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Packing by spherical caps

If unit spheres kiss the unit sphere S ,
then the set of kissing points is the ar-
rangement on S such that the angular
distance between any two points is at
least 60◦. Thus, the kissing number
is the maximal number of nonoverlap-
ping spherical caps of radius 30◦ on S.
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Packing spheres by spherical caps: Methods

I. Area inequalities. L. Fejes Tóth (1943); for d > 3 Coxeter (1963) and
Böröczky (1978)

II. Contact and distance graphs. Schütte – van der Waerden (1951);
Danzer (1963); Leech (1956);...

III. LP bounds. Delsarte et al (1977); Kabatiansky and Levenshtein
(1978); Odlyzko & Sloane (1979), ...

IV. SDP bounds. 3–point SDP: Bachoc and Vallentin (2008); k–point
SDP: M. (2007, 2014); ...
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Two-point-homogeneous space

Let M be a metric space with distance function d . M is said to be a
two-point homogeneous space if for any two pairs (p, q) and (p′, q′) of
points in M, satisfying the condition d(p, q) = d(p′, q′), there is an
isometry F of M, such that F (p) = p′ and F (q) = q′.

Let M be a compact connected two–point homogeneous spaces
(Riemannian symmetric spaces of rank one).Then
M = Sn,RPn,CPn,QPn,CayP2 [Wang, 1952]
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Zonal spherical functions

With any compact 2-point-homogeneous space M are associated the zonal
spherical functions Φk(t), k = 0, 1, 2, . . . , and the distance function
τ(x , y), where x , y ∈M.
For all continuous compact M and for all currently known finite cases:
Φk(t) is a polynomial of degree k .

If M = Hamming space, then Φk(t) is the Krawtchouk polynomial
Kk(t, n).

If M = unit sphere Sn−1 ⊂ Rn, then the corresponding zonal spherical

function Φk(t) is the Gegenbauer (or ultraspherical) polynomial G
(n)
k (t).
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The main property for zonal spherical functions is called “positive-definite
degenerate kernels” or p.d.k. This property first was discovered by Bochner
(general spaces) and independently for spherical spaces by Schoenberg:

Let M be a 2-point-homogeneous space. Then for any integer k ≥ 0 and
for any finite C = {xi} ⊂ M the matrix

(
Φk(τ(xi , xj))

)
is positive

semidefinite.
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LP and SDP bounds for spherical codes

N ≤ f (1)

f0

N ≤ f (1) + ĥ(n,T , f )

f0

N2 ≤ f (1, 1, 1) + 3(N − 1)B

f0

N2 ≤ f (1, 1, 1) + 3(N − 1)B + 3N ĥ(n,T , g)

f0

N3 ≤ f (1, 1, 1, 1, 1, 1) + 4(N − 1)B1 + 3(N − 1)B2 + 6(N − 1)(N − 2)B3

f0
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Uniqueness of the max kissing arrangement in 4 dim?

David de Laat, Nando M. Leijenhorst, Willem H. H. de Muinck Keizer:

“Optimality and uniqueness of the D4 root system”

arXiv:2404.18794

N3 ≤ f (1, 1, 1, 1, 1, 1) + 4(N − 1)B1 + 3(N − 1)B2 + 6(N − 1)(N − 2)B3

f0
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Kissing numbers
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Status 2024: Kissing numbers

The only exact values of kissing numbers known:

n lattice regular polytope

k(1) = 2 A1

k(2) = 6 A2 hexagon
k(3) = 12 H3 icosahedron
k(4) = 24 ?D4 ?24-cell
k(8) = 240 E8

k(24) =196,560 Λ24
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The 24–cell

n = 4: There are 24 vectors with two zero components and two
components equal to ±1; they all have length

√
2 and a minimum distance

of
√

2. Properly rescaled (that is, multiplied by
√

2), they yield the centers
for a kissing configuration of unit spheres and imply that k(4) ≥ 24. The
convex hull of the 24 points yields a famous 4-dimensional regular
polytope, the “24-cell”, discovered in 1842 by Ludwig Schläfli. Its facets
are 24 regular octahedra.
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The four dimensional lattice packing D4

The checkerboard lattice Dn := {(x1, . . . , xn) ∈ Zn : x1 + . . .+ xn even}

D∗4 = D4

The Voronoi cell of D4 is the regular 24-cell

The density ∆4 = π2/16 = 0.6169...

