Geodesic Riesz Energy on Spheres and Projective Spaces

Ryan W. Matzke
Vanderbilt University

June 5, 2024

The research in this presentation is in collaboration with Austin Anderson,
Dmitriy Bilyk, Feng Dai, Maria Dostert, Peter Grabner, Joel Nathe, and Tetiana Stepaniuk, and is supported in part by the NSF Mathematical Sciences Postdoctoral Research Fellowship Grant 2202887.

Sum of Angles Between Lines

Fejes Tóth Sum of Acute Angles Problem '59

For $x, y \in \mathbb{S}^{d}$, let

$$
\begin{aligned}
& \phi(x, y)=\arccos (|\langle x, y\rangle|) \\
& \quad=\min \{\arccos (\langle x, y\rangle), \pi-\arccos (\langle x, y\rangle)\}
\end{aligned}
$$

Which N-point (multi)sets $\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{d}$ maximize the sum $\sum_{i, j=1}^{N} \phi\left(x_{i}, x_{j}\right)$?

Sum of Angles Between Lines

Fejes Tóth Sum of Acute Angles Problem '59

For $x, y \in \mathbb{S}^{d}$, let

$$
\begin{aligned}
& \phi(x, y)=\arccos (|\langle x, y\rangle|) \\
& \quad=\min \{\arccos (\langle x, y\rangle), \pi-\arccos (\langle x, y\rangle)\}
\end{aligned}
$$

Which N-point (multi)sets $\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{d}$ maximize the sum $\sum_{i, j=1}^{N} \phi\left(x_{i}, x_{j}\right)$?

- Fejes Tóth Conjecture: A periodically repeating orthonormal basis maximizes the sum, i.e. $x_{j}=e_{j \bmod (d+1)}$.

Sum of Angles Between Lines

Fejes Tóth Sum of Acute Angles Problem '59

For $x, y \in \mathbb{S}^{d}$, let

$$
\begin{aligned}
& \phi(x, y)=\arccos (|\langle x, y\rangle|) \\
& \quad=\min \{\arccos (\langle x, y\rangle), \pi-\arccos (\langle x, y\rangle)\}
\end{aligned}
$$

Which N-point (multi)sets $\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{d}$ maximize the sum $\sum_{i, j=1}^{N} \phi\left(x_{i}, x_{j}\right)$?

- Fejes Tóth Conjecture: A periodically repeating orthonormal basis maximizes the sum, i.e. $x_{j}=e_{j \bmod (d+1)}$.
- Conjecture is true on \mathbb{S}^{1} (Fodor, Vígh, Zarnócz '16) and true for \mathbb{S}^{2} for $N \leq 6$ (Fejes Tóth '59).

Sum of Angles Between Lines

Fejes Tóth Sum of Acute Angles Problem '59

For $x, y \in \mathbb{S}^{d}$, let
$\phi(x, y)=\arccos (|\langle x, y\rangle|)$

$$
=\min \{\arccos (\langle x, y\rangle), \pi-\arccos (\langle x, y\rangle)\}
$$

Which N-point (multi)sets $\left\{x_{1}, \ldots, x_{N}\right\} \subset \mathbb{S}^{d}$ maximize the sum $\sum_{i, j=1}^{N} \phi\left(x_{i}, x_{j}\right)$?

- Fejes Tóth Conjecture: A periodically repeating orthonormal basis maximizes the sum, i.e. $x_{j}=e_{j \bmod (d+1)}$.
- Conjecture is true on \mathbb{S}^{1} (Fodor, Vígh, Zarnócz '16) and true for \mathbb{S}^{2} for $N \leq 6$ (Fejes Tóth '59).
- Several partial results suggesting the conjecture is likely correct.

Discrete Energy

Let (Ω, ρ) be a (compact) metric space. Given a lower semi-continuous, symmetric (potential) function $K: \Omega \times \Omega \rightarrow(-\infty, \infty]$ the (discrete) energy of a configuration (multiset) $\omega_{N}=\left\{z_{1}, \ldots, z_{N}\right\} \subset \Omega$ is

$$
E_{K}\left(\omega_{N}\right)=\sum_{i \neq j} K\left(z_{i}, z_{j}\right)
$$

Discrete Energy

Let (Ω, ρ) be a (compact) metric space. Given a lower semi-continuous, symmetric (potential) function $K: \Omega \times \Omega \rightarrow(-\infty, \infty]$ the (discrete) energy of a configuration (multiset) $\omega_{N}=\left\{z_{1}, \ldots, z_{N}\right\} \subset \Omega$ is

$$
E_{K}\left(\omega_{N}\right)=\sum_{i \neq j} K\left(z_{i}, z_{j}\right)
$$

- Often interested in potentials that depend on ρ.

Discrete Energy

Let (Ω, ρ) be a (compact) metric space. Given a lower semi-continuous, symmetric (potential) function $K: \Omega \times \Omega \rightarrow(-\infty, \infty]$ the (discrete) energy of a configuration (multiset) $\omega_{N}=\left\{z_{1}, \ldots, z_{N}\right\} \subset \Omega$ is

$$
E_{K}\left(\omega_{N}\right)=\sum_{i \neq j} K\left(z_{i}, z_{j}\right)
$$

- Often interested in potentials that depend on ρ.
- For fixed N, what is the minimal (or maximal) energy? What configurations are optimal, i.e. equilibrium solutions?

Discrete Energy

Let (Ω, ρ) be a (compact) metric space. Given a lower semi-continuous, symmetric (potential) function $K: \Omega \times \Omega \rightarrow(-\infty, \infty]$ the (discrete) energy of a configuration (multiset) $\omega_{N}=\left\{z_{1}, \ldots, z_{N}\right\} \subset \Omega$ is

$$
E_{K}\left(\omega_{N}\right)=\sum_{i \neq j} K\left(z_{i}, z_{j}\right)
$$

- Often interested in potentials that depend on ρ.
- For fixed N, what is the minimal (or maximal) energy? What configurations are optimal, i.e. equilibrium solutions?
- What happens as $N \rightarrow \infty$? Are the points uniformly distributed? Well-separated? Do they cluster/concentrate?

Discrete Energy

Let (Ω, ρ) be a (compact) metric space. Given a lower semi-continuous, symmetric (potential) function $K: \Omega \times \Omega \rightarrow(-\infty, \infty]$ the (discrete) energy of a configuration (multiset) $\omega_{N}=\left\{z_{1}, \ldots, z_{N}\right\} \subset \Omega$ is

$$
E_{K}\left(\omega_{N}\right)=\sum_{i \neq j} K\left(z_{i}, z_{j}\right)
$$

- Often interested in potentials that depend on ρ.
- For fixed N, what is the minimal (or maximal) energy? What configurations are optimal, i.e. equilibrium solutions?
- What happens as $N \rightarrow \infty$? Are the points uniformly distributed? Well-separated? Do they cluster/concentrate?
- Also interesting: Dynamics, systems at nonzero temperatures, systems with external fields.

Frame Energy

A set of points $\omega_{N}=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d}$ is a tight frame iff for any $x \in \mathbb{R}^{d+1}$

$$
\sum_{k=1}^{N}\left|\left\langle x, z_{k}\right\rangle\right|^{2}=\frac{N}{d+1}\|x\|^{2}
$$

or, equivalently,

$$
x=\frac{d+1}{N} \sum_{k=1}^{N}\left\langle x, z_{k}\right\rangle z_{k} .
$$

Theorem (Benedetto, Fickus '03)

A set $\omega_{N}=\left\{z_{1}, \ldots, z_{N}\right\} \subset \mathbb{S}^{d}, N \geq d+1$, is a tight frame in \mathbb{R}^{d+1} if and only if ω_{N} is a local/global minimizer of the frame energy:

$$
E_{\text {Frame }}\left(\omega_{N}\right)=\frac{1}{N^{2}} \sum_{i, j=1}^{N}\left|\left\langle z_{i}, z_{j}\right\rangle\right|^{2}
$$

Riesz s-energies on the Sphere \mathbb{S}^{d}

Riesz s-kernels

For $s \in \mathbb{R}$, we define the Riesz kernel as

$$
R_{s}(x, y)= \begin{cases}\frac{1}{s}\|x-y\|^{-s} & s \neq 0 \\ -\log (\|x-y\|) & s=0\end{cases}
$$

- $s=-1$ (sum of distances): Minimizers also minimize quadratic spherical cap discrepancy (Stolarsky '73) and worst-case error for a numeric integration in a certain Sobolev space (Brauchart, Dick '13).

