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introduction

§ OVERVIEW OF THE TOPIC:
§ This presentation is about spatio-spectral limiting operators (SSLO), a

concept at the intersection of harmonic analysis and signal processing.

§ These operators were previously studied extensively in one dimension, with
a particular emphasis on the asymptotic distribution of their eigenvalues.

§ IMPORTANCE IN MATHEMATICS:
§ SSLOs are used to analyze and manipulate signals, particularly in the

context of their spatial and frequency components.

§ Their primary role of these operators is to limit or ‘filter’ a signal in both
spatial and spectral domains.
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introduction

§ RELEVANCE IN APPLICATIONS:
§ The study of these operators and their eigenvalue distributions is significant

in mathematical spectral analysis, particularly in understanding the
concentration of functions in space and frequency domains.

§ It holds significance in practical applications such as signal processing and
scientific imaging, including MRI (2D imaging), cryoelectron microscopy
(3D imaging), and geodesy.

§ OBJECTIVES OF THIS PRESENTATION:
§ The main objectives include:

- Introduction to SSLO operators

- Spectral properties of the operators

- Results on non-asymptotic bounds on the distribution of eigenvalues of
the operators
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BACKGROUND
definitions and theoretical background

SSLO: Spatio-Spectral Limiting Operator

Let Q Ă Rd with positive and finite Lebesgue measures

Let S Ă Rd with positive and finite Lebesgue measures.

§ Defn. “space cut-off” operator PQ : L2pRd q Ñ L2pQq

PQpψq “ χQ ¨ ψ

§ Defn. “frequency cut-off” operator BS : L2pRd q Ñ BpSq

BS pψq “ ψ ˚ xχS
Notation: BpSq or PWS is the space of functions with Fourier support in S.

§ Defn. SSLO

TQ,S :“ BSPQBS : BpSq Ñ BpSq

§ By the spectral theory, the eigenvalues are monotonic in r0, 1s, and decrease to
zero:

1 ą λ1pS,Qq ě λ2pS,Qq ě ¨ ¨ ¨ ě λk pS,Qq ě ¨ ¨ ¨ ą 0
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BACKGROUND
definitions and theoretical background

SSLO: Spatio-Spectral Limiting Operator

§ The eigenfunctions tψk u of SSLOs have frequency support in S.

§ tψk u is an orthonormal basis for BpSq.

Example. Let Q “ r0, 1s and S “ r´W ,W s. The operator T is known as
time-frequency limiting operators.

§ The eigenfunctions tψk u are prolate spheroidal wave functions (PSWFs).

§ These eigenfunctions are defined recursively through Zernike’s polynomials.

Eigenfunctions Prolates
Roy R. Lederman, 2017

Figure: Eigenvalues λk
Z. Zhu, S. Karnik, M. A. Davenport, J.
Romberg and M. B. Wakin, IEEE, 2018
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Slepian 1964 - generalized prolate spheroidal functions (GPSFs) - Both the space and
frequency domains are balls

P. Greengard, V. Rokhlin, K. Serkh 2018 - computation of approximation of GPSFs,
interpolation and numerical computations ...
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Background

Where do these operators originate, and what makes them significant?

These SSLO operators BSPQBS were explored in dimension d “ 1 in a series of Bell
Lab papers by H. Landau- H. Pollak -D. Slepian, H. Widom and I. Daubechies
between 1960-1980.

The authors studied this operators to find a friendly solution to a practical paradox:

“An entire function cannot vanish on any interval without vanishing identically. Thus
a function cannot be simultaneously band-limited and time-limited. And yet, in the
practical design of communications systems, that assumption, and some of its
theoretical consequences such as sampling, are exploited in an essential way without
generating contradictions. Thus the problem of reconciling the time-limited property
and frequency-limited property presents an interesting challenge” H. Landau

Addressing this question is equivalent to addressing the following problem:
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Problem: How can we construct bandlimited functions with maximum ‘energy’ within
a specified compact region?

Construct f : suppf̂ Ă S with max }f }L2pQq

Optimization problem
Maximize: }PQ f }2

Subject to: BS pf q “ f
}f } “ 1

We can express the objective function as follows:

}PQ f }2
L2pRd q

“ xPQ f , f y “ xPQBS f ,BS f y “ xBSPQBS f , f y

New look

Maximize: xBSPQBS f , f y

Subject to: BS pf q “ f
}f } “ 1

By the variational characterization of eigenvalues, the maximizers of the optimization
problem correspond to the eigenfunctions of the SSLO with maximum eigenvalues.

Summary: To solve the paradox, one approach is to explore the SSLO operators, and
a method to explore these operators is to understand the distribution of their
eigenvalues.

8/34



Problem: How can we construct bandlimited functions with maximum ‘energy’ within
a specified compact region?

