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Thermodynamic limits

Goal: study assemblies of large numbers of identical subsystems; characterize
them as the number of subsystems goes to infinity (thermodynamic limit).

Practically: given a Hamiltonian on Rd

H(p1, . . . , pN , x1, . . . , xN) = U(x1, . . . , xN) +
N∑
i=1

p2i
2m

,

study1 the asymptotic behavior of its configurational integral,

1

|Ω|
log

1

N!

∫
Ω

. . .

∫
Ω

exp(−βU(x1, . . . , xN)), dx1 . . . dxN

when
Ω → ∞

(in a sense to be made precise).

1Van Hove, Fisher, Ruelle, Dobrushin, and others



Thermodynamic functions

▶ Other thermodynamic functions and regimes can be considered.

Example: function e on configurations ωN = {x1, . . . , xN} and compact sets
Ω ∈ C(Rd),

e : (Rd)N × C(Rd) → [0,∞],

optimized over ωN ⊂ Ω:

e(ω∗
N ,Ω

N) = inf
ωN

e(ωN ,Ω
N)

▶ minimizer/maximizer: ω∗
N

▶ inf / sup can be taken over ΩN only, if undefined over (Rd)N .

▶ Goal: study the asymptotics of optimizers when N → ∞. Set Ω is fixed!



Tempered interactions
The potential energy U(x1, . . . , xN) is always translation-independent (possibly
isometry-independent), consists of k-(tuple )interactions:

U(x1, . . . , xN) =
∑
k⩾2

∑
1⩽i1⩽...⩽ik⩽N

Φk(xi1 , . . . , xik )

Tempered k-interaction:

WN1N2(x
′
1, . . . , x

′
N1
, x ′′1 , . . . , x

′′
N2
) ⩽ CN1N2r

−s , s > d .



Stable interactions

Fisher and Ruelle prove existence of thermodynamic limits under the

assumptions

(i) temperedness: distant particles interact weakly

WN1N2(x
′
1, . . . , x

′
N1
, x ′′1 , . . . , x

′′
N2
) ⩽ CN1N2r

−s , s > d .

(ii) stability: no bounded volume with infinitely many particles

U(x1, . . . , xN) ⩾ −cN



Stable vs positive definite

For upper-semicontinuous pair interactions,

0 ⩽
N∑
i=1

N∑
j=1

Φ(xi − xj) = NΦ(0) + 2U(x1, . . . , xN)

holds for all xi iff the corresponding U(x1, . . . , xN) ⩾ −cN (is stable).

In particular, pair potentials Φ(x1, x2) such that

Φ = Φ1 +Φ2

with Φ1 positive and Φ2 positive definite give rise to stable U.



Examples of unstable (catastrophic) interactions

– take R the nearest-neighbor

distance in face-centered cubic

lattice.



Non-stability of gravity

Figure: Cosmic Cliffs at the edge of the Carina Nebula, by James Webb Space Telescope



Expanding sequences of sets

Classical mathematical physics results assume boundary regions of the expanding
sequence of sets Ω take a small proportion of volume:

Fisher-Ruelle Hardin-Saff-V



Lieb in Bull. Amer. Math. Soc. 22, 1-49 (1990):



Short-range interactions zoo I

kNN energies

inf
ωN⊂A

∑
x ̸=y∈ωN

w(x)∥x − y∥−s
Optimal quantization

inf
ωN

∫
min
yi∈ωN

∥x − yi∥2 dµ(x)

Left: E k
s , s > 0 only includes terms for k nearest neighbors of every x ∈ ωN .

Right: quadratic quantization error M2 depends on the second moment of the
Voronoi cell of x .



Short-range interactions zoo II
Optimal covering
inf
ωN

sup
y∈A

dist(y , ωN)

Optimal polarization

sup
ωN

inf
y∈A

∑
x∈ωN

∥y − x∥−s .

Left: covering with N = 9 points. Right: polarizing with N = 9 points, s > 2.
Below: a single point in a dark set, for comparison.



