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Sum of Angles Between Lines

Fejes Tóth Sum of Acute Angles Problem ’59

For x, y ∈ Sd, let

φ(x, y) = arccos(|〈x, y〉|)
= min{arccos(〈x, y〉), π − arccos(〈x, y〉)}

Which N-point (multi)sets {x1, ..., xN} ⊂ Sd

maximize the sum
N∑

i,j=1
φ(xi, xj)?

Fejes Tóth Conjecture: A periodically repeating orthonormal basis
maximizes the sum, i.e. xj = ej mod (d+1).

Conjecture is true on S1 (Fodor, Vígh, Zarnócz ’16) and true for S2 for
N ≤ 6 (Fejes Tóth ’59).

Several partial results suggesting the conjecture is likely correct.
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Discrete Energy

Let (Ω, ρ) be a (compact) metric space. Given a lower semi-continuous,
symmetric (potential) function K : Ω× Ω→ (−∞,∞] the (discrete)
energy of a configuration (multiset) ωN = {z1, ..., zN} ⊂ Ω is

EK(ωN) =
∑
i6=j

K(zi, zj).

Often interested in potentials that depend on ρ.

For fixed N, what is the minimal (or maximal) energy? What
configurations are optimal, i.e. equilibrium solutions?

What happens as N →∞? Are the points uniformly distributed?
Well-separated? Do they cluster/concentrate?

Also interesting: Dynamics, systems at nonzero temperatures, systems
with external fields.
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Frame Energy

A set of points ωN = {z1, . . . , zN} ⊂ Sd is a tight frame iff for any
x ∈ Rd+1

N∑
k=1

|〈x, zk〉|2 =
N

d + 1
‖x‖2,

or, equivalently,

x =
d + 1

N

N∑
k=1

〈x, zk〉 zk.

Theorem (Benedetto, Fickus ’03)

A set ωN = {z1, . . . , zN} ⊂ Sd, N ≥ d + 1, is a tight frame in Rd+1 if and
only if ωN is a local/global minimizer of the frame energy:

EFrame(ωN) =
1

N2

N∑
i,j=1

|〈zi, zj〉|2.
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Riesz s-energies on the Sphere Sd

Riesz s-kernels
For s ∈ R, we define the Riesz kernel as

Rs(x, y) =

{
1
s ‖x− y‖−s s 6= 0
− log(‖x− y‖) s = 0

.

s = −1 (sum of distances): Minimizers also minimize quadratic
spherical cap discrepancy (Stolarsky ’73) and worst-case error for a
numeric integration in a certain Sobolev space (Brauchart, Dick ’13).

s = 0: Minimization results in Fekete points (used in approximation
theory).
s = d − 2: Minimizers of ER,s have optimal Wasserstein 2 distance
from uniform measure σ (Marzo, Mas, ’19; Steinerberger, ’19).
s ≥ d − 2: Minimizers are well-separated and uniformly distributed
(Damelin, Maymeskul ’05; Hardin, Saff ’05; Dragnev, Saff ’07)
s→∞: Minimizers of ER,s become best-packings on the sphere.
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Electrostatics: Thomson Problem

Thomson problem (1904)
Find the minimal energy configuration of N electrons interacting according
to Coulomb’s Law and constrained to the sphere S2, i.e. minimize the energy

ER,1(ωN) =
1

N2

∑
i6=j

1
‖zi − zj‖

.

Answer is known for
N = 2, 3, 4, 5, 6 and N = 12

5 points: triangular bi-pyramid
(R.E. Schwartz, 2013,
computer-assisted proof)
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Continuous Energy

Let (Ω, ρ) be a (compact) metric space. Given a lower semi-continuous,
symmetric (potential) function K : Ω× Ω→ (−∞,∞], the (continuous)
energy of a Borel probability measure µ ∈ P(Ω) is

IK(µ) =

∫
Ω

∫
Ω

K(x, y)dµ(x)dµ(y).

What measure(s) minimize IK?

Is the equilibrium measure unique?