Construct f : suppf̂ Ă S with max }f }L2pQq

Optimization problem
Maximize: }PQ f }2

Subject to: BS pf q “ f
}f } “ 1

We can express the objective function as follows:

}PQ f }2
L2pRd q

“ xPQ f , f y “ xPQBS f ,BS f y “ xBSPQBS f , f y

New look

Maximize: xBSPQBS f , f y

Subject to: BS pf q “ f
}f } “ 1

By the variational characterization of eigenvalues, the maximizers of the optimization
problem correspond to the eigenfunctions of the SSLO with maximum eigenvalues.

Summary: To solve the paradox, one approach is to explore the SSLO operators, and
a method to explore these operators is to understand the distribution of their
eigenvalues.

8/34



Problem: How can we construct bandlimited functions with maximum ‘energy’ within
a specified compact region?

Construct f : suppf̂ Ă S with max }f }L2pQq

Optimization problem
Maximize: }PQ f }2

Subject to: BS pf q “ f
}f } “ 1

We can express the objective function as follows:

}PQ f }2
L2pRd q

“ xPQ f , f y “ xPQBS f ,BS f y “ xBSPQBS f , f y

New look

Maximize: xBSPQBS f , f y

Subject to: BS pf q “ f
}f } “ 1

By the variational characterization of eigenvalues, the maximizers of the optimization
problem correspond to the eigenfunctions of the SSLO with maximum eigenvalues.

Summary: To solve the paradox, one approach is to explore the SSLO operators, and
a method to explore these operators is to understand the distribution of their
eigenvalues.

8/34



Problem: How can we construct bandlimited functions with maximum ‘energy’ within
a specified compact region?

Construct f : suppf̂ Ă S with max }f }L2pQq

Optimization problem
Maximize: }PQ f }2

Subject to: BS pf q “ f
}f } “ 1

We can express the objective function as follows:

}PQ f }2
L2pRd q

“ xPQ f , f y “ xPQBS f ,BS f y “ xBSPQBS f , f y

New look

Maximize: xBSPQBS f , f y

Subject to: BS pf q “ f
}f } “ 1

By the variational characterization of eigenvalues, the maximizers of the optimization
problem correspond to the eigenfunctions of the SSLO with maximum eigenvalues.

Summary: To solve the paradox, one approach is to explore the SSLO operators, and
a method to explore these operators is to understand the distribution of their
eigenvalues.

8/34



Problem: How can we construct bandlimited functions with maximum ‘energy’ within
a specified compact region?

Construct f : suppf̂ Ă S with max }f }L2pQq

Optimization problem
Maximize: }PQ f }2

Subject to: BS pf q “ f
}f } “ 1

We can express the objective function as follows:

}PQ f }2
L2pRd q

“ xPQ f , f y “ xPQBS f ,BS f y “ xBSPQBS f , f y

New look

Maximize: xBSPQBS f , f y

Subject to: BS pf q “ f
}f } “ 1

By the variational characterization of eigenvalues, the maximizers of the optimization
problem correspond to the eigenfunctions of the SSLO with maximum eigenvalues.

Summary: To solve the paradox, one approach is to explore the SSLO operators, and
a method to explore these operators is to understand the distribution of their
eigenvalues.

8/34



Problem: How can we construct bandlimited functions with maximum ‘energy’ within
a specified compact region?

Construct f : suppf̂ Ă S with max }f }L2pQq

Optimization problem
Maximize: }PQ f }2

Subject to: BS pf q “ f
}f } “ 1

We can express the objective function as follows:

}PQ f }2
L2pRd q

“ xPQ f , f y “ xPQBS f ,BS f y “ xBSPQBS f , f y

New look

Maximize: xBSPQBS f , f y

Subject to: BS pf q “ f
}f } “ 1

By the variational characterization of eigenvalues, the maximizers of the optimization
problem correspond to the eigenfunctions of the SSLO with maximum eigenvalues.

Summary: To solve the paradox, one approach is to explore the SSLO operators, and
a method to explore these operators is to understand the distribution of their
eigenvalues.

8/34



Paradox Optimization
Problem

SSLO
Operators

Eigenvalue
Distributions
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Recall:

Z. Zhu, S. Karnik, M. A. Davenport, J. Romberg and M. B. Wakin, IEEE Signal Processing Letters, vol. 25, no. 1,
pp. 95-99, Jan. 2018.

1. Counting of eigenvalues near ”1”
2. Counting of eigenvalues in “plunge region” (descends abruptly)
3. Estimating the rate of decay at tail

10/34



Background
eigenvalue behaviours - previous work

(Landau ’75) Let Q, S Ă Rd be measurable sets.