Riesz s-energies on the Sphere \mathbb{S}^{d}

Riesz s-kernels

For $s \in \mathbb{R}$, we define the Riesz kernel as

$$
R_{s}(x, y)= \begin{cases}\frac{1}{s}\|x-y\|^{-s} & s \neq 0 \\ -\log (\|x-y\|) & s=0\end{cases}
$$

- $s=-1$ (sum of distances): Minimizers also minimize quadratic spherical cap discrepancy (Stolarsky '73) and worst-case error for a numeric integration in a certain Sobolev space (Brauchart, Dick '13).
- $s=0$: Minimization results in Fekete points (used in approximation theory).

Riesz s-energies on the Sphere \mathbb{S}^{d}

Riesz s-kernels

For $s \in \mathbb{R}$, we define the Riesz kernel as

$$
R_{s}(x, y)= \begin{cases}\frac{1}{s}\|x-y\|^{-s} & s \neq 0 \\ -\log (\|x-y\|) & s=0\end{cases}
$$

- $s=-1$ (sum of distances): Minimizers also minimize quadratic spherical cap discrepancy (Stolarsky '73) and worst-case error for a numeric integration in a certain Sobolev space (Brauchart, Dick '13).
- $s=0$: Minimization results in Fekete points (used in approximation theory).
- $s=d-2$: Minimizers of $E_{R, s}$ have optimal Wasserstein 2 distance from uniform measure σ (Marzo, Mas, '19; Steinerberger, '19).

Riesz s-energies on the Sphere \mathbb{S}^{d}

Riesz s-kernels

For $s \in \mathbb{R}$, we define the Riesz kernel as

$$
R_{s}(x, y)= \begin{cases}\frac{1}{s}\|x-y\|^{-s} & s \neq 0 \\ -\log (\|x-y\|) & s=0\end{cases}
$$

- $s=-1$ (sum of distances): Minimizers also minimize quadratic spherical cap discrepancy (Stolarsky '73) and worst-case error for a numeric integration in a certain Sobolev space (Brauchart, Dick '13).
- $s=0$: Minimization results in Fekete points (used in approximation theory).
- $s=d-2$: Minimizers of $E_{R, s}$ have optimal Wasserstein 2 distance from uniform measure σ (Marzo, Mas, '19; Steinerberger, '19).
- $s \geq d-2$. Minimizers are well-separated and uniformly distributed (Damelin, Maymeskul '05; Hardin, Saff '05; Dragnev, Saff '07)

Riesz s-energies on the Sphere \mathbb{S}^{d}

Riesz s-kernels

For $s \in \mathbb{R}$, we define the Riesz kernel as

$$
R_{s}(x, y)= \begin{cases}\frac{1}{s}\|x-y\|^{-s} & s \neq 0 \\ -\log (\|x-y\|) & s=0\end{cases}
$$

- $s=-1$ (sum of distances): Minimizers also minimize quadratic spherical cap discrepancy (Stolarsky '73) and worst-case error for a numeric integration in a certain Sobolev space (Brauchart, Dick '13).
- $s=0$: Minimization results in Fekete points (used in approximation theory).
- $s=d-2$: Minimizers of $E_{R, s}$ have optimal Wasserstein 2 distance from uniform measure σ (Marzo, Mas, '19; Steinerberger, '19).
- $s \geq d-2$. Minimizers are well-separated and uniformly distributed (Damelin, Maymeskul '05; Hardin, Saff '05; Dragnev, Saff '07)
- $s \rightarrow \infty$: Minimizers of $E_{R, s}$ become best-packings on the sphere.

Electrostatics: Thomson Problem

Thomson problem (1904)

Find the minimal energy configuration of N electrons interacting according to Coulomb's Law and constrained to the sphere \mathbb{S}^{2}, i.e. minimize the energy

$$
E_{R, 1}\left(\omega_{N}\right)=\frac{1}{N^{2}} \sum_{i \neq j} \frac{1}{\left\|z_{i}-z_{j}\right\|}
$$

- Answer is known for

$$
N=2,3,4,5,6 \text { and } N=12
$$

- 5 points: triangular bi-pyramid (R.E. Schwartz, 2013, computer-assisted proof)

Solutions of the Thomson Problem

Continuous Energy

Let (Ω, ρ) be a (compact) metric space. Given a lower semi-continuous, symmetric (potential) function $K: \Omega \times \Omega \rightarrow(-\infty, \infty]$, the (continuous) energy of a Borel probability measure $\mu \in \mathbb{P}(\Omega)$ is

$$
I_{K}(\mu)=\int_{\Omega} \int_{\Omega} K(x, y) d \mu(x) d \mu(y)
$$

Continuous Energy

Let (Ω, ρ) be a (compact) metric space. Given a lower semi-continuous, symmetric (potential) function $K: \Omega \times \Omega \rightarrow(-\infty, \infty]$, the (continuous) energy of a Borel probability measure $\mu \in \mathbb{P}(\Omega)$ is

$$
I_{K}(\mu)=\int_{\Omega} \int_{\Omega} K(x, y) d \mu(x) d \mu(y)
$$

- What measure(s) minimize I_{K} ?
- Is the equilibrium measure unique?
- Is it the uniform measure/volume form? Does it have "nice" symmetries?
- Is the support full dimensional, or lower dimensional?
- Is it discrete?

Discrete and Continuous Energy

Minimization of the discrete and continuous energies

$$
E_{K}\left(\omega_{N}\right)=\sum_{i \neq j} K\left(z_{i}, z_{j}\right), \quad I_{K}(\mu)=\int_{\Omega} \int_{\Omega} K(x, y) d \mu(x) d \mu(y)
$$

are related:

$$
\lim _{N \rightarrow \infty} \min _{\omega_{N} \subset \Omega} \frac{E_{K}\left(\omega_{N}\right)}{N^{2}}=\min _{\mu \in \mathbb{P}(\Omega)} I_{K}(\mu)
$$

and if $\mu_{\omega_{N}}=\frac{1}{N} \sum_{j=1}^{N} \delta_{z j}$, then

$$
I_{K}\left(\mu_{\omega_{N}}\right)=\frac{1}{N^{2}}\left(E_{K}\left(\omega_{N}\right)+\sum_{j=1}^{N} K\left(z_{j}, z_{j}\right)\right)
$$

If $\left\{\omega_{N}^{*}\right\}_{N=2}^{\infty}$ are minimizers of E_{K} and $\mu_{\omega_{N}^{*}} \stackrel{*}{\rightharpoonup} \mu$, then μ minimizes I_{K}.

Compact Connected Two-Point Homogeneous Spaces

We call Ω two-point homogeneous if for all $x_{1}, x_{2}, y_{1}, y_{2} \in \Omega$ s.t. $\rho\left(x_{1}, x_{2}\right)=\rho\left(y_{1}, y_{2}\right)$, there exists an isometry h such that $h\left(x_{i}\right)=y_{i}$. Examples include Hamming Spaces and \mathbb{R}^{d}. The only such spaces that are also compact and connected are $\mathbb{S}^{d}, \mathbb{R P}^{d}, \mathbb{C P}^{d}, \mathbb{H P}^{d}, \mathbb{O P}$, and $\mathbb{O P}^{2}$.

Compact Connected Two-Point Homogeneous Spaces

We call Ω two-point homogeneous if for all $x_{1}, x_{2}, y_{1}, y_{2} \in \Omega$ s.t. $\rho\left(x_{1}, x_{2}\right)=\rho\left(y_{1}, y_{2}\right)$, there exists an isometry h such that $h\left(x_{i}\right)=y_{i}$. Examples include Hamming Spaces and \mathbb{R}^{d}. The only such spaces that are also compact and connected are $\mathbb{S}^{d}, \mathbb{R P}^{d}, \mathbb{C P}^{d}, \mathbb{H P}^{d}, \mathbb{O P} \mathbb{P}^{1}$, and $\mathbb{O P}{ }^{2}$.