Is it the uniform measure/volume form? Does it have “nice”
symmetries?

Is the support full dimensional, or lower dimensional?

Is it discrete?
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Discrete and Continuous Energy

Minimization of the discrete and continuous energies

EK(ωN) =
∑
i6=j

K(zi, zj), IK(µ) =

∫
Ω

∫
Ω

K(x, y)dµ(x)dµ(y).

are related:

lim
N→∞

min
ωN⊂Ω

EK(ωN)

N2 = min
µ∈P(Ω)

IK(µ),

and if µωN = 1
N

∑N
j=1 δzj , then

IK(µωN ) =
1

N2

(
EK(ωN) +

N∑
j=1

K(zj, zj)
)
.

If {ω∗N}∞N=2 are minimizers of EK and µω∗N
∗
⇀ µ, then µ minimizes IK .
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Compact Connected Two-Point Homogeneous Spaces

We call Ω two-point homogeneous if for all x1, x2, y1, y2 ∈ Ω s.t.
ρ(x1, x2) = ρ(y1, y2), there exists an isometry h such that h(xi) = yi.
Examples include Hamming Spaces and Rd. The only such spaces that are
also compact and connected are Sd, RPd, CPd, HPd, OP1, and OP2.

Each of these spaces has a geodesic metric θ(x, y) ≤ π and a chordal metric

ρ(x, y) = sin

(
θ(x, y)

2

)
=

√
1− cos(θ(x, y))

2
,

and can be embedded via a map A : Ω → Sd′

such that

ρ(x, y) = c||A(x)− A(y)||.

Ryan W. Matzke Geodesic Riesz Energy on Spheres and Projective Spaces



Compact Connected Two-Point Homogeneous Spaces

We call Ω two-point homogeneous if for all x1, x2, y1, y2 ∈ Ω s.t.
ρ(x1, x2) = ρ(y1, y2), there exists an isometry h such that h(xi) = yi.
Examples include Hamming Spaces and Rd. The only such spaces that are
also compact and connected are Sd, RPd, CPd, HPd, OP1, and OP2.

Each of these spaces has a geodesic metric θ(x, y) ≤ π and a chordal metric

ρ(x, y) = sin

(
θ(x, y)

2

)
=

√
1− cos(θ(x, y))

2
,

and can be embedded via a map A : Ω → Sd′

such that

ρ(x, y) = c||A(x)− A(y)||.

Ryan W. Matzke Geodesic Riesz Energy on Spheres and Projective Spaces



Chordal Riesz Energy on the Sphere

For each space Ω, the (chordal) Riesz s-kernels and logarithmic kernel are

Rs(x, y) =

{
ρ(x,y)−s

s , s ∈ R \ {0}
− log(ρ(x, y)), s = 0

.

Theorem (Classical; Riesz, ’38; Björck, ’56)

Let s < d. Then the minimizers of IR,s on Sd are:

If −2 < s, σ (uniquely).

If s = −2, every measure with center of mass at the origin, i.e.∫
Sd

cos(θ(x, y))dµ(x) =

∫
Sd
〈x, y〉dµ(x) = 0, ∀y ∈ Sd.

If s < −2, every measure of the form 1
2 (δp + δ−p), p ∈ Sd.
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Chordal Riesz Energy on Projective Spaces
For each space Ω, the (chordal) Riesz s-kernels and logarithmic kernel are

Rs(x, y) =

{
ρ(x,y)−s

s , s ∈ R \ {0}
− log(ρ(x, y)), s = 0

.

Theorem (Chen, Hardin, Saff ’21; Anderson, Dostert, Grabner, M.,
Stepaniuk, ’23; Bilyk, M., Nathe, ’24)

Let s < dim(FPd). Then the minimizers of IR,s are:

If −2 < s, σ (uniquely).

If s = −2, every measure µ such that∫
Ω

cos(θ(x, y))dµ(x) = 0 ∀y ∈ FPd.