Let rS be an isotropic dilation of S,
r ą 0.

Fixed

Q

Growing

rS

Landau 1 considers BrSPQBrS and describes its distributions as follows:

Theorem
Let tλk pQ, rSqukě0 denote the sequence of eigenvalues of the operator BrSPQBrS .

With ϵ P p0, 1q, let

Nϵprq “ tk : λk pQ, rSq ě ϵu

Then

lim
rÑ8

Nϵprq

rd “ p2πq´d |Q| ¨ |S| (1)

1H.J. Landau. “On Szegő’s eigenvalue distribution theorem and non-Hermitian kernels”. In:
Journal d’Analyse Mathématique 28.1 (1975), pp. 335–357.
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Background
previous work, motivation, ...

A key observation is that Landau’s result

lim
rÑ8

r´d Nϵprq “ p2πq´d |Q| ¨ |S|

lacks a quantitative rate of convergence as r Ñ 8.

For fast computing tasks in numerical analysis and related fields, it is crucial to
determine both the quantitative rate of convergence and non-asymptotic bounds on
the number of SSLO eigenvalues, particularly those not close to 0 or 1.

Tasks such as: interpolations, integration, differentiation and sampling of bandlimited
functions. 2

2P. Greengard, K. Serkh, On generalized prolate spheroidal functions,
https://arxiv.org/pdf/1811.02733.pdf,2018.
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For fast computing tasks in numerical analysis and related fields, it is crucial to
determine both the quantitative rate of convergence and non-asymptotic bounds on
the number of SSLO eigenvalues, particularly those not close to 0 or 1.

Tasks such as: interpolations, integration, differentiation and sampling of bandlimited
functions. 2
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Background
Here, we pose the following problem:

Quantaitive estimation: Estimate the distribution of the eigenvalues of the
operator TQ,S for given measurable subsets Q and S in Rd .

More specifically, for ϵ P p0, 1{2q, one is interested
1. to find bounds for

Nϵ :“ 7tk : λk pQ,Sq ě ϵu

2. to find bounds for

Mϵ :“ 7tk : λk pQ, Sq P pϵ, 1 ´ ϵqu

3. Rate of decay λk pQ, Sq Ñ 0 ?

Practical Importance: Notice that any function with supppf̂ q Ă S with time
concentration in Q can be represented by

f “
ÿ

λ

cλψλ

For numerical computations (in tasks such as interpolations, integration,
differentiation and sampling of bandlimited functions) and efficiency of algorithms,
understanding the clustering behaviour of eigenvalues is crucial.

Recall: dim xψλ : α ď λ ď βy “ 7tλ : α ď λ ď βu.
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main results: eigenvalue distribution in higher dimensions

The space and frequency domains have a strong influence on the investigation of the
eigenvalue distribution of the SSLO operators, as observed by Landau.

Therefore, it is crucial to address this issue by considering specific cases of domains.

For this purpose, we looked at the following scenarios:

§ cube-cube: Q “ r0, 1sd and S “ r´W ,W sd .

§ cube-convex: Q “ r0, 1sd and S Ă Rd is a symmetric and compact convex set.

§ Q and S with maximal Ahlfors regular boundary

To clarify, to the best of our knowledge, the quantitative version of Landau’s result in
higher dimensions had not been explored until we began our work in 2023.
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Outline for the rest of the presentation:

Part I § Definition of domains with maximally Ahlfors regular boundary

§ Quantitative results for the set of eigenvalues of BSPQBS , when both
domains Q and S are ”regular”.

Part II § Discuss the techniques employed
§ Quantitative results for when Q and S are cubes.

Part III § Quantitative results for the set of eigenvalues for when Q is a cube and S is
convex.

§ Whitney decomposition of domain
§ construction of wave packets
§ Using the wave packets for counting
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Part I § Definition of domains with maximally Ahlfors regular boundary

§ Quantitative upper bound for the set of eigenvalues of BSPQBS near 1,
when both domains Q and S are maximally A. regular domains.

16/34



Defn: We say that a (bounded) set Ω Ă Rd (d ě 2) has maximally Ahlfors regular
boundary with regularity constant κBΩ ą 0 provided that @ x P BΩ

Hd´1pBΩ X Bpx , rqq ě κBΩrd´1, 0 ă r ď Hd´1pBΩq1{pd´1q.

Theorem (k.hughes, a.israel, a.m)

Let F Ă Rd has max. Ahlfors regular boundaries with regularity constants κBF .
Let S Ă Rd has max. Ahlfors regular boundaries with regularity constants κBS .

Consider the SSLO BSPF BS .

Then for any ϵ P p0, 1{2q

#tk : λk pF , Sq ą ϵu “ p2πq´d |F | ¨ |S| ` ErrpF ,S, ϵq,

when Hd´1pBF q ¨ Hd´1pBSq is large enough.