The densest packing by unit spheres in four dimensions is
conjectured to be the D4

The center density=∆/B:
CD4 = 0.12500;
Cohn–Elkies bound = 0.13126;
de Laat – de Oliveira Filho – Vallentin = 0.130587
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The 24–cell conjecture

Consider the Voronoi decomposition of any given packing P of unit
spheres in R4. The minimal volume of any cell in the resulting Voronoi
decomposition of P is at least as large as the volume of a regular 24–cell
circumscribed to a unit sphere.
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Delsarte’s method

Ph. Delsarte (1972); V. M. Sidelnikov (1974)
Delsarte, Goethals and Seidel (1975, 1977)
G.A. Kabatiansky and V.I. Levenshtein (1978)

Theorem (Delsarte et al)

If

f (t) =
d∑

k=0

ckG
(n)
k (t)

is nonnegative combination of Gegenbauer polynomials, with ck ≥ 0 and
c0 > 0, and if f (t) ≤ 0 holds for all t ∈ [−1, 1

2 ], then the kissing number
in n dimensions is bounded by

k(n) ≤ f (1)

c0
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K(8)=240; k(24)=196560

G.A. Kabatiansky and V.I. Levenshtein (1978):

20.2075n(1+o(1)) ≤ k(n) ≤ 20.401n(1+o(1))

In 1979: V. I. Levenshtein and independently A. Odlyzko and N.J.A.
Sloane using Delsarte’s method have proved that k(8) = 240, and
k(24) = 196560.

Odlyzko & Sloane: upper bounds on k(n) for n = 4, 5, 6, 7, and 8 are 25,
46, 82, 140, and 240, respectively.
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The bound for kissing numbers (M., 2003, 2008)

Let f (x) =
∑

fkG
(n)
k (x), fk ≥ 0, f0 > 0

f (x) ≤ 0 for all x ∈ [−1, 1/2] \ T .

Then

N ≤ f (1) + ĥ(n,T , f )

f0
.

n = 4; T = [−1,−0.6058], f0 = 1, N < 24.865
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The kissing problem in four dimensions

f4(t) = 53.76t9−107.52t7+70.56t5+16.38t4−9.83t3−4.12t2+0.434t−0.016

Lemma

Let P = {p1, . . . , pm} be unit vectors in R4 (i.e. points on the unit sphere
S3). Then

S(P) =
∑
k,`

f4(pk · p`) ≥ m2.

Lemma

Let P = {p1, . . . , pm} be a kissing arrangement on the unit sphere S3 (i.e.
pk · p` ≤ 1

2 ). Then

S(P) =
∑
k,`

f4(pk · p`) < 25m.
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The graph of y = f4(t)
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Bachoc–Vallentin SDP bound

D :=
{

(x , y , z) : −1 ≤ x , y , z ≤ 1/2, 1 + 2xyz − x2 − y2 − z2 ≥ 0
}
.

BV(n, f0) := {F : F(x, y, z) =
∑
〈Fk, S

n
k(x, y, z)〉, Fk � 0, F0−f0E0 � 0}

Suppose
(1) F ∈ BV(n, f0),
(2) F (x , x , 1) ≤ B for all x ∈ [−1, 1/2],
(3) F (x , y , z) ≤ 0 for all (x , y , z) ∈ D,
Then

N2 ≤ F (1, 1, 1) + 3(N − 1)B

f0
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dim=4: uniqueness of the maximal kissing arrangement

LP bound [Odlyzko & Sloane; Arestov & Babenko] = 25.558...

M. (2003): k(4) < 24.865

C. Bachoc & F. Vallentin (2008): S7(4) = 24.5797...

H. D. Mittelmann & F. Vallentin (2010)
S11(4) = 24.10550859...
S12(4) = 24.09098111...
S13(4) = 24.07519774...
S14(4) = 24.06628391...

F.C. Machado & F.M. de Oliveira Filho (2018)
S15(4) = 24.062758...
S16(4) = 24.056903...
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gT (x) = g(x) for x ∈ T and gT (x) = 0 otherwise.