Persson and Strang’s DistMesh

Figure: Persson-Strang (2004)



Shimada-Gossard

Figure: Shimada-Gossard bubble packing



Andrade-Vyas-Shimada: non-isotropic packing for CAD



Fractals

▶ A compact A ⊂ Rp is a self-similar fractal with similitudes {ψm}Mm=1 and their
contraction ratios 0 < rm < 1, 1 ⩽ m ⩽ M, if

A =
M⊔

m=1

ψm(A).

Figure: A Koch snowflake.



▶ Good fractals satisfy the open set condition: for an open V ⊃ A,

M⊔
m=1

ψm(V ) ⊂ V .

▶ Anderson-Reznikov-V-White: polarization has the thermodynamic limit on good
fractals. Also, examples of when this limit does not exist.



Fractals are hard... renewal theory

Theorem (Feller 1966)

Let µ be a probability measure on [0,∞) and Z (u) be a function defined on
[0,∞). Assume that for some positive constants C , ϵ, and u sufficiently large
there holds ∣∣∣∣∣∣Z (u)−

u∫
0

Z (u − x) dµ(x)

∣∣∣∣∣∣ ⩽ Ce−ϵu.

Then limu→∞ Z (u) exists.

▶ Work with a recursion of the form

N(t) = L(t) +
M∑

m=1

N(tr sm)

with r1, . . . , rm the contraction ratios of the leaves of the fractal. Requires
controlling |L(t)| ⩽ Ctd/s−ϵ.



Non-isotropic interactions

▶ Dipoles are attached to a fixed set of locations, e.g. a lattice.

▶ Every dipole has a moment vector associated to it: mi .

▶ Dipole-dipole interaction:

Eij =
mi ·mj

∥rij∥3
− 3

(mi · rij)(mj · rij)
∥rij∥5

Hamiltonian: ∑
i ̸=j

miJijmj ,

with Jij the 3× 3 matrix

1

∥rij∥3

(
I − 3

rij ⊗ rij
∥rij∥2

)
▶ Stability can be shown – but is it enough?



Aperiodic dipole systems: Penrose
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Figure: Left: Somewhat optimized dipoles on the vertices of Penrose tiling. Right: Stream plot
of the same configuration.



Aperiodic dipole systems: Ammann tiling
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Figure: Left: Somewhat optimized dipoles on the vertices of the aperiodic Ammann tiling.



Ammann vs Penrose
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Figure: Left: Ammann. Right: Penrose.



Periodic tilings: snub square and ladybug
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Periodic dipole systems: snub square tiling
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Figure: Left: Somewhat optimized dipoles on the vertices of (a variant of) snub square tiling – a
union of several lattices. Right: Stream plot of the same configuration.



Periodic dipole systems: ladybug tiling
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Figure: Left: Somewhat optimized dipoles on the vertices of another snub square tiling. Right:
Stream plot of the same configuration.



Triangular Laves tiling
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Figure: Dipoles on the vertices of Laves tiling with their stream flow.



Experiments with dipoles on spheres

Figure: Left to right: {2, 4, 8, 10} × 102 dipoles. Locations of the dipoles are produced by
minimizing Riesz energy with s = 3.



Experiments with dipoles on tori

Figure: Left to right: {1, 2, 4} × 102 dipoles. Locations of the dipoles are produced by
minimizing Riesz energy with s = 3.



Conclusions and open questions

▶ Short-range interactions without scale invariance can be subtle, with the limit
depending on scaling – see the Lennard-Jones potential(σ

r

)12

−
(σ
r

)6

.

▶ Tools for exploring particle asymptotics on non-smooth sets: (i) short-range
interactions, (ii) renewal theory.

▶ Thermodynamic limits on fractals are open for most short-range and
long-range interactions alike.

▶ Dynamics of short-range gradient flow: conjectured to converge to the

porous medium equation ∂tρ = Ce∆ρ
1+σ.

▶ Geometry of non-isotropic minimizers?



Thank you!