Here,

|ErrpF , S, ϵq| ď Cd
Hd´1pBF q

κBF

Hd´1pBSq

κBS

"

sharp up to logarithmic factors
*

λk pF , Sq are eigenvalues of the BSPF BS .

17/34



Defn: We say that a (bounded) set Ω Ă Rd (d ě 2) has maximally Ahlfors regular
boundary with regularity constant κBΩ ą 0 provided that @ x P BΩ

Hd´1pBΩ X Bpx , rqq ě κBΩrd´1, 0 ă r ď Hd´1pBΩq1{pd´1q.

Theorem (k.hughes, a.israel, a.m)

Let F Ă Rd has max. Ahlfors regular boundaries with regularity constants κBF .

Let S Ă Rd has max. Ahlfors regular boundaries with regularity constants κBS .

Consider the SSLO BSPF BS .

Then for any ϵ P p0, 1{2q

#tk : λk pF , Sq ą ϵu “ p2πq´d |F | ¨ |S| ` ErrpF ,S, ϵq,

when Hd´1pBF q ¨ Hd´1pBSq is large enough.

Here,

|ErrpF , S, ϵq| ď Cd
Hd´1pBF q

κBF

Hd´1pBSq

κBS

"

sharp up to logarithmic factors
*

λk pF , Sq are eigenvalues of the BSPF BS .

17/34



Defn: We say that a (bounded) set Ω Ă Rd (d ě 2) has maximally Ahlfors regular
boundary with regularity constant κBΩ ą 0 provided that @ x P BΩ

Hd´1pBΩ X Bpx , rqq ě κBΩrd´1, 0 ă r ď Hd´1pBΩq1{pd´1q.

Theorem (k.hughes, a.israel, a.m)

Let F Ă Rd has max. Ahlfors regular boundaries with regularity constants κBF .
Let S Ă Rd has max. Ahlfors regular boundaries with regularity constants κBS .

Consider the SSLO BSPF BS .

Then for any ϵ P p0, 1{2q

#tk : λk pF , Sq ą ϵu “ p2πq´d |F | ¨ |S| ` ErrpF ,S, ϵq,

when Hd´1pBF q ¨ Hd´1pBSq is large enough.

Here,

|ErrpF , S, ϵq| ď Cd
Hd´1pBF q

κBF

Hd´1pBSq

κBS

"

sharp up to logarithmic factors
*

λk pF , Sq are eigenvalues of the BSPF BS .

17/34



Defn: We say that a (bounded) set Ω Ă Rd (d ě 2) has maximally Ahlfors regular
boundary with regularity constant κBΩ ą 0 provided that @ x P BΩ

Hd´1pBΩ X Bpx , rqq ě κBΩrd´1, 0 ă r ď Hd´1pBΩq1{pd´1q.

Theorem (k.hughes, a.israel, a.m)

Let F Ă Rd has max. Ahlfors regular boundaries with regularity constants κBF .
Let S Ă Rd has max. Ahlfors regular boundaries with regularity constants κBS .

Consider the SSLO BSPF BS .

Then for any ϵ P p0, 1{2q

#tk : λk pF , Sq ą ϵu “ p2πq´d |F | ¨ |S| ` ErrpF ,S, ϵq,

when Hd´1pBF q ¨ Hd´1pBSq is large enough.

Here,

|ErrpF , S, ϵq| ď Cd
Hd´1pBF q

κBF

Hd´1pBSq

κBS

"

sharp up to logarithmic factors
*

λk pF , Sq are eigenvalues of the BSPF BS .

17/34



Defn: We say that a (bounded) set Ω Ă Rd (d ě 2) has maximally Ahlfors regular
boundary with regularity constant κBΩ ą 0 provided that @ x P BΩ

Hd´1pBΩ X Bpx , rqq ě κBΩrd´1, 0 ă r ď Hd´1pBΩq1{pd´1q.

Theorem (k.hughes, a.israel, a.m)

Let F Ă Rd has max. Ahlfors regular boundaries with regularity constants κBF .
Let S Ă Rd has max. Ahlfors regular boundaries with regularity constants κBS .

Consider the SSLO BSPF BS .

Then for any ϵ P p0, 1{2q

#tk : λk pF , Sq ą ϵu “ p2πq´d |F | ¨ |S| ` ErrpF ,S, ϵq,

when Hd´1pBF q ¨ Hd´1pBSq is large enough.

Here,

|ErrpF , S, ϵq| ď Cd
Hd´1pBF q

κBF

Hd´1pBSq

κBS

"

sharp up to logarithmic factors
*

λk pF , Sq are eigenvalues of the BSPF BS .