Definition

For given n, f0, T ⊂ [−1, 1), g : T → R, B and θ denote by
F(n, f0,T , g ,B, θ) the class of symmetric polynomials F (x , y .z) that
satisfy the following properties:

1 F ∈ BV(n, f0),

2 F (x , x , 1) ≤ B + 6gT (x) for all x ∈ [−1, cos θ],

3 F (x , y , z) ≤ gT (x) + gT (y) + gT (z) for all (x , y , z) ∈ D(θ).

Theorem (M., 2019)

Let F ∈ F(n, f0,T , g ,B, θ). Then an (N, n, θ) spherical code satisfies the
following inequality

N2 ≤ F (1, 1, 1) + 3(N − 1)B + 3N ĥ(n, θ,T , g)

f0
.
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Distance distribution

Let C be an (N, n, θ) spherical code. The distance distribution of C is the
system of numbers {At : −1 ≤ t ≤ 1}.

At(u) := |{v ∈ C : v · u = t}|, At :=
1

N

∑
u∈C

At(u).

At = 0 for s := cos θ < t < 1,
∑

−1≤t≤s
At = N − 1.

A(T ) :=
∑

t∈T :At>0

At , T ⊂ [−1, 1].
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SDP bounds for distance distribution

Theorem (M., 2019)

Let F ∈ F(n, f0,T , g ,B, θ). Suppose T ⊂ [−1, cos θ] and g(t) ≤ −a < 0
for all t ∈ T . Then for every (N, n, θ) spherical code C we have

A(T ) ≤ 2

N
bQc , Q :=

F (1, 1, 1) + 3(N − 1)B − f0N
2

6a
.

Theorem (M., 2019)

Let F ∈ F(n, f0,T , g ,B, θ). Let a > 0. Suppose T ⊂ [−1, cos θ] and
g(t) ≤ a for all t ∈ T . Then for every (N, n, θ) spherical code C we have

A(T ) ≥ 2

N
dRe , R :=

f0N
2 − F (1, 1, 1)− 3(N − 1)B

6a
.
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Distance distribution of the 24–cell

Kissing arrangement in four dimensions:

A({−1}) = 1, A({−1/2}) = 8, A({0}) = 6, A({1/2}) = 8

At = 0 for all t 6= {−1, −1/2, 0, 1/2, 1}
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SDP bounds on (24, 4, π/3) – spherical code

Theorem (Dostert–Kolpakov–Moustrou–M.)

Let C be a (24, 4, π/3) – spherical code. Then

A([−1,−0.45]) ≤ 9; A([−1, 0.35]) ≤ 15,

A([−0.73, 0.35]) ≤ 14, A([−0.05, 0.5] ≤ 14,

A([−1,−0.73]) ≥ 1, A([0.35, 0.5]) ≥ 8
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General bounds for spherical codes

Let C be an N–element subset of the unit sphere Sn−1 ⊂ Rn.

I (C ) := {t = x · y | x , y ∈ C & x 6= y}.

Let T ⊂ [−1, 1). We say that C is an (N, n,T ) spherical code if
I (C ) ⊂ T .

Let g be a real function on I (C ). Define

Eg (C ) :=
∑

(x ,y)∈C2,x 6=y

g(x · y)

Sg (C ) :=
∑

(x ,y)∈C2

g(x · y) = Eg (C ) + Ng(1)
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General 2-point (Delsarte – Yudin) bound

Theorem

Let C be an (N, n,T ) spherical code. Suppose g : T → R,
f : [−1, 1]→ R and f0 ∈ R are such that

1 f (t) ≤ g(t) for all t ∈ T .

2 Sf (C ) ≥ f0N
2.

Then
f0N

2 ≤ Nf (1) + Eg (C )
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General 3-point bound

D3(T ) :=
{

(t, u, v) : t, u, v ∈ T & 1 + 2tuv − t2 − u2 − v2 ≥ 0
}
.