If s < −2, every measure of the form 1
d+1

∑d+1
j=1 δej , where

{e1, ..., ed+1} ⊂ FPd is a set where all element are diameter apart, i.e.
points corresponding to an orthonormal basis in Fd+1.
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Discrete Chordal Riesz Energy on Projective Spaces

s = −2: If F = R,C, minimizers of ER,−2 correspond to tight frames
in Fd+1:

R−2(x, y) =
cos(θ(x, y))− 1

2
=
|〈x, y〉|2 − 1

2

s = −1 (sum of distances): Minimizers of ER,−1 also minimize the L2

discrepancy with respect to balls (Skriganov ’19).

s→∞: Minimizers of ER,s become best line-packings/Grassmannian
frames, i.e. they minimize coherence, maxi 6=j |〈zi, zj〉| (Chen, Hardin,
Saff ’21).

s ≥ 0: As N →∞, the minimizers of ER,s are “nearly tight” (Chen,
Hardin, Saff ’21), i.e. ZN = [z1, ..., zN ]

lim
N→∞

1
N

ZNZ∗N =
1

d + 1
Id+1.
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Geodesic Riesz Energy on the Sphere

For each space Ω, the (geodesic) Riesz s-kernels and logarithmic kernel are

Gs(x, y) =

{
θ(x,y)−s

s s ∈ R \ {0}
− log(θ(x, y)) s = 0

.

Theorem (Brauchart, Hardin, Saff ’12; Bilyk, Dai, M. ’18; Bilyk, Dai ’19)

Let s < d. Then the minimizers of IG,s on Sd are:

If −1 < s, σ (uniquely).

If s = −1, every centrally symmetric measure.

If s < −1, every measure of the form 1
2 (δp + δ−p), p ∈ Sd.

Minimizing EG,−1 (maximizing the sum of distances) was another
problem posed by Fejes Tóth (solved by Kelly ’70).

Minimizing EG,−1 is equivalent to minimizing the L2 discrepancy with
respect to hemispheres (Bilyk, Dai, M. ’18).
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Geodesic Riesz Energy on Projective Spaces

Since RP1 ' S1, CP1 ' S2, HP1 ' S4, OP1 ' S8, only consider d ≥ 2.

Theorem (Lim, McCann (plus Bilyk, Glazyrin, M., Park, Vlasiuk) ’22;
Bilyk, M., Nathe)

Let d ≥ 2, s < dim(FPd) = D. Then the minimizers of IG,s are:

If Ω = RPd (D = d) and D− 2 ≤ s, σ (uniquely).

If Ω = CPd (D = 2d) and D− 3 ≤ s, σ (uniquely).

If Ω = HPd (D = 4d) and D− 5 ≤ s, σ (uniquely).

If Ω = OP2 (D = 16) and D− 9 ≤ s, σ (uniquely).

If s ≤ −2, every measure of the form 1
d+1

∑d+1
j=1 δej , where

{e1, ..., ed+1} ⊂ FPd is a set where all element are diameter apart, i.e.
points corresponding to an orthonormal basis in Fd+1.
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Geodesic Riesz Energy on Spheres and Projective Spaces

Let α = dimR(Ω)
2 − 1 and β = dimR(F)

2 − 1 if Ω = FPd and β = α if Ω = Sd

Theorem (Bilyk, M., Nathe)
The minimizers of IG,s are:

If −1 < s and 2α− 2β − 1 ≤ s < dim(Ω) = 2α+ 2, σ (uniquely).

If s ≤ −2, every measure uniformly distributed on a maximal discrete
set with all elements diameter apart.

For FPd, d ≥ 2:

We believe the bound s ≤ −2 can be improved to s < −1.

There may be a transition point at s = −1, but σ is not a minimizer.

Unclear if 2α− 2β − 1 is sharp, but lower bound must increase with
dimension. σ is a minimizer for IG,0 on RP2, but not on RP4.