17/34



Defn: We say that a (bounded) set Ω Ă Rd (d ě 2) has maximally Ahlfors regular
boundary with regularity constant κBΩ ą 0 provided that @ x P BΩ

Hd´1pBΩ X Bpx , rqq ě κBΩrd´1, 0 ă r ď Hd´1pBΩq1{pd´1q.

Theorem (k.hughes, a.israel, a.m)

Let F Ă Rd has max. Ahlfors regular boundaries with regularity constants κBF .
Let S Ă Rd has max. Ahlfors regular boundaries with regularity constants κBS .

Consider the SSLO BSPF BS .

Then for any ϵ P p0, 1{2q

#tk : λk pF , Sq ą ϵu “ p2πq´d |F | ¨ |S| ` ErrpF ,S, ϵq,

when Hd´1pBF q ¨ Hd´1pBSq is large enough.

Here,

|ErrpF , S, ϵq| ď Cd
Hd´1pBF q

κBF

Hd´1pBSq

κBS

"

sharp up to logarithmic factors
*

λk pF , Sq are eigenvalues of the BSPF BS .

17/34



Defn: We say that a (bounded) set Ω Ă Rd (d ě 2) has maximally Ahlfors regular
boundary with regularity constant κBΩ ą 0 provided that @ x P BΩ

Hd´1pBΩ X Bpx , rqq ě κBΩrd´1, 0 ă r ď Hd´1pBΩq1{pd´1q.

Theorem (k.hughes, a.israel, a.m)

Let F Ă Rd has max. Ahlfors regular boundaries with regularity constants κBF .
Let S Ă Rd has max. Ahlfors regular boundaries with regularity constants κBS .

Consider the SSLO BSPF BS .

Then for any ϵ P p0, 1{2q

#tk : λk pF , Sq ą ϵu “ p2πq´d |F | ¨ |S| ` ErrpF ,S, ϵq,

when Hd´1pBF q ¨ Hd´1pBSq is large enough.

Here,

|ErrpF , S, ϵq| ď Cd
Hd´1pBF q

κBF

Hd´1pBSq

κBS

"

sharp up to logarithmic factors
*

λk pF , Sq are eigenvalues of the BSPF BS .

17/34



|ErrpF ,S, ϵq| Àd
Hd´1pBF q

κBF

Hd´1pBSq

κBS

"

log pHd´1pBF qHd´1pBSqq logpmintϵ, 1 ´ ϵu´1qd

` log pHd´1pBF qHd´1pBSqq
3 logpmintϵ, 1 ´ ϵu´1q

*

Our Result:

#tk : λk pF ,Sq ą ϵu “ p2πq´d |F | ¨ |S| ` ErrpF , S, ϵq,

Landau’s result:

limrÑ8 r´d tk : λk pQ, rSq ě ϵu “ p2πq´d |Q| ¨ |S|
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Part II Discuss the techniques employed

§ Quantitative upper bound for cube-cube case
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main results - eigenvalue distribution in higher dimensions
cub-cube case

Let Q “ r0, 1sd , and S “ r´W ,W sd for some W ě 2π.

Theorem (cube-cube case, a. israel, a.m)

Let TQ,S “ BSPQBS be THE SSLO.

Let tλk u be the eigenvalues of TQ,S . For ϵ P p0, 1{2q, we have

ˇ

ˇ

ˇ
# tk : λk ą ϵu ´ pW {πqd

ˇ

ˇ

ˇ
Àd Bd pϵ,W q,

# tk : λk P pϵ, 1 ´ ϵqu Àd Bd pϵ,W q.

(2)

where
Bd pϵ,W q ď W d´1 logpW q logp1{ϵq ` plogpW q logp1{ϵqqd .

Remark: Notice µd pSqµd pQq{p2πqd “ pW {πqd .

Proof outline: d-folding the results in 1-dimension.
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Proof techniques for cube-cube case: Reduction to the 1-dimensional case

§ Let I “ r0, 1s and and J “ r´W ,W s.

§ Let TI,J denote the SSLO operator associated to I “ r0, 1s and J “ r´W ,W s.

§ Then the SSLO operator associated to Q “ Id and S “ Jd is

TQ,S “ bd
k“1TI,J .

§ The set of eigenvalues of TQ,S is given by the product of the eigenvalues of each
one-dimensional operators:

tλbTI,J u “

# d
ź

k“1
λTI,J

+

.

§ In d “ 1, we have
|#tk : λk ą ϵu ´ W {π| À logpW q logp1{pϵp1 ´ ϵqqq.

§ Apply the results in d “ 1; we obtain the first inequality in our theorem:

ˇ

ˇ

ˇ
MϵpbT q ´ pW {πqd

ˇ

ˇ

ˇ
Àd W d´1 logpW q logp1{ϵq ` plogpW q logp1{ϵqqd

QED.
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k“1
λTI,J

+

.