Theorem

Let C be an (N, n,T ) spherical code and F : [−1, 1]3 → R be a symmetric
function. Suppose f : T → R and g : T → R, are such that

1 F (1, t, t) ≤ f (t) for all t ∈ T ,

2 F (t, u, v) ≤ g(t) + g(u) + g(v) for all (t, u, v) ∈ D3(T ).

If
SF (C ) :=

∑
(x ,y ,z)∈C3

F (x · y , x · z , y · z) ≥ F0N
3,

where F0 ∈ R, then

F0N
3 ≤ NF (1, 1, 1) + 3Ef (C ) + (3N − 6)Eg (C ).
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General 3-point bound

Corollary

Under the assumptions of Theorem let f (t) = B + 2g(t)− q(t) with
q : [−1, 1]→ R. If q(C ) ≥ 0, then

Eg (C ) =
∑
t∈T

Atg(t) ≥ rg ,

rg =
1

3
(F0N

2 − F (1, 1, 1))− q(1)− (N − 1)B.

Let p be a Gegenbauer polynomial Gn
k . Then Sp(C ) ≥ 0, i.e.

Ep(C ) =
∑
t∈T

Atp(t) ≥ rp, rp = −Np(1)
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General 3-point bound: SDP program

Corollary

Let a0, . . . , ad ≥ 0, F0, . . . ,Fd � 0, T ⊂ [−1, 1), g : T → R, M ∈ R,

F (u, v , t) =
∑

k

〈
Fk ,S

n
k (u, v , t)

〉
. If

a0 + ...+ ad + F (1, 1, 1) ≤ M − 1, (1)
d∑

k=0

akG
n
k (u) + 3F (u, u, 1) ≤ −1 + 6g(u) for u ∈ T , (2)

F (u, v , t) ≤ g(u) + g(v) + g(t) for (u, v , t) ∈ D3(T ). (3)

Then for every (N, n,T ) spherical code, we have∑
t∈T

Atg(t) ≥ N −M

3N
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Polynomial g1

The following polynomial gives a sharp lower bound in [−1,−0.73], a =
1/50 and M= 22.645212490128051

p1(x) =
22∑
k=0

ckG
(4)
k (x),

where [c0, ..., c22] = [0.222, 0.8648, 1.8875, 3.1425, 4.5059, 5.7052,
6.5739, 6.9286, 6.7119, 6.0157, 4.9575, 3.7767, 2.6446, 1.6914, 0.9947,
0.5249, 0.2524, 0.1097, 0.0409, 0.0153, 0.0042, 0.001, 0.0002].

Let g1 = k p2, where k = 100/p1(−1). Then g1(−1) = 100. Let
T = [−1, 0.5]. The Corollary yields∑

t∈T
Atg1(t) ≥ B1(24) ≈ 95 > −52.2431 = LP(24).
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Example: gSDP

Oleg R. Musin The SDP and LP bounds for optimal spherical configurations using their distance distribution34 / 40



Example

Since ∑
t∈[−1,0.5]

Atg1(t) ≥ 95

we have
A([−1,−0.73]) ≥ 1
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Polynomial p2

p2(x) =
22∑
k=0

ckG
(4)
k (x),

[c0, ..., c22]= [-0.5438, -2.0024, -3.8887, -5.6414, -6.7025, -6.8508,
-6.0698, -4.6566, -3.0047, -1.4686, -0.3226, 0.3704, 0.6521, 0.6486,
0.5104, 0.3361, 0.1911, 0.0963, 0.0411, 0.0157, 0.0056, 0.001, 0.0004].

The SDP bound in the Corollary gives M = M2 := 22.5689,
B2(25) = 0.0324 and B2(24) = 0.0199.
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Short proof: k(4) = 24

Theorem 1 (M., 2008) yields that

k(4) ≤ 1

c0
max{h0, h1, ..., hµ, }

Let C be an (25, 4, π/3) spherical code,

R2 :=
∑
t

Atg1(t)

Since g2(t) ≤ 0 for all t ∈ [−
√

2/2, 1/2], we have t0 = −
√

2/2 and µ = 4.
Then we consider s µ = 0, 1, 2, 3, 4 to find the maximum of R2.
This maximum is achieved at µ = 2 and is 0.0266, i.e. R2 < 0.0266. On
the other side we have R2 > B2(25) = 0.0324, a contradiction.
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Polynomial g3

c(0 : 17] =[3.2313 34.6000 97.5893 137.3081 119.9142 74.1812 36.5605
15.0065 4.2796 0.0946 -0.7087 -0.4672 -0.1755 -0.0283 0.0097 0.0070
0.0016 0.0001] ∑

t∈[−1,0.5]

Atg3(t) > R3 = 7.93
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Polynomial g3
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Thank you
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