Each of these spaces has a geodesic metric $\theta(x, y) \leq \pi$ and a chordal metric

$\rho(x, y)=\sin \left(\frac{\theta(x, y)}{2}\right)=\sqrt{\frac{1-\cos (\theta(x, y))}{2}}$
and can be embedded via a $\operatorname{map} A: \Omega \rightarrow \mathbb{S}^{d^{\prime}}$
such that

$$
\rho(x, y)=c\|A(x)-A(y)\| .
$$

Chordal Riesz Energy on the Sphere

For each space Ω, the (chordal) Riesz s-kernels and logarithmic kernel are

$$
R_{s}(x, y)= \begin{cases}\frac{\rho(x, y)^{-s}}{s}, & s \in \mathbb{R} \backslash\{0\} \\ -\log (\rho(x, y)), & s=0\end{cases}
$$

Theorem (Classical; Riesz, '38; Björck, '56)

Let $s<d$. Then the minimizers of $I_{R, s}$ on \mathbb{S}^{d} are:

- If $-2<s, \sigma$ (uniquely).
- If $s=-2$, every measure with center of mass at the origin, i.e.

$$
\int_{\mathbb{S}^{d}} \cos (\theta(x, y)) d \mu(x)=\int_{\mathbb{S}^{d}}\langle x, y\rangle d \mu(x)=0, \quad \forall y \in \mathbb{S}^{d}
$$

- If $s<-2$, every measure of the form $\frac{1}{2}\left(\delta_{p}+\delta_{-p}\right), p \in \mathbb{S}^{d}$.

Chordal Riesz Energy on Projective Spaces

For each space Ω, the (chordal) Riesz s-kernels and logarithmic kernel are

$$
R_{s}(x, y)= \begin{cases}\frac{\rho(x, y)^{-s}}{s}, & s \in \mathbb{R} \backslash\{0\} \\ -\log (\rho(x, y)), & s=0\end{cases}
$$

Theorem (Chen, Hardin, Saff '21; Anderson, Dostert, Grabner, M.,
Stepaniuk, '23; Bilyk, M., Nathe, '24)
Let $s<\operatorname{dim}\left(\mathbb{F P}^{d}\right)$. Then the minimizers of $I_{R, s}$ are:

- If $-2<s, \sigma$ (uniquely).
- If $s=-2$, every measure μ such that

$$
\int_{\Omega} \cos (\theta(x, y)) d \mu(x)=0 \quad \forall y \in \mathbb{F P}^{d}
$$

- If $s<-2$, every measure of the form $\frac{1}{d+1} \sum_{j=1}^{d+1} \delta_{e_{j}}$, where $\left\{e_{1}, \ldots, e_{d+1}\right\} \subset \mathbb{F P}^{d}$ is a set where all element are diameter apart, i.e. points corresponding to an orthonormal basis in \mathbb{F}^{d+1}.

Discrete Chordal Riesz Energy on Projective Spaces

- $s=-2$: If $\mathbb{F}=\mathbb{R}, \mathbb{C}$, minimizers of $E_{R,-2}$ correspond to tight frames in \mathbb{F}^{d+1} :

$$
R_{-2}(x, y)=\frac{\cos (\theta(x, y))-1}{2}=\frac{|\langle x, y\rangle|^{2}-1}{2}
$$

Discrete Chordal Riesz Energy on Projective Spaces

- $s=-2$: If $\mathbb{F}=\mathbb{R}, \mathbb{C}$, minimizers of $E_{R,-2}$ correspond to tight frames in \mathbb{F}^{d+1} :

$$
R_{-2}(x, y)=\frac{\cos (\theta(x, y))-1}{2}=\frac{|\langle x, y\rangle|^{2}-1}{2}
$$

- $s=-1$ (sum of distances): Minimizers of $E_{R,-1}$ also minimize the L^{2} discrepancy with respect to balls (Skriganov '19).

Discrete Chordal Riesz Energy on Projective Spaces

- $s=-2$: If $\mathbb{F}=\mathbb{R}, \mathbb{C}$, minimizers of $E_{R,-2}$ correspond to tight frames in \mathbb{F}^{d+1} :

$$
R_{-2}(x, y)=\frac{\cos (\theta(x, y))-1}{2}=\frac{|\langle x, y\rangle|^{2}-1}{2}
$$

- $s=-1$ (sum of distances): Minimizers of $E_{R,-1}$ also minimize the L^{2} discrepancy with respect to balls (Skriganov '19).
- $s \rightarrow \infty$: Minimizers of $E_{R, s}$ become best line-packings/Grassmannian frames, i.e. they minimize coherence, $\max _{i \neq j}\left|\left\langle z_{i}, z_{j}\right\rangle\right|$ (Chen, Hardin, Saff '21).

Discrete Chordal Riesz Energy on Projective Spaces

- $s=-2$: If $\mathbb{F}=\mathbb{R}, \mathbb{C}$, minimizers of $E_{R,-2}$ correspond to tight frames in \mathbb{F}^{d+1} :

$$
R_{-2}(x, y)=\frac{\cos (\theta(x, y))-1}{2}=\frac{|\langle x, y\rangle|^{2}-1}{2}
$$

- $s=-1$ (sum of distances): Minimizers of $E_{R,-1}$ also minimize the L^{2} discrepancy with respect to balls (Skriganov '19).
- $s \rightarrow \infty$: Minimizers of $E_{R, s}$ become best line-packings/Grassmannian frames, i.e. they minimize coherence, $\max _{i \neq j}\left|\left\langle z_{i}, z_{j}\right\rangle\right|$ (Chen, Hardin, Saff '21).
- $s \geq 0$: As $N \rightarrow \infty$, the minimizers of $E_{R, s}$ are "nearly tight" (Chen, Hardin, Saff '21), i.e. $Z_{N}=\left[z_{1}, \ldots, z_{N}\right]$

$$
\lim _{N \rightarrow \infty} \frac{1}{N} Z_{N} Z_{N}^{*}=\frac{1}{d+1} I_{d+1}
$$

Geodesic Riesz Energy on the Sphere

For each space Ω, the (geodesic) Riesz s-kernels and logarithmic kernel are

$$
G_{s}(x, y)= \begin{cases}\frac{\theta(x, y)^{-s}}{s} & s \in \mathbb{R} \backslash\{0\} \\ -\log (\theta(x, y)) & s=0\end{cases}
$$

Theorem (Brauchart, Hardin, Saff '12; Bilyk, Dai, M. '18; Bilyk, Dai '19)

Let $s<d$. Then the minimizers of $I_{G, s}$ on \mathbb{S}^{d} are:

- If $-1<s, \sigma$ (uniquely).
- If $s=-1$, every centrally symmetric measure.
- If $s<-1$, every measure of the form $\frac{1}{2}\left(\delta_{p}+\delta_{-p}\right), p \in \mathbb{S}^{d}$.

Geodesic Riesz Energy on the Sphere

For each space Ω, the (geodesic) Riesz s-kernels and logarithmic kernel are

$$
G_{s}(x, y)= \begin{cases}\frac{\theta(x, y)^{-s}}{s} & s \in \mathbb{R} \backslash\{0\} \\ -\log (\theta(x, y)) & s=0\end{cases}
$$

Theorem (Brauchart, Hardin, Saff '12; Bilyk, Dai, M. '18; Bilyk, Dai '19)

Let $s<d$. Then the minimizers of $I_{G, s}$ on \mathbb{S}^{d} are:

- If $-1<s, \sigma$ (uniquely).
- If $s=-1$, every centrally symmetric measure.
- If $s<-1$, every measure of the form $\frac{1}{2}\left(\delta_{p}+\delta_{-p}\right), p \in \mathbb{S}^{d}$.
- Minimizing $E_{G,-1}$ (maximizing the sum of distances) was another problem posed by Fejes Tóth (solved by Kelly '70).

Geodesic Riesz Energy on the Sphere

For each space Ω, the (geodesic) Riesz s-kernels and logarithmic kernel are

$$
G_{s}(x, y)=\left\{\begin{array}{ll}
\frac{\theta(x, y)^{-s}}{s} & s \in \mathbb{R} \backslash\{0\} \\
-\log (\theta(x, y)) & s=0
\end{array} .\right.
$$

Theorem (Brauchart, Hardin, Saff '12; Bilyk, Dai, M. '18; Bilyk, Dai '19)

Let $s<d$. Then the minimizers of $I_{G, s}$ on \mathbb{S}^{d} are:

- If $-1<s, \sigma$ (uniquely).
- If $s=-1$, every centrally symmetric measure.
- If $s<-1$, every measure of the form $\frac{1}{2}\left(\delta_{p}+\delta_{-p}\right), p \in \mathbb{S}^{d}$.
- Minimizing $E_{G,-1}$ (maximizing the sum of distances) was another problem posed by Fejes Tóth (solved by Kelly '70).
- Minimizing $E_{G,-1}$ is equivalent to minimizing the L^{2} discrepancy with respect to hemispheres (Bilyk, Dai, M. '18).