There cannot be a single transition point of minimizers: no minimizer
of IG,0 can have discrete support, but on RP4, σ is not a minimizer.
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Connection to Fejes Tóth Conjecture

Fejes Tóth Conjecture ’59

For x, y ∈ Sd, let

φ(x, y) = arccos(|〈x, y〉|)
= min{arccos(〈x, y〉), π − arccos(〈x, y〉)}

Then Eφ(ωN) =
∑

i6=j φ(zi, zj) is maximized
by periodically repeated elements of an
orthonormal basis, i.e. zj = ej mod (d+1).

The acute angle φ on Sd corresponds to θ on RPd.

Continuous Fejes Tóth Conjecture

The energy IG,−1 on RPd is minimized by any measure of the form
µONB = 1

d+1
∑d+1

j=1 δej , where {e1, ..., ed+1} ⊂ RPd is a set where all
element are diameter apart, i.e. points corresponding to an ONB in Rd+1.
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Connection to Fejes Tóth Conjecture

Continuous Fejes Tóth Conjecture

The energy IG,−1 on RPd is minimized by any measure of the form
µONB = 1

d+1
∑d+1

j=1 δej , where {e1, ..., ed+1} ⊂ RPd is a set where all
element are diameter apart, i.e. points corresponding to an ONB in Rd+1.

If the conjecture holds true, IG,−1 has minimizers other than those of the
form µONB. For instance, if A and B are copies of RP1 in RP3 and diameter
apart, and σA, σB are uniform probability measures on each, 1

2(σA + σB)
would minimize IG,−1.

Theorem (Lim, McCann (plus Bilyk, Glazyrin, M., Park, Vlasiuk) ’22)

Let d ≥ 2. For RPd, there exists a unique s∗ ∈ (−2,−1] such that for
s > s∗, µONB is not a minimizer of IG,s, and for s < s∗, IG,s is exactly
minimized by measures of the form µONB.
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Discrete Minimizers

Theorem (Lim, McCann (plus Bilyk, Glazyrin, M., Park, Vlasiuk) ’22)

Let d ≥ 2. For RPd, there exists a unique s∗ ∈ (−2,−1] such that for
s > s∗, µONB is not a minimizer of IG,s, and for s < s∗, IG,s is exactly
minimized by measures of the form µONB.

2R−2(x, y) =
cos(θ(x, y))− 1

2
≤ −θ(x, y)2

π2 =
2
π2 G−2(x, y)

with equality iff θ(x, y) ∈ {0, π}. Thus

1
π2 IG,−2(µ) ≥ IR,−2(µ) ≥ IR,−2(µONB).

Similarly, for s < s∗,

IG,s(µ) ≥ πs∗−s s∗

s
IG,s∗(µ) ≥ πs∗−s s∗

s
IG,s∗(µONB).

In both case, equality holds iff µ is of the form µONB.
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From Two-point Homogeneous Spaces to the Interval

Let α = dimR(Ω)
2 − 1 and β = dimR(F)

2 − 1 if Ω = FPd and β = α if Ω = Sd.

The Jacobi polynomials P(α,β)
k (t) form an orthogonal basis on L2([−1, 1], ν),

where dν(t) = γ(1− t)α(1 + t)βdt.

For any F ∈ L1([−1, 1], ν),∫
Ω

∫
Ω

F(cos(θ(x, y)))dσ(x)dσ(y) =

∫ 1

−1
F(t)dν(t) = F̂0

F(t) ∼
∞∑

n=0

F̂(n)Pα,βn (t).

For the sphere, α = β, giving us the
Gegenbauer polynomials, with weight
dν(t) = γ(1− t2)

d−2
2 dt.
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Conditional Strict Positive Definiteness
We call a real-valued kernel conditionally positive definite if for any set of
points ωN = {z1, ..., zN} ⊂ Ω

N∑
i,j=1

K(zi, zj)cicj ≥ 0 for all ci ∈ R, with
N∑

j=1

cj = 0.

Extending this, a kernel K is conditionally positive definite if for any finite
signed Borel measure τ on Ω satisfying ν(Ω) = 0,∫

Ω

∫
Ω

K(x, y)dτ(x)dτ(y) ≥ 0.

The kernel is called conditionally strictly positive definite (CSPD) if
equality occurs iff τ ≡ 0.

