛𝑑; vector multiplication 𝑟𝑛 vs. 𝑛𝑑

Low Rank of a Tensor
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CP decompositions: 

• Order two Matrices, SVD: 
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Determining Rank of a Tensor

Berge and Stegeman, Linear Algebra and its Applications (2006)

• For tensors of order >2 finding CP decomposition 
is NP complete problem

• Instead, use Tucker, High Order SVD, hierarchical 
Tucker, tensor train 
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• Higher Order SVD: savings if ranks of kernels are 
low

Compressible if 
singular values 
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exponentially
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Compression of a Kinetic Solution

Full vs. rank 5 

A snapshot of 1D1V 
ionic shock problem. 
Joint work with 
W. Taitano

Idea: 
• take bunch of solutions 
• build compact basis
• use in discretization



Discretization of 𝑓: 𝑁 = 413

Data Driven ROM: Homogenous Relaxation of 2 Maxwellians

1

Eq

Initial Condition: 2 Maxwellians

2

Final Equilibrium: Single Maxwellian

Initial State Information
 3D: ( 𝑁1/𝑁2, 𝑇1/𝑇2, Δ ҧ𝑣 ) Final State Information

 0D: Normalized Equilibrium

Intermediate State Information
 4D: ( 𝑁1/𝑁2, 𝑇1/𝑇2, Δ ҧ𝑣, 𝒕) 

Data points are time 
saves of solutions

• Generate initial two 
Maxwellians (random)

• Solve Sp. Hom. B.E.
• Sample Solutions at intervals 

in time
• Build dataset of solutions

Joint work with R. Martin, U.S. Army Research Office, A. Wood, AFIT



for 𝐾 ≥ 40

ROM is a Galerkin discretization of the BCI 
using basis of first K<100 right singular vectors 
vi . Let H be matrix with columns vi

SVD ROM for Boltzmann collision operator:

• Projection: y=HTf .  Recovery  f=Hy

•  

•  

“Naïve” SVD-Based ROM
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DG convolution formulation:

Complexity: 𝑂(𝐾3) as compared to 𝑂 𝑛3 , 𝑛 = 41
More than 102 speedup for K<40



• non-physical moments in the steady 
state regime

• Instabilities for large number of basis 
functions

Failure of the “Naïve” SVD-Based ROM

Magnitudes of Coefficients in SVD ROM basis

Interpolation vs. Extrapolation:
K CPU 

time
, s

Speedup
vs. 𝑂(𝑛6) 

Method (151 sec)

27 .19 7.9e2

35 .21 7.2e2

42 .27 5.6e2

53 .35 4.3e2

Time to evaluate collision operator equiv. 
41^3 mesh for different sizes of ROM basis

The instability was related to having the 
steady state solution in the ROM
while non-physical steady states are 
caused by residuals of ROM projection 
in initial data. 



SVD ROM V2.0

Largest real parts of eigenvalues of Bk’,k’’ . Naïve ROM 
has a positive eigenvalue for 𝐾 > 47. Eigenvalues of 
Maxwell-free ROM are below -1.

Improvements to the ROM: 
• Remove steady state Maxwellian from the ROM
• Make ROM basis functions free form conservative moments.
• Re-write the model in terms of 𝑑𝑓 = 𝑓 − 𝑓𝑀, 𝜖 = 𝐻𝑇[𝑑𝑓] 
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• Damping ROM Residual (Wong & Cai, 2019):
• Define 

𝜖⊥ = 𝐼 − 𝐻𝐻𝑇 𝑓

• Evolve 
𝜕𝑡𝜖⊥ = −𝜈𝜖⊥

No residual damping Residual damping 



An Issue with the ROM Basis

• Support of basis vectors grows and becomes more oscillatory
• These oscillations affect residual and higher moments 

in solutions 
• As a result, solutions for large ROM basis show less accurate

predictions of higher moments while resolving stronger features
in solutions

• Need a better POD for kinetic solutions or a better model to 
control the residual.

Basis function #2

Counterintuitive 
Observation: Moments 
computed using larger 
ROMs are less accurate

Error in ZCMP ROM k=27 Error in ZCMP ROM k=65

Basis function #60



CPU time to evaluate collision operator. Acceleration is relative to O(n6) 
nodal-DG discretization on 413 velocity mesh (151 sec). 

Approach Cost CPU Time Speed-up %

Nodal-DG O(M6) 151 sec

ROM, K=53 O(K3) 0.35 sec 431 0.2%

Spatially Homogeneous Relaxation of two Homogeneous Gauss Densities 

Use of ROMs improves computation time for BCI:

Nodal-DG Velocity Discretization
Zero Conserved Moments 

Perturbation  ROM

• ROMs can approximate Boltzmann collision operator 
efficiently.

• ROM approach can be applied to 2D and 3D flows.

•  Extension to 1D is underway.

• Off-line training phase is expensive. Method is suitable for 
problems where many similar computations need to be 
performed, e.g., grid parameter search. 

• Work is underway to learn ROM on-line. 

Support: AFOSR F4FGA08305J005, FA955020QCOR100, NSF 
DMS-1620497, DMS-2111612, SFFP, XSEDE

Overall Performance of ROMs



Results: Tom Nguyen, CSUN

Convolutional Neural Network (CNN) was trained 
to predict values of the collision operator for the 
class of solutions discussed above.  The CNN 
predictions were used to approximate collision 
operator in Euler time stepping scheme to solve

Structure of the CNN: 
• Input: discrete f at 413 points
• 1st hidden layer: 4 filters; 5x5x5 kernel
• 2nd hidden layer: 8 filters; 3x3x3 kernel
• 3rd hidden layer: max pooling; 2x2x2 kernel
• 4th hidden layer: 16 filters; 3x3x3 kernel
• 5th hidden layer: max pooling; 2x2x2 kernel
• 6th hidden layer: 32 filters; 3x3x3 kernel
• Output: fully connected, discrete collision QCNN on 413 points 
• parametric leaky ReLU, MAE loss, adamax optimizer.

• One evaluation 0.18 sec

Relaxation of moments in solutions obtained using CNN approximation of collision operator

Approximation of Collision Operator using Convolutional Neural Network



Further Thoughts on Use of Machine Learning

• Can approximate the collision 
operator

• Special architectures are needed 
to enforce stability and error for 
solutions “not-in-class” solutions.

• The expensive off-line training 
stage is limiting applications

Spurious oscillations in CNN solutions

• Growing body of literature on using neural networks, 
and machine learning in general, in computational 
mathematics 

• Current efforts seem to be directed toward using on-line 
training

• In T. Xiao & M. Frank, JCP 2021 neural network correction 
to BGK term is learned using information from fast spectral 
solver. Solver applied to 0D, 1D1V, 2D2V problems. 
Architecture enforces conservation laws.

• In S. Miller, N. Roberts, S. Bond, E. Cyr, JCP 2022, neural 
network correction to BGK is learned based on DSMC solver 
data. Architecture enforces conservation laws.

• Overall, use of neural network still seems promising. 
 



Potential Directions
• Find NN approximation to s.p.d. matrix                such that

 

• Recover trajectories by integrating along   
• Formulate a minimization problem using appropriate 

action, see e.g. Erbar 2016Trajectories of solutions in the basis of 
first three singular vectors of Dij .

Observations
• Class of solutions depends on three parameters and time
• Trajectories look very simple in SVD basis
• Kinetic Entropy  

decreases monotonically in time and could be a candidate 
for the potential function.

Exploring Low Dimensional Structure of Solutions

Velocity Distribution function



Thank You Very Much for Your 

Attention!

 

Any Questions? 
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