Geodesic Riesz Energy on Projective Spaces

Since $\mathbb{R} \mathbb{P}^{1} \simeq \mathbb{S}^{1}, \mathbb{C P} \mathbb{P}^{1} \simeq \mathbb{S}^{2}, \mathbb{H} \mathbb{P}^{1} \simeq \mathbb{S}^{4}, \mathbb{O} \mathbb{P}^{1} \simeq \mathbb{S}^{8}$, only consider $d \geq 2$.

Geodesic Riesz Energy on Projective Spaces

Since $\mathbb{R} \mathbb{P}^{1} \simeq \mathbb{S}^{1}, \mathbb{C} \mathbb{P}^{1} \simeq \mathbb{S}^{2}, \mathbb{H} \mathbb{P}^{1} \simeq \mathbb{S}^{4}, \mathbb{O} \mathbb{P}^{1} \simeq \mathbb{S}^{8}$, only consider $d \geq 2$.

Theorem (Lim, McCann (plus Bilyk, Glazyrin, M., Park, Vlasiuk) '22; Bilyk, M., Nathe)

Let $d \geq 2, s<\operatorname{dim}\left(\mathbb{F P}^{d}\right)=D$. Then the minimizers of $I_{G, s}$ are:

- If $\Omega=\mathbb{R P}^{d}(D=d)$ and $D-2 \leq s, \sigma$ (uniquely).
- If $\Omega=\mathbb{C P}^{d}(D=2 d)$ and $D-3 \leq s, \sigma$ (uniquely).
- If $\Omega=\mathbb{H P}^{d}(D=4 d)$ and $D-5 \leq s, \sigma$ (uniquely).
- If $\Omega=\mathbb{O P}^{2}(D=16)$ and $D-9 \leq s, \sigma$ (uniquely).
- If $s \leq-2$, every measure of the form $\frac{1}{d+1} \sum_{j=1}^{d+1} \delta_{e_{j}}$, where $\left\{e_{1}, \ldots, e_{d+1}\right\} \subset \mathbb{F P}^{d}$ is a set where all element are diameter apart, i.e. points corresponding to an orthonormal basis in \mathbb{F}^{d+1}.

Geodesic Riesz Energy on Spheres and Projective Spaces

Let $\alpha=\frac{\operatorname{dim}_{\mathbb{R}}(\Omega)}{2}-1$ and $\beta=\frac{\operatorname{dim}_{\mathbb{R}}(\mathbb{F})}{2}-1$ if $\Omega=\mathbb{F P}{ }^{d}$ and $\beta=\alpha$ if $\Omega=\mathbb{S}^{d}$

Theorem (Bilyk, M., Nathe)

The minimizers of $I_{G, s}$ are:

- If $-1<s$ and $2 \alpha-2 \beta-1 \leq s<\operatorname{dim}(\Omega)=2 \alpha+2, \sigma$ (uniquely).
- If $s \leq-2$, every measure uniformly distributed on a maximal discrete set with all elements diameter apart.

Geodesic Riesz Energy on Spheres and Projective Spaces

Let $\alpha=\frac{\operatorname{dim}_{\mathbb{R}}(\Omega)}{2}-1$ and $\beta=\frac{\operatorname{dim}_{\mathbb{R}}(\mathbb{F})}{2}-1$ if $\Omega=\mathbb{F} \mathbb{P}^{d}$ and $\beta=\alpha$ if $\Omega=\mathbb{S}^{d}$

Theorem (Bilyk, M., Nathe)

The minimizers of $I_{G, s}$ are:

- If $-1<s$ and $2 \alpha-2 \beta-1 \leq s<\operatorname{dim}(\Omega)=2 \alpha+2$, σ (uniquely).
- If $s \leq-2$, every measure uniformly distributed on a maximal discrete set with all elements diameter apart.

For $\mathbb{F P}^{d}, d \geq 2$:

- We believe the bound $s \leq-2$ can be improved to $s<-1$.

Geodesic Riesz Energy on Spheres and Projective Spaces

Let $\alpha=\frac{\operatorname{dim}_{\mathbb{R}}(\Omega)}{2}-1$ and $\beta=\frac{\operatorname{dim}_{\mathbb{R}}(\mathbb{F})}{2}-1$ if $\Omega=\mathbb{F P}{ }^{d}$ and $\beta=\alpha$ if $\Omega=\mathbb{S}^{d}$

Theorem (Bilyk, M., Nathe)

The minimizers of $I_{G, s}$ are:

- If $-1<s$ and $2 \alpha-2 \beta-1 \leq s<\operatorname{dim}(\Omega)=2 \alpha+2, \sigma$ (uniquely).
- If $s \leq-2$, every measure uniformly distributed on a maximal discrete set with all elements diameter apart.

For $\mathbb{F P}^{d}, d \geq 2$:

- We believe the bound $s \leq-2$ can be improved to $s<-1$.
- There may be a transition point at $s=-1$, but σ is not a minimizer.

Geodesic Riesz Energy on Spheres and Projective Spaces

Let $\alpha=\frac{\operatorname{dim}_{\mathbb{R}}(\Omega)}{2}-1$ and $\beta=\frac{\operatorname{dim}_{\mathbb{R}}(\mathbb{F})}{2}-1$ if $\Omega=\mathbb{F} \mathbb{P}^{d}$ and $\beta=\alpha$ if $\Omega=\mathbb{S}^{d}$

Theorem (Bilyk, M., Nathe)

The minimizers of $I_{G, s}$ are:

- If $-1<s$ and $2 \alpha-2 \beta-1 \leq s<\operatorname{dim}(\Omega)=2 \alpha+2, \sigma$ (uniquely).
- If $s \leq-2$, every measure uniformly distributed on a maximal discrete set with all elements diameter apart.

For $\mathbb{F P}^{d}, d \geq 2$:

- We believe the bound $s \leq-2$ can be improved to $s<-1$.
- There may be a transition point at $s=-1$, but σ is not a minimizer.
- Unclear if $2 \alpha-2 \beta-1$ is sharp, but lower bound must increase with dimension. σ is a minimizer for $I_{G, 0}$ on \mathbb{R}^{2}, but not on $\mathbb{R} \mathbb{P}^{4}$.

Geodesic Riesz Energy on Spheres and Projective Spaces

Let $\alpha=\frac{\operatorname{dim}_{\mathbb{R}}(\Omega)}{2}-1$ and $\beta=\frac{\operatorname{dim}_{\mathbb{R}}(\mathbb{F})}{2}-1$ if $\Omega=\mathbb{F} \mathbb{P}^{d}$ and $\beta=\alpha$ if $\Omega=\mathbb{S}^{d}$

Theorem (Bilyk, M., Nathe)

The minimizers of $I_{G, s}$ are:

- If $-1<s$ and $2 \alpha-2 \beta-1 \leq s<\operatorname{dim}(\Omega)=2 \alpha+2$, σ (uniquely).
- If $s \leq-2$, every measure uniformly distributed on a maximal discrete set with all elements diameter apart.

For $\mathbb{F P}^{d}, d \geq 2$:

- We believe the bound $s \leq-2$ can be improved to $s<-1$.
- There may be a transition point at $s=-1$, but σ is not a minimizer.
- Unclear if $2 \alpha-2 \beta-1$ is sharp, but lower bound must increase with dimension. σ is a minimizer for $I_{G, 0}$ on $\mathbb{R P}^{2}$, but not on $\mathbb{R} \mathbb{P}^{4}$.
- There cannot be a single transition point of minimizers: no minimizer of $I_{G, 0}$ can have discrete support, but on $\mathbb{R P}^{4}, \sigma$ is not a minimizer.

Connection to Fejes Tóth Conjecture

Fejes Tóth Conjecture '59

For $x, y \in \mathbb{S}^{d}$, let

$$
\begin{aligned}
& \phi(x, y)=\arccos (|\langle x, y\rangle|) \\
& \quad=\min \{\arccos (\langle x, y\rangle), \pi-\arccos (\langle x, y\rangle)\}
\end{aligned}
$$

Then $E_{\phi}\left(\omega_{N}\right)=\sum_{i \neq j} \phi\left(z_{i}, z_{j}\right)$ is maximized by periodically repeated elements of an orthonormal basis, i.e. $z_{j}=e_{j} \bmod (d+1)$.