Theorem
If K is conditionally strictly positive definite on Ω, then IK has a unique
minimizer.
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Conditional Strict Positive Definiteness
We call F : [−1, 1]→ (−∞,∞] conditionally strictly positive definite
(CSPD) on Ω if for any finite signed Borel measure τ on Ω satisfying
τ(Ω) = 0 and τ 6≡ 0,

IF(τ) :=

∫
Ω

∫
Ω

F
(

cos
(
θ(x, y)

))
dτ(x)dτ(y) > 0.

Theorem
If F(cos(θ(x, y))) is conditionally strictly positive definite on Ω, then IF is
uniquely minimized by σ.

For the unique minimizer µ of IF and any isometry g of Ω,

IF(µ) =

∫
Ω

∫
Ω

F
(

cos
(
θ(x, y)

))
dµ(x)dµ(y)

=

∫
Ω

∫
Ω

F
(

cos
(
θ
(
g(x), g(y)

)))
dµ(x)dµ(y) = IF(g#µ).
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User-Friendly Energy

Theorem (Bochner ’41; Schoenberg ’42; Bilyk, M., Vlasiuk ’22; Anderson,
Dostert, Grabner, M., Stepaniuk ’23)

Let F ∈ C([−1, 1]). Then the following are equivalent:
1 σ is the unique minimizer of IF over P(Ω).
2 For all n ∈ N, F̂n > 0.
3 F is conditionally strictly positive definite on Ω.

For general F ∈ L1([−1, 1], ν), the only known implications are

If F is CSPD, σ is the unique minimizer of IF.

If σ uniquely minimizes IF, then F̂n > 0 for all n ∈ N.

Goal: Want the most general class of functions F such that F̂n > 0 for all
n ∈ N implies F is CSPD and/or σ is the unique minimizer.
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Continuous Approximation
For any non-negative F ∈ L1([−1, 1], ν) and ε > 0, let

F(ε)
(

cos
(
θ(x, y)

))
:=

1
(σ(Bε))2

∫
Bε(x)

∫
Bε(y)

F
(

cos
(
θ(u, v)

))
dσ(u)dσ(v).

lim
ε→0+

F(ε)(t) = F(t) everywhere F is continuous (in the extended

sense).
F̂(ε)

n ≥ 0 and lim
ε→0+

F̂(ε)
n = F̂n for all n ∈ N0.

F(ε)(t) is continuous

Theorem (Mercer 1909)

If F ∈ C([−1, 1]) is conditionally positive definite, then

F(t) =

∞∑
n=0

F̂nP(α,β)
n (t),

where the series converges absolutely and uniformly on [−1, 1].
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F(ε)(t) = F(t) everywhere F is continuous (in the extended

sense).
F̂(ε)

n ≥ 0 and lim
ε→0+

F̂(ε)
n = F̂n for all n ∈ N0.

F(ε)(t) is continuous

Theorem (Mercer 1909)

If F ∈ C([−1, 1]) is conditionally positive definite, then

F(t) =

∞∑
n=0

F̂nP(α,β)
n (t),

where the series converges absolutely and uniformly on [−1, 1].
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Extending the Implication

Theorem (Bilyk, M., Nathe)

Suppose F ∈ L1([−1, 1], ν) is bounded from below, F̂n > 0 for all n ∈ N,
and for all µ ∈ P(Ω) such that IF(µ) <∞, lim

ε→0+
IF(ε)(µ) = IF(µ). Then σ

is the unique minimizer of IF.

If µ 6= σ, there must be some m ∈ N such that I
P(α,β)

m
(µ) > 0 = I

P(α,β)
m

(σ).