§ In d “ 1, we have
|#tk : λk ą ϵu ´ W {π| À logpW q logp1{pϵp1 ´ ϵqqq.

§ Apply the results in d “ 1; we obtain the first inequality in our theorem:

ˇ

ˇ

ˇ
MϵpbT q ´ pW {πqd

ˇ

ˇ

ˇ
Àd W d´1 logpW q logp1{ϵq ` plogpW q logp1{ϵqqd

QED.
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main results - eigenvalue distribution in higher dimensions
cub-cube case

Eigenvalues DONOT change under affine transformation (rescaling+translation):

If we change pQ, Sq into pδQ, δ´1S `αq, the eigenvalue set of SSLO does not change.

Corollary
Let Q1 and Q2 be cubes in Rd with sidelengths δi that are sufficiently large. Consider
the operator

TQ1,Q2 “ BQ2 PQ1 BQ2 .

Then for every ϵ P p0, 1{2q,

MϵpTQ1,Q2 q À logpδ1δ2qd logpϵ´1qd ` pδ1δ2qd´1 logpδ1δ2q logpϵ´1q.

Technique of proof: By affine transformation, we reduce the case into S “ r´W ,W sd

and Q “ r0, 1sd for some large W .
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Corollary (exponential decay property)

Let Q and S be compact sets and let ∆ “ diam8pQq ¨ diam8pSq. Then

λk pQ, Sq À exp
´

´cp∆qk1{d
¯

, for k ě 1.

Sketch of proof:
§ We dilate and translation pQ, Sq ÞÑ pα´1Q ` x , αS ` ξq, so that Q Ă r0, 1sd and

S Ă r´∆,∆sd .

§ We use the following observations due to Landau ’67: For all k ě 0,

λk pQ, Sq “ λk pS,Qq, (3)
λk pQ, S1q ď λk pQ, S2q, if S1 Ă S2, (4)
λk pQ1, Sq ď λk pQ2, Sq, if Q1 Ă Q2. (5)

§ Thus
λk pQ,Sq ď λk pr0, 1sd , r´∆,∆sd q.

QED.
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Part III§ Quantitative upper bound of eigenvalues for cube-convex symmetry domains.

§ Whitney decomposition of the frequency domain

§ construction of wave packets

§ Using the wave packets for counting

24/34



main results - eigenvalue distribution in higher dimensions

Defn: A convex set S Ă Rd is coordinate-wise symmetric if

@px1, ¨ ¨ ¨ , xd q P S ùñ pσ1x1, ¨ ¨ ¨ , σd xd q P S, for all σ “ pσ1, ¨ ¨ ¨ , σd q P t˘1ud .

Assume that S Ă Bp0, 1q, r ą 0 and Sprq :“ rS is the r -isotropic dilation.
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main results - eigenvalue distribution in higher dimensions
cub-convex case

Q “ r0, 1sd and S Ă Rd is a symmetric and compact convex set.

Theorem (cub-convex case - a. israel, a.m, acha ’24)
Let Q :“ r0, 1sd and let S Ă Rd be a compact convex and symmetric set.

Given ϵ P p0, 1{2q, let

Nϵprq :“ 7tk : λk pQ, rSq ą ϵu “near 1”

Then

|Nϵprq ´ p2πq´dµd pSprqq| ď Ed pr , ϵq. (6)

where
Ed pr , ϵq Àd rd´1 logpr{ϵq3 ` logpr{ϵq3d

Consequently, if

Mϵprq :“ 7tk : ϵ ă λk pQ, rSq ă 1 ´ ϵu “Plunge region”

then
Mϵprq ď Ed pr , ϵq.

Landau’s result is an IMMEDIATECONSEQUENCE of (6) when Q “ r0, 1sd and S is
convex and symmetric: limrÑ8 r´d |Nϵprq ´ p2πq´dµd prSq| “ 0
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Sketch of Proof:

(1) We construct local-sine orthonormal basis, ”wave packets”, for L2pQq:

We let D denote a Whitney-type
decomposition for Q “ r0, 1sd , which
includes cubes L P D.

For any L P D, we construct “wave

packets” tψL,ℓuℓ Ă L2pLq such that:

§ Each ψL,ℓ is a C8

§
Ť

ItψL,ℓu is an orthonormal basis for
L2pQq

§ Each ψL,ℓ has near-exponential frequency
decay

§ L2-energy of yψL,ℓ is concentrated at two
points

(2) Next, we partition I as
I “ Ilow Y Ires Y Ihi

with Ires and Ilow finite sets, such that, for some ϵ P p0, 1{2q,
ÿ

kPIhi

}T ϕk }2 `
ÿ

kPIlow

}pI ´ T qϕk }2 ď ϵ2.