Connection to Fejes Tóth Conjecture

Fejes Tóth Conjecture '59

For $x, y \in \mathbb{S}^{d}$, let
$\phi(x, y)=\arccos (|\langle x, y\rangle|)$
$=\min \{\arccos (\langle x, y\rangle), \pi-\arccos (\langle x, y\rangle)\}$
Then $E_{\phi}\left(\omega_{N}\right)=\sum_{i \neq j} \phi\left(z_{i}, z_{j}\right)$ is maximized by periodically repeated elements of an orthonormal basis, i.e. $z_{j}=e_{j \bmod (d+1)}$.

The acute angle ϕ on \mathbb{S}^{d} corresponds to θ on $\mathbb{R} \mathbb{P}^{d}$.

Continuous Fejes Tóth Conjecture

The energy $I_{G,-1}$ on $\mathbb{R P}^{d}$ is minimized by any measure of the form $\mu_{O N B}=\frac{1}{d+1} \sum_{j=1}^{d+1} \delta_{e_{j}}$, where $\left\{e_{1}, \ldots, e_{d+1}\right\} \subset \mathbb{R P}^{d}$ is a set where all element are diameter apart, i.e. points corresponding to an ONB in \mathbb{R}^{d+1}.

Connection to Fejes Tóth Conjecture

Continuous Fejes Tóth Conjecture

The energy $I_{G,-1}$ on $\mathbb{R P}^{d}$ is minimized by any measure of the form $\mu_{\text {ONB }}=\frac{1}{d+1} \sum_{j=1}^{d+1} \delta_{e_{j}}$, where $\left\{e_{1}, \ldots, e_{d+1}\right\} \subset \mathbb{R P}^{d}$ is a set where all element are diameter apart, i.e. points corresponding to an ONB in \mathbb{R}^{d+1}.

If the conjecture holds true, $I_{G,-1}$ has minimizers other than those of the form $\mu_{O N B}$. For instance, if A and B are copies of $\mathbb{R P}^{1}$ in $\mathbb{R P}^{3}$ and diameter apart, and σ_{A}, σ_{B} are uniform probability measures on each, $\frac{1}{2}\left(\sigma_{A}+\sigma_{B}\right)$ would minimize $I_{G,-1}$.

Connection to Fejes Tóth Conjecture

Continuous Fejes Tóth Conjecture

The energy $I_{G,-1}$ on $\mathbb{R P}^{d}$ is minimized by any measure of the form $\mu_{\text {ONB }}=\frac{1}{d+1} \sum_{j=1}^{d+1} \delta_{e_{j}}$, where $\left\{e_{1}, \ldots, e_{d+1}\right\} \subset \mathbb{R P}^{d}$ is a set where all element are diameter apart, i.e. points corresponding to an ONB in \mathbb{R}^{d+1}.

If the conjecture holds true, $I_{G,-1}$ has minimizers other than those of the form $\mu_{O N B}$. For instance, if A and B are copies of $\mathbb{R P}^{1}$ in $\mathbb{R P}^{3}$ and diameter apart, and σ_{A}, σ_{B} are uniform probability measures on each, $\frac{1}{2}\left(\sigma_{A}+\sigma_{B}\right)$ would minimize $I_{G,-1}$.

Theorem (Lim, McCann (plus Bilyk, Glazyrin, M., Park, Vlasiuk) '22)

Let $d \geq 2$. For $\mathbb{R}^{P^{d}}$, there exists a unique $s^{*} \in(-2,-1]$ such that for $s>s^{*}, \mu_{O N B}$ is not a minimizer of $I_{G, s}$, and for $s<s^{*}, I_{G, s}$ is exactly minimized by measures of the form $\mu_{O N B}$.

Discrete Minimizers

Theorem (Lim, McCann (plus Bilyk, Glazyrin, M., Park, Vlasiuk) '22)

Let $d \geq 2$. For $\mathbb{R}^{P^{d}}$, there exists a unique $s^{*} \in(-2,-1]$ such that for $s>s^{*}, \mu_{O N B}$ is not a minimizer of $I_{G, s}$, and for $s<s^{*}, I_{G, s}$ is exactly minimized by measures of the form $\mu_{\text {ONB }}$.

$$
2 R_{-2}(x, y)=\frac{\cos (\theta(x, y))-1}{2} \leq-\frac{\theta(x, y)^{2}}{\pi^{2}}=\frac{2}{\pi^{2}} G_{-2}(x, y)
$$

with equality iff $\theta(x, y) \in\{0, \pi\}$. Thus

$$
\frac{1}{\pi^{2}} I_{G,-2}(\mu) \geq I_{R,-2}(\mu) \geq I_{R,-2}\left(\mu_{O N B}\right)
$$

Discrete Minimizers

Theorem (Lim, McCann (plus Bilyk, Glazyrin, M., Park, Vlasiuk) '22)

Let $d \geq 2$. For $\mathbb{R}^{P^{d}}$, there exists a unique $s^{*} \in(-2,-1]$ such that for $s>s^{*}, \mu_{O N B}$ is not a minimizer of $I_{G, s}$, and for $s<s^{*}, I_{G, s}$ is exactly minimized by measures of the form $\mu_{O N B}$.

$$
2 R_{-2}(x, y)=\frac{\cos (\theta(x, y))-1}{2} \leq-\frac{\theta(x, y)^{2}}{\pi^{2}}=\frac{2}{\pi^{2}} G_{-2}(x, y)
$$

with equality iff $\theta(x, y) \in\{0, \pi\}$. Thus

$$
\frac{1}{\pi^{2}} I_{G,-2}(\mu) \geq I_{R,-2}(\mu) \geq I_{R,-2}\left(\mu_{O N B}\right)
$$

Similarly, for $s<s^{*}$,

$$
I_{G, s}(\mu) \geq \pi^{s^{*}-s} \frac{s^{*}}{s} I_{G, s^{*}}(\mu) \geq \pi^{s^{*}-s} \frac{s^{*}}{s} I_{G, s^{*}}\left(\mu_{O N B}\right)
$$

In both case, equality holds iff μ is of the form $\mu_{O N B}$.

From Two-point Homogeneous Spaces to the Interval

Let $\alpha=\frac{\operatorname{dim}_{\mathbb{R}}(\Omega)}{2}-1$ and $\beta=\frac{\operatorname{dim}_{\mathbb{R}}(\mathbb{F})}{2}-1$ if $\Omega=\mathbb{F P}{ }^{d}$ and $\beta=\alpha$ if $\Omega=\mathbb{S}^{d}$. The Jacobi polynomials $P_{k}^{(\alpha, \beta)}(t)$ form an orthogonal basis on $L^{2}([-1,1], \nu)$, where $d \nu(t)=\gamma(1-t)^{\alpha}(1+t)^{\beta} d t$.

From Two-point Homogeneous Spaces to the Interval

Let $\alpha=\frac{\operatorname{dim}_{\mathbb{R}}(\Omega)}{2}-1$ and $\beta=\frac{\operatorname{dim}_{\mathbb{R}}(\mathbb{F})}{2}-1$ if $\Omega=\mathbb{F} \mathbb{P}^{d}$ and $\beta=\alpha$ if $\Omega=\mathbb{S}^{d}$. The Jacobi polynomials $P_{k}^{(\alpha, \beta)}(t)$ form an orthogonal basis on $L^{2}([-1,1], \nu)$, where $d \nu(t)=\gamma(1-t)^{\alpha}(1+t)^{\beta} d t$. For any $F \in L^{1}([-1,1], \nu)$,

$$
\int_{\Omega} \int_{\Omega} F(\cos (\theta(x, y))) d \sigma(x) d \sigma(y)=\int_{-1}^{1} F(t) d \nu(t)=\widehat{F}_{0}
$$

$$
F(t) \sim \sum_{n=0}^{\infty} \widehat{F}(n) P_{n}^{\alpha, \beta}(t)
$$

From Two-point Homogeneous Spaces to the Interval

Let $\alpha=\frac{\operatorname{dim}_{\mathbb{R}}(\Omega)}{2}-1$ and $\beta=\frac{\operatorname{dim}_{\mathbb{R}}(\mathbb{F})}{2}-1$ if $\Omega=\mathbb{F} \mathbb{P}^{d}$ and $\beta=\alpha$ if $\Omega=\mathbb{S}^{d}$. The Jacobi polynomials $P_{k}^{(\alpha, \beta)}(t)$ form an orthogonal basis on $L^{2}([-1,1], \nu)$, where $d \nu(t)=\gamma(1-t)^{\alpha}(1+t)^{\beta} d t$. For any $F \in L^{1}([-1,1], \nu)$,

$$
\int_{\Omega} \int_{\Omega} F(\cos (\theta(x, y))) d \sigma(x) d \sigma(y)=\int_{-1}^{1} F(t) d \nu(t)=\widehat{F}_{0}
$$

$$
F(t) \sim \sum_{n=0}^{\infty} \widehat{F}(n) P_{n}^{\alpha, \beta}(t)
$$

For the sphere, $\alpha=\beta$, giving us the Gegenbauer polynomials, with weight $d \nu(t)=\gamma\left(1-t^{2}\right)^{\frac{d-2}{2}} d t$.