Since IG(σ) = Ĝ0,

IF(µ)− IF(σ) = lim
ε→0+

(
IF(ε)(µ)− IF(ε)(σ)

)
= lim

ε→0+

∞∑
n=1

F̂(ε)
n

∫
Ω

∫
Ω

P(α,β)
n (cos(θ(x, y)))dµ(x)dµ(y)

≥ lim
ε→0+

F̂(ε)
m

∫
Ω

∫
Ω

P(α,β)
m (cos(θ(x, y)))dµ(x)dµ(y)

= F̂m

∫
Ω

∫
Ω

P(α,β)
m (cos(θ(x, y)))dµ(x)dµ(y) > 0

.
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Domination of the Approximation

Proposition (Bilyk, M., Nathe)

Let 0 ≤ s < dim(Ω). There exists constants A,C > 0 such that for all
x, y ∈ Ω and ε > 0

G(ε)
s (cos(θ(x, y))) ≤

{
CGs(cos(θ(x, y))) s > 0
A + CG0(cos(θ(x, y))) s = 0

.

Theorem (Bilyk, M., Nathe)

Suppose a non-negative function F ∈ L1([−1, 1], ν) is continuous for
t ∈ (−1, 1). Assume that for some s ∈ [0,dim(Ω)) there exist a, a′, c, c′ > 0
such that for all t ∈ [−1, 1]

cGs(x, y) ≤ F(cos(θ(x, y))) ≤ c′Gs(x, y) if s > 0

a + cG0(x, y) ≤ F(cos(θ(x, y))) ≤ a′ + c′G0(x, y) if s = 0.

If F̂n > 0 for all n ∈ N, then σ is the unique minimizer of IF.
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Minimizers of Riesz Energies

Theorem (Bilyk, M., Nathe)

Suppose a non-negative function F ∈ L1([−1, 1], ν) is continuous for
t ∈ (−1, 1). Assume that for some s ∈ [0,dim(Ω)) there exist a, a′, c, c′ > 0
such that for all t ∈ [−1, 1]

cGs(x, y) ≤ F(cos(θ(x, y))) ≤ c′Gs(x, y) if s > 0

a + cG0(x, y) ≤ F(cos(θ(x, y))) ≤ a′ + c′G0(x, y) if s = 0.

If F̂n > 0 for all n ∈ N, then σ is the unique minimizer of IF.

Corollary

If −2 < s ≤ dim(Ω), IR,s is uniquely minimized by σ.

If −1 < s and 2α− 2β − 1 ≤ s < dim(Ω), IG,s is uniquely minimized by σ.
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Minimization for Absolutely Continuous Measures

Proposition (Bilyk, M., Nathe)

Suppose F ∈ L1([−1, 1], ν), then

If for all n ∈ N, F̂n ≥ 0, then σ is a minimizer of IF over all µ ∈ P(Ω)
of the form dµ(x) = h(x)dσ(x) for some h ∈ L1(Ω).

If for all n ∈ N, F̂n > 0, then σ is the unique minimizer of IF over all
µ ∈ P(Ω) of the form dµ(x) = h(x)dσ(x) for some h ∈ L∞(Ω).

If h 6= 1, there is some m ∈ N such that I
P(α,β)

m
(µ) > 0 = I

P(α,β)
m

(σ). If

SδnF(t) :=
1

Aδn

n∑
k=0

Aδn−kF̂kP(α,β)
k (t)

then for ε > 0, for n ≥ m sufficiently large,

IF(µ) ≥ ISδn F(µ)−
∣∣∣IF(µ)− ISδn F(µ)

∣∣∣ ≥ ISδn F(σ) +
Aδn−m

Aδn
F̂mI

P(α,β)
k

(µ)− ε

≥ IF(σ) +
Aδn−m

Aδn
F̂mI

P(α,β)
k

(µ)− 2ε
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Open Problems/Questions

Proving or disproving the Fejes Tóth conjecture.

Determining the maximum value of s for which µONB minimizes IG,s

Determining the minimum value of s for which σ minimized IG,s.

Determining what happens between these two values.

How does the geometry of the space affect these values?

Are there neat applications of the geodesic Riesz energies?

Generalizing when positive Jacobi coefficient imply σ is a minimizer or
F is CSPD.

How well do these results extend to other spaces (Homogeneous
spaces)?
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Geodesic Riesz Energy on Spheres and Projective Spaces

Thank you!
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