Classical construction of the local sine basis: R.R. Coifman and Y. Meyer, Remarques sur l’analyse de Fourier à
fenêtre, In: C. R. Acad. Sci. Paris 312 (1991), pp. 259–261
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We apply Functional Analysis Lemma to complete the proof.

Lemma (functional analysis lemma - israel, m.)
Let H be a real Hilbert space.

Let T : H Ñ H be a positive semidefinite compact operator, with eigenvalues λj pT q,
j ě 1, be the eigenvalues of T , counted with multiplicity, and sorted in non-increasing
order.

Let tϕk ukPI be an orthonormal basis for H, with index set I. Let

I “ Ilow Y Ires Y Ihi

be a partition of I, with Ires and Ilow finite sets, such that, for some ϵ P p0, 1{2q,

ÿ

kPIhi

}Tϕk }2 `
ÿ

kPIlow

}pI ´ T qϕk }2 ď ϵ2. (7)

Then

|MϵpT q ´ #pIlow q| ď #pIres q, and NϵpT q ď #pIres q

where, MϵpT q :“ #tj : λj pT q ą ϵu and NϵpT q :“ #tj : λj pT q P pϵ, 1 ´ ϵqu.

(If (7), we say ϕk ”mimic” the eigenfunctions.)

28/34



We apply Functional Analysis Lemma to complete the proof.

Lemma (functional analysis lemma - israel, m.)
Let H be a real Hilbert space.

Let T : H Ñ H be a positive semidefinite compact operator, with eigenvalues λj pT q,
j ě 1, be the eigenvalues of T , counted with multiplicity, and sorted in non-increasing
order.

Let tϕk ukPI be an orthonormal basis for H, with index set I. Let

I “ Ilow Y Ires Y Ihi

be a partition of I, with Ires and Ilow finite sets, such that, for some ϵ P p0, 1{2q,

ÿ

kPIhi

}Tϕk }2 `
ÿ

kPIlow

}pI ´ T qϕk }2 ď ϵ2. (7)

Then

|MϵpT q ´ #pIlow q| ď #pIres q, and NϵpT q ď #pIres q

where, MϵpT q :“ #tj : λj pT q ą ϵu and NϵpT q :“ #tj : λj pT q P pϵ, 1 ´ ϵqu.

(If (7), we say ϕk ”mimic” the eigenfunctions.)

28/34



We apply Functional Analysis Lemma to complete the proof.

Lemma (functional analysis lemma - israel, m.)
Let H be a real Hilbert space.

Let T : H Ñ H be a positive semidefinite compact operator, with eigenvalues λj pT q,
j ě 1, be the eigenvalues of T , counted with multiplicity, and sorted in non-increasing
order.

Let tϕk ukPI be an orthonormal basis for H, with index set I.

Let

I “ Ilow Y Ires Y Ihi

be a partition of I, with Ires and Ilow finite sets, such that, for some ϵ P p0, 1{2q,

ÿ

kPIhi

}Tϕk }2 `
ÿ

kPIlow

}pI ´ T qϕk }2 ď ϵ2. (7)

Then

|MϵpT q ´ #pIlow q| ď #pIres q, and NϵpT q ď #pIres q

where, MϵpT q :“ #tj : λj pT q ą ϵu and NϵpT q :“ #tj : λj pT q P pϵ, 1 ´ ϵqu.

(If (7), we say ϕk ”mimic” the eigenfunctions.)

28/34



We apply Functional Analysis Lemma to complete the proof.

Lemma (functional analysis lemma - israel, m.)
Let H be a real Hilbert space.

Let T : H Ñ H be a positive semidefinite compact operator, with eigenvalues λj pT q,
j ě 1, be the eigenvalues of T , counted with multiplicity, and sorted in non-increasing
order.

Let tϕk ukPI be an orthonormal basis for H, with index set I. Let

I “ Ilow Y Ires Y Ihi

be a partition of I, with Ires and Ilow finite sets, such that, for some ϵ P p0, 1{2q,

ÿ

kPIhi

}Tϕk }2 `
ÿ

kPIlow

}pI ´ T qϕk }2 ď ϵ2. (7)

Then

|MϵpT q ´ #pIlow q| ď #pIres q, and NϵpT q ď #pIres q

where, MϵpT q :“ #tj : λj pT q ą ϵu and NϵpT q :“ #tj : λj pT q P pϵ, 1 ´ ϵqu.

(If (7), we say ϕk ”mimic” the eigenfunctions.)

28/34



We apply Functional Analysis Lemma to complete the proof.