Conditional Strict Positive Definiteness

We call a real-valued kernel conditionally positive definite if for any set of points $\omega_{N}=\left\{z_{1}, \ldots, z_{N}\right\} \subset \Omega$

$$
\sum_{i, j=1}^{N} K\left(z_{i}, z_{j}\right) c_{i} c_{j} \geq 0 \quad \text { for all } c_{i} \in \mathbb{R}, \text { with } \sum_{j=1}^{N} c_{j}=0
$$

Extending this, a kernel K is conditionally positive definite if for any finite signed Borel measure τ on Ω satisfying $\nu(\Omega)=0$,

$$
\int_{\Omega} \int_{\Omega} K(x, y) d \tau(x) d \tau(y) \geq 0
$$

Conditional Strict Positive Definiteness

We call a real-valued kernel conditionally positive definite if for any set of points $\omega_{N}=\left\{z_{1}, \ldots, z_{N}\right\} \subset \Omega$

$$
\sum_{i, j=1}^{N} K\left(z_{i}, z_{j}\right) c_{i} c_{j} \geq 0 \quad \text { for all } c_{i} \in \mathbb{R}, \text { with } \sum_{j=1}^{N} c_{j}=0
$$

Extending this, a kernel K is conditionally positive definite if for any finite signed Borel measure τ on Ω satisfying $\nu(\Omega)=0$,

$$
\int_{\Omega} \int_{\Omega} K(x, y) d \tau(x) d \tau(y) \geq 0
$$

The kernel is called conditionally strictly positive definite (CSPD) if equality occurs iff $\tau \equiv 0$.

Theorem

If K is conditionally strictly positive definite on Ω, then I_{K} has a unique minimizer.

Conditional Strict Positive Definiteness

We call $F:[-1,1] \rightarrow(-\infty, \infty]$ conditionally strictly positive definite (CSPD) on Ω if for any finite signed Borel measure τ on Ω satisfying $\tau(\Omega)=0$ and $\tau \not \equiv 0$,

$$
I_{F}(\tau):=\int_{\Omega} \int_{\Omega} F(\cos (\theta(x, y))) d \tau(x) d \tau(y)>0
$$

Theorem

If $F(\cos (\theta(x, y)))$ is conditionally strictly positive definite on Ω, then I_{F} is uniquely minimized by σ.

Conditional Strict Positive Definiteness

We call $F:[-1,1] \rightarrow(-\infty, \infty]$ conditionally strictly positive definite (CSPD) on Ω if for any finite signed Borel measure τ on Ω satisfying $\tau(\Omega)=0$ and $\tau \not \equiv 0$,

$$
I_{F}(\tau):=\int_{\Omega} \int_{\Omega} F(\cos (\theta(x, y))) d \tau(x) d \tau(y)>0
$$

Theorem

If $F(\cos (\theta(x, y)))$ is conditionally strictly positive definite on Ω, then I_{F} is uniquely minimized by σ.

For the unique minimizer μ of I_{F} and any isometry g of Ω,

$$
\begin{aligned}
I_{F}(\mu) & =\int_{\Omega} \int_{\Omega} F(\cos (\theta(x, y))) d \mu(x) d \mu(y) \\
& =\int_{\Omega} \int_{\Omega} F(\cos (\theta(g(x), g(y)))) d \mu(x) d \mu(y)=I_{F}\left(g_{\#} \mu\right)
\end{aligned}
$$

User-Friendly Energy

Theorem (Bochner '41; Schoenberg '42; Bilyk, M., Vlasiuk '22; Anderson, Dostert, Grabner, M., Stepaniuk '23)
Let $F \in C([-1,1])$. Then the following are equivalent:
(1) σ is the unique minimizer of I_{F} over $\mathcal{P}(\Omega)$.
(2) For all $n \in \mathbb{N}, \widehat{F}_{n}>0$.
(3) F is conditionally strictly positive definite on Ω.

User-Friendly Energy

Theorem (Bochner '41; Schoenberg '42; Bilyk, M., Vlasiuk '22; Anderson, Dostert, Grabner, M., Stepaniuk '23)
Let $F \in C([-1,1])$. Then the following are equivalent:
(1) σ is the unique minimizer of I_{F} over $\mathcal{P}(\Omega)$.
(2) For all $n \in \mathbb{N}, \widehat{F}_{n}>0$.
(3) F is conditionally strictly positive definite on Ω.

For general $F \in L^{1}([-1,1], \nu)$, the only known implications are

- If F is CSPD, σ is the unique minimizer of I_{F}.
- If σ uniquely minimizes I_{F}, then $\widehat{F}_{n}>0$ for all $n \in \mathbb{N}$.

User-Friendly Energy

Theorem (Bochner '41; Schoenberg '42; Bilyk, M., Vlasiuk '22; Anderson, Dostert, Grabner, M., Stepaniuk '23)

Let $F \in C([-1,1])$. Then the following are equivalent:
(1) σ is the unique minimizer of I_{F} over $\mathcal{P}(\Omega)$.
(2) For all $n \in \mathbb{N}, \widehat{F}_{n}>0$.
(3) F is conditionally strictly positive definite on Ω.

For general $F \in L^{1}([-1,1], \nu)$, the only known implications are

- If F is CSPD, σ is the unique minimizer of I_{F}.
- If σ uniquely minimizes I_{F}, then $\widehat{F}_{n}>0$ for all $n \in \mathbb{N}$.

Goal: Want the most general class of functions F such that $\widehat{F}_{n}>0$ for all $n \in \mathbb{N}$ implies F is CSPD and/or σ is the unique minimizer.

Continuous Approximation

For any non-negative $F \in L^{1}([-1,1], \nu)$ and $\varepsilon>0$, let
$F^{(\varepsilon)}(\cos (\theta(x, y))):=\frac{1}{\left(\sigma\left(B_{\varepsilon}\right)\right)^{2}} \int_{B_{\varepsilon}(x)} \int_{B_{\varepsilon}(y)} F(\cos (\theta(u, v))) d \sigma(u) d \sigma(v)$.

Continuous Approximation

For any non-negative $F \in L^{1}([-1,1], \nu)$ and $\varepsilon>0$, let
$F^{(\varepsilon)}(\cos (\theta(x, y))):=\frac{1}{\left(\sigma\left(B_{\varepsilon}\right)\right)^{2}} \int_{B_{\varepsilon}(x)} \int_{B_{\varepsilon}(y)} F(\cos (\theta(u, v))) d \sigma(u) d \sigma(v)$.

- $\lim _{\varepsilon \rightarrow 0^{+}} F^{(\varepsilon)}(t)=F(t)$ everywhere F is continuous (in the extended sense).

Continuous Approximation

For any non-negative $F \in L^{1}([-1,1], \nu)$ and $\varepsilon>0$, let
$F^{(\varepsilon)}(\cos (\theta(x, y))):=\frac{1}{\left(\sigma\left(B_{\varepsilon}\right)\right)^{2}} \int_{B_{\varepsilon}(x)} \int_{B_{\varepsilon}(y)} F(\cos (\theta(u, v))) d \sigma(u) d \sigma(v)$.

- $\lim _{\varepsilon \rightarrow 0^{+}} F^{(\varepsilon)}(t)=F(t)$ everywhere F is continuous (in the extended sense).
- $\widehat{F^{(\varepsilon)}} n \geq 0$ and $\lim _{\varepsilon \rightarrow 0^{+}}{\widehat{F^{(\varepsilon)}}}_{n}=\widehat{F}_{n}$ for all $n \in \mathbb{N}_{0}$.

Continuous Approximation

For any non-negative $F \in L^{1}([-1,1], \nu)$ and $\varepsilon>0$, let
$F^{(\varepsilon)}(\cos (\theta(x, y))):=\frac{1}{\left(\sigma\left(B_{\varepsilon}\right)\right)^{2}} \int_{B_{\varepsilon}(x)} \int_{B_{\varepsilon}(y)} F(\cos (\theta(u, v))) d \sigma(u) d \sigma(v)$.

- $\lim _{\varepsilon \rightarrow 0^{+}} F^{(\varepsilon)}(t)=F(t)$ everywhere F is continuous (in the extended sense).
- $\widehat{F}^{(\varepsilon)} n \geq 0$ and $\lim _{\varepsilon \rightarrow 0^{+}}{\widehat{F^{(\varepsilon)}}}_{n}=\widehat{F}_{n}$ for all $n \in \mathbb{N}_{0}$.
- $F^{(\varepsilon)}(t)$ is continuous

Continuous Approximation

For any non-negative $F \in L^{1}([-1,1], \nu)$ and $\varepsilon>0$, let
$F^{(\varepsilon)}(\cos (\theta(x, y))):=\frac{1}{\left(\sigma\left(B_{\varepsilon}\right)\right)^{2}} \int_{B_{\varepsilon}(x)} \int_{B_{\varepsilon}(y)} F(\cos (\theta(u, v))) d \sigma(u) d \sigma(v)$.

- $\lim _{\varepsilon \rightarrow 0^{+}} F^{(\varepsilon)}(t)=F(t)$ everywhere F is continuous (in the extended sense).
- $\widehat{F}^{(\varepsilon)} n \geq 0$ and $\lim _{\varepsilon \rightarrow 0^{+}}{\widehat{F^{(\varepsilon)}}}_{n}=\widehat{F}_{n}$ for all $n \in \mathbb{N}_{0}$.
- $F^{(\varepsilon)}(t)$ is continuous

Theorem (Mercer 1909)

If $F \in C([-1,1])$ is conditionally positive definite, then

$$
F(t)=\sum_{n=0}^{\infty} \widehat{F}_{n} P_{n}^{(\alpha, \beta)}(t)
$$

where the series converges absolutely and uniformly on $[-1,1]$.

Extending the Implication

Theorem (Bilyk, M., Nathe)

Suppose $F \in L^{1}([-1,1], \nu)$ is bounded from below, $\widehat{F}_{n}>0$ for all $n \in \mathbb{N}$, and for all $\mu \in \mathcal{P}(\Omega)$ such that $I_{F}(\mu)<\infty, \lim _{\varepsilon \rightarrow 0^{+}} I_{F^{(\varepsilon)}}(\mu)=I_{F}(\mu)$. Then σ is the unique minimizer of I_{F}.

Extending the Implication

Theorem (Bilyk, M., Nathe)

Suppose $F \in L^{1}([-1,1], \nu)$ is bounded from below, $\widehat{F}_{n}>0$ for all $n \in \mathbb{N}$, and for all $\mu \in \mathcal{P}(\Omega)$ such that $I_{F}(\mu)<\infty, \lim _{\varepsilon \rightarrow 0^{+}} I_{F^{(\varepsilon)}}(\mu)=I_{F}(\mu)$. Then σ is the unique minimizer of I_{F}.

If $\mu \neq \sigma$, there must be some $m \in \mathbb{N}$ such that $I_{P_{m}^{(\alpha, \beta)}}(\mu)>0=I_{P_{m}^{(\alpha, \beta)}}(\sigma)$.

Extending the Implication

Theorem (Bilyk, M., Nathe)

Suppose $F \in L^{1}([-1,1], \nu)$ is bounded from below, $\widehat{F}_{n}>0$ for all $n \in \mathbb{N}$, and for all $\mu \in \mathcal{P}(\Omega)$ such that $I_{F}(\mu)<\infty, \lim _{\varepsilon \rightarrow 0^{+}} I_{F^{(\varepsilon)}}(\mu)=I_{F}(\mu)$. Then σ is the unique minimizer of I_{F}.

If $\mu \neq \sigma$, there must be some $m \in \mathbb{N}$ such that $I_{P_{m}^{(\alpha, \beta)}}(\mu)>0=I_{P_{m}^{(\alpha, \beta)}}(\sigma)$. Since $I_{G}(\sigma)=\widehat{G}_{0}$,

$$
\begin{aligned}
I_{F}(\mu)-I_{F}(\sigma) & =\lim _{\varepsilon \rightarrow 0^{+}}\left(I_{F^{(\varepsilon)}}(\mu)-I_{F^{(\varepsilon)}}(\sigma)\right) \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \sum_{n=1}^{\infty} \widehat{F^{(\varepsilon)}}{ }_{n} \int_{\Omega} \int_{\Omega} P_{n}^{(\alpha, \beta)}(\cos (\theta(x, y))) d \mu(x) d \mu(y)
\end{aligned}
$$

Extending the Implication

Theorem (Bilyk, M., Nathe)

Suppose $F \in L^{1}([-1,1], \nu)$ is bounded from below, $\widehat{F}_{n}>0$ for all $n \in \mathbb{N}$, and for all $\mu \in \mathcal{P}(\Omega)$ such that $I_{F}(\mu)<\infty, \lim _{\varepsilon \rightarrow 0^{+}} I_{F^{(\varepsilon)}}(\mu)=I_{F}(\mu)$. Then σ is the unique minimizer of I_{F}.

If $\mu \neq \sigma$, there must be some $m \in \mathbb{N}$ such that $I_{P_{m}^{(\alpha, \beta)}}(\mu)>0=I_{P_{m}^{(\alpha, \beta)}}(\sigma)$. Since $I_{G}(\sigma)=\widehat{G}_{0}$,

$$
\begin{aligned}
I_{F}(\mu)-I_{F}(\sigma) & =\lim _{\varepsilon \rightarrow 0^{+}}\left(I_{F^{(\varepsilon)}}(\mu)-I_{F^{(\varepsilon)}}(\sigma)\right) \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \sum_{n=1}^{\infty} \widehat{F^{(\varepsilon)}}{ }_{n} \int_{\Omega} \int_{\Omega} P_{n}^{(\alpha, \beta)}(\cos (\theta(x, y))) d \mu(x) d \mu(y) \\
& \geq \lim _{\varepsilon \rightarrow 0^{+}} \widehat{F^{(\varepsilon)}}{ }_{m} \int_{\Omega} \int_{\Omega} P_{m}^{(\alpha, \beta)}(\cos (\theta(x, y))) d \mu(x) d \mu(y) \\
& =\widehat{F}_{m} \int_{\Omega} \int_{\Omega} P_{m}^{(\alpha, \beta)}(\cos (\theta(x, y))) d \mu(x) d \mu(y)>0 .
\end{aligned}
$$

Domination of the Approximation

Proposition (Bilyk, M., Nathe)

Let $0 \leq s<\operatorname{dim}(\Omega)$. There exists constants $A, C>0$ such that for all $x, y \in \Omega$ and $\varepsilon>0$

$$
G_{s}^{(\varepsilon)}(\cos (\theta(x, y))) \leq\left\{\begin{array}{ll}
C G_{s}(\cos (\theta(x, y))) & s>0 \\
A+C G_{0}(\cos (\theta(x, y))) & s=0
\end{array} .\right.
$$

Domination of the Approximation

Proposition (Bilyk, M., Nathe)

Let $0 \leq s<\operatorname{dim}(\Omega)$. There exists constants $A, C>0$ such that for all $x, y \in \Omega$ and $\varepsilon>0$

$$
G_{s}^{(\varepsilon)}(\cos (\theta(x, y))) \leq \begin{cases}C G_{s}(\cos (\theta(x, y))) & s>0 \\ A+C G_{0}(\cos (\theta(x, y))) & s=0\end{cases}
$$

Theorem (Bilyk, M., Nathe)

Suppose a non-negative function $F \in L^{1}([-1,1], \nu)$ is continuous for $t \in(-1,1)$. Assume that for some $s \in[0, \operatorname{dim}(\Omega))$ there exist $a, a^{\prime}, c, c^{\prime}>0$ such that for all $t \in[-1,1]$

$$
\begin{aligned}
c G_{s}(x, y) & \leq F(\cos (\theta(x, y))) & \leq c^{\prime} G_{s}(x, y) & \\
a+c G_{0}(x, y) & \leq F(\cos (\theta(x, y))) \leq a^{\prime}+c^{\prime} G_{0}(x, y) & & \text { if } s=0 .
\end{aligned}
$$

If $\widehat{F}_{n}>0$ for all $n \in \mathbb{N}$, then σ is the unique minimizer of I_{F}.