Lemma (functional analysis lemma - israel, m.)
Let H be a real Hilbert space.

Let T : H Ñ H be a positive semidefinite compact operator, with eigenvalues λj pT q,
j ě 1, be the eigenvalues of T , counted with multiplicity, and sorted in non-increasing
order.

Let tϕk ukPI be an orthonormal basis for H, with index set I. Let

I “ Ilow Y Ires Y Ihi

be a partition of I, with Ires and Ilow finite sets, such that, for some ϵ P p0, 1{2q,

ÿ

kPIhi

}Tϕk }2 `
ÿ

kPIlow

}pI ´ T qϕk }2 ď ϵ2. (7)

Then

|MϵpT q ´ #pIlow q| ď #pIres q, and NϵpT q ď #pIres q

where, MϵpT q :“ #tj : λj pT q ą ϵu and NϵpT q :“ #tj : λj pT q P pϵ, 1 ´ ϵqu.

(If (7), we say ϕk ”mimic” the eigenfunctions.)

28/34



Now, an application of Functional Analysis Lemma to the SSLO’s and the wave
packets completes the proof of theorem.
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Application aspect

Applications of our wave packets for analysis of a band-limited function f P L2pRd q:

1. Quadratures Scheme for estimating integration. The process of estimating
ş

B fd using
quadrature rule involves finding a finite set of points tξi u in Bd and a finite set of
weights twi u, complex numbers such that the integral can be approximated by
ř

i wi f pξi q up to given machine precision ϵ:
ˇ

ˇ

ˇ

ˇ

ˇ

ż

B
f pξqdξ ´

ÿ

i
wi f pξi q

ˇ

ˇ

ˇ

ˇ

ˇ

ă ϵ. (8)

2. Interpolation. Using our wave packets tgi u , the main objective of the interpolation
problem is to determine the coefficients tai un

i“1 such that

f pxj q “ a1g1pxj q ` a2g2pxj q ` . . . ` angnpxj q (9)
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Some open questions:

1. How far is the top-eigenvalue of SSLO from 1? (sharp!)

2. Understand the distance between distinct eigenvalues.
Our conjecture is: |λk ´ λk`1| ą cλk

3. Identifying accumulation region of eigenvalues.

4. Take union of two disjoint intervals. How does the gap between parts of domains
effect the top eigenvalue?

5. Cut the domain into finite pieces and send the parts away to infinity. Check the
behaviour of eigenvalues.

6. Can we choose another decomposition depending on the shape of domain and get
sharper bounds?

Any input is welcome!

31/34



Some open questions:

1. How far is the top-eigenvalue of SSLO from 1? (sharp!)

2. Understand the distance between distinct eigenvalues.
Our conjecture is: |λk ´ λk`1| ą cλk

3. Identifying accumulation region of eigenvalues.

4. Take union of two disjoint intervals. How does the gap between parts of domains
effect the top eigenvalue?

5. Cut the domain into finite pieces and send the parts away to infinity. Check the
behaviour of eigenvalues.

6. Can we choose another decomposition depending on the shape of domain and get
sharper bounds?

Any input is welcome!

31/34



Some open questions:

1. How far is the top-eigenvalue of SSLO from 1? (sharp!)

2. Understand the distance between distinct eigenvalues.
Our conjecture is: |λk ´ λk`1| ą cλk

3. Identifying accumulation region of eigenvalues.

4. Take union of two disjoint intervals. How does the gap between parts of domains
effect the top eigenvalue?

5. Cut the domain into finite pieces and send the parts away to infinity. Check the
behaviour of eigenvalues.

6. Can we choose another decomposition depending on the shape of domain and get
sharper bounds?

Any input is welcome!

31/34



Some open questions:

1. How far is the top-eigenvalue of SSLO from 1? (sharp!)

2. Understand the distance between distinct eigenvalues.
Our conjecture is: |λk ´ λk`1| ą cλk

3. Identifying accumulation region of eigenvalues.

4. Take union of two disjoint intervals. How does the gap between parts of domains
effect the top eigenvalue?

5. Cut the domain into finite pieces and send the parts away to infinity. Check the
behaviour of eigenvalues.

6. Can we choose another decomposition depending on the shape of domain and get
sharper bounds?

Any input is welcome!

31/34



To summarize the key takeaways:

§ Defined the spatio-spectral limiting operators (SSLO) for given fixed space and
frequency domains, and highlighted some of the spectral properties of these operators.

§ Discussed the significant role of spatio-spectral limiting operators in various
applications.

§ Highlighted the results in eigenvalue distribution regions in higher dimensions for three
special cases of space and frequency domains:
CUBE-CUBE; CUBE - CONVEX and symmetric; maximally AHLFORS REGULAR
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Thank you for listening!
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