Minimizers of Riesz Energies

Theorem (Bilyk, M., Nathe)

Suppose a non-negative function $F \in L^{1}([-1,1], \nu)$ is continuous for $t \in(-1,1)$. Assume that for some $s \in[0, \operatorname{dim}(\Omega))$ there exist $a, a^{\prime}, c, c^{\prime}>0$ such that for all $t \in[-1,1]$

$$
\begin{array}{rlrl}
c G_{s}(x, y) & \leq F(\cos (\theta(x, y))) & \leq c^{\prime} G_{s}(x, y) & \\
a f s>0 \\
a+c G_{0}(x, y) & \leq F(\cos (\theta(x, y))) & \leq a^{\prime}+c^{\prime} G_{0}(x, y) & \\
\text { if } s=0 .
\end{array}
$$

If $\widehat{F}_{n}>0$ for all $n \in \mathbb{N}$, then σ is the unique minimizer of I_{F}.

Corollary

If $-2<s \leq \operatorname{dim}(\Omega), I_{R, s}$ is uniquely minimized by σ.
If $-1<s$ and $2 \alpha-2 \beta-1 \leq s<\operatorname{dim}(\Omega), I_{G, s}$ is uniquely minimized by σ.

Minimization for Absolutely Continuous Measures

Proposition (Bilyk, M., Nathe)

Suppose $F \in L^{1}([-1,1], \nu)$, then

- If for all $n \in \mathbb{N}, \widehat{F}_{n} \geq 0$, then σ is a minimizer of I_{F} over all $\mu \in \mathcal{P}(\Omega)$ of the form $d \mu(x)=h(x) d \sigma(x)$ for some $h \in L^{1}(\Omega)$.
- If for all $n \in \mathbb{N}, \widehat{F}_{n}>0$, then σ is the unique minimizer of I_{F} over all $\mu \in \mathcal{P}(\Omega)$ of the form $d \mu(x)=h(x) d \sigma(x)$ for some $h \in L^{\infty}(\Omega)$.

Minimization for Absolutely Continuous Measures

Proposition (Bilyk, M., Nathe)

Suppose $F \in L^{1}([-1,1], \nu)$, then

- If for all $n \in \mathbb{N}, \widehat{F}_{n} \geq 0$, then σ is a minimizer of I_{F} over all $\mu \in \mathcal{P}(\Omega)$ of the form $d \mu(x)=h(x) d \sigma(x)$ for some $h \in L^{1}(\Omega)$.
- If for all $n \in \mathbb{N}, \widehat{F}_{n}>0$, then σ is the unique minimizer of I_{F} over all $\mu \in \mathcal{P}(\Omega)$ of the form $d \mu(x)=h(x) d \sigma(x)$ for some $h \in L^{\infty}(\Omega)$.

If $h \neq 1$, there is some $m \in \mathbb{N}$ such that $I_{P_{m}^{(\alpha, \beta)}}(\mu)>0=I_{P_{m}^{(\alpha, \beta)}}(\sigma)$.

Minimization for Absolutely Continuous Measures

Proposition (Bilyk, M., Nathe)

Suppose $F \in L^{1}([-1,1], \nu)$, then

- If for all $n \in \mathbb{N}, \widehat{F}_{n} \geq 0$, then σ is a minimizer of I_{F} over all $\mu \in \mathcal{P}(\Omega)$ of the form $d \mu(x)=h(x) d \sigma(x)$ for some $h \in L^{1}(\Omega)$.
- If for all $n \in \mathbb{N}, \widehat{F}_{n}>0$, then σ is the unique minimizer of I_{F} over all $\mu \in \mathcal{P}(\Omega)$ of the form $d \mu(x)=h(x) d \sigma(x)$ for some $h \in L^{\infty}(\Omega)$.

If $h \neq 1$, there is some $m \in \mathbb{N}$ such that $I_{P_{m}^{(\alpha, \beta)}}(\mu)>0=I_{P_{m}^{(\alpha, \beta)}}(\sigma)$. If

$$
S_{n}^{\delta} F(t):=\frac{1}{A_{n}^{\delta}} \sum_{k=0}^{n} A_{n-k}^{\delta} \widehat{F}_{k} P_{k}^{(\alpha, \beta)}(t)
$$

then for $\varepsilon>0$, for $n \geq m$ sufficiently large,

$$
I_{F}(\mu) \geq I_{S_{n}^{\delta} F}(\mu)-\left|I_{F}(\mu)-I_{S_{n}^{\delta} F}(\mu)\right| \geq I_{S_{n}^{\delta} F}(\sigma)+\frac{A_{n-m}^{\delta}}{A_{n}^{\delta}} \widehat{F}_{m} I_{P_{k}^{(\alpha, \beta)}}(\mu)-\varepsilon
$$

Minimization for Absolutely Continuous Measures

Proposition (Bilyk, M., Nathe)

Suppose $F \in L^{1}([-1,1], \nu)$, then

- If for all $n \in \mathbb{N}, \widehat{F}_{n} \geq 0$, then σ is a minimizer of I_{F} over all $\mu \in \mathcal{P}(\Omega)$ of the form $d \mu(x)=h(x) d \sigma(x)$ for some $h \in L^{1}(\Omega)$.
- If for all $n \in \mathbb{N}, \widehat{F}_{n}>0$, then σ is the unique minimizer of I_{F} over all $\mu \in \mathcal{P}(\Omega)$ of the form $d \mu(x)=h(x) d \sigma(x)$ for some $h \in L^{\infty}(\Omega)$.

If $h \neq 1$, there is some $m \in \mathbb{N}$ such that $I_{P_{m}^{(\alpha, \beta)}}(\mu)>0=I_{P_{m}^{(\alpha, \beta)}}(\sigma)$. If

$$
S_{n}^{\delta} F(t):=\frac{1}{A_{n}^{\delta}} \sum_{k=0}^{n} A_{n-k}^{\delta} \widehat{F}_{k} P_{k}^{(\alpha, \beta)}(t)
$$

then for $\varepsilon>0$, for $n \geq m$ sufficiently large,

$$
\begin{aligned}
I_{F}(\mu) \geq I_{S_{n}^{\delta} F}(\mu)-\left|I_{F}(\mu)-I_{S_{n}^{\delta} F}(\mu)\right| & \geq I_{S_{n}^{\delta} F}(\sigma)+\frac{A_{n-m}^{\delta}}{A_{n}^{\delta}} \widehat{F}_{m} I_{P_{k}^{(\alpha, \beta)}}(\mu)-\varepsilon \\
& \geq I_{F}(\sigma)+\frac{A_{n-m}^{\delta}}{A_{n}^{\delta}} \widehat{F}_{m} I_{P_{k}^{(\alpha, \beta)}}(\mu)-2 \varepsilon
\end{aligned}
$$

Open Problems/Questions

- Proving or disproving the Fejes Tóth conjecture.
- Determining the maximum value of s for which $\mu_{O N B}$ minimizes $I_{G, s}$
- Determining the minimum value of s for which σ minimized $I_{G, s}$.
- Determining what happens between these two values.
- How does the geometry of the space affect these values?
- Are there neat applications of the geodesic Riesz energies?
- Generalizing when positive Jacobi coefficient imply σ is a minimizer or F is CSPD.
- How well do these results extend to other spaces (Homogeneous spaces)?

Geodesic Riesz Energy on Spheres and Projective Spaces

Thank you!

[^0]
[^0]: ${ }^{0}$ The research in this presentation is in collaboration with Austin Anderson, Dmitriy Bilyk, Feng Dai, Maria Dostert, Peter Grabner, Joel Nathe, and Tetiana Stepaniuk, and is supported in part by the NSF Mathematical Sciences Postdoctoral Research Fellowship Grant 2202887.

