The SDP and LP bounds for optimal spherical configurations using their distance distribution

Oleg R. Musin

University of Texas Rio Grande Valley
If unit spheres kiss the unit sphere S, then the set of kissing points is the arrangement on S such that the angular distance between any two points is at least 60°. Thus, the kissing number is the maximal number of nonoverlapping spherical caps of radius 30° on S.

Packing by spherical caps
I. Area inequalities. **L. Fejes Tóth** (1943); for $d > 3$ **Coxeter** (1963) and **Böröczky** (1978)

II. Contact and distance graphs. **Schütte – van der Waerden** (1951); **Danzer** (1963); **Leech** (1956);...

III. LP bounds. **Delsarte et al** (1977); **Kabatiansky and Levenshtein** (1978); **Odlyzko & Sloane** (1979), ...

IV. SDP bounds. 3–point SDP: **Bachoc and Vallentin** (2008); k–point SDP: **M.** (2007, 2014); ...
Let M be a metric space with distance function d. M is said to be a **two-point homogeneous space** if for any two pairs (p, q) and (p', q') of points in M, satisfying the condition $d(p, q) = d(p', q')$, there is an isometry F of M, such that $F(p) = p'$ and $F(q) = q'$.

Let M be a compact connected two–point homogeneous spaces (Riemannian symmetric spaces of rank one). Then $M = S^n, \mathbb{RP}^n, \mathbb{CP}^n, \mathbb{QP}^n, \text{CayP}^2$ [Wang, 1952]
With any compact 2-point-homogeneous space M are associated the zonal spherical functions $\Phi_k(t)$, $k = 0, 1, 2, \ldots$, and the distance function $\tau(x, y)$, where $x, y \in M$.

For all continuous compact M and for all currently known finite cases: $\Phi_k(t)$ is a polynomial of degree k.

If $M = \text{Hamming space}$, then $\Phi_k(t)$ is the Krawtchouk polynomial $K_k(t, n)$.

If $M = \text{unit sphere } S^{n-1} \subset \mathbb{R}^n$, then the corresponding zonal spherical function $\Phi_k(t)$ is the Gegenbauer (or ultraspherical) polynomial $G_k^{(n)}(t)$.
The main property for zonal spherical functions is called “positive-definite degenerate kernels” or p.d.k. This property first was discovered by Bochner (general spaces) and independently for spherical spaces by Schoenberg:

Let M be a 2-point-homogeneous space. Then for any integer $k \geq 0$ and for any finite $C = \{x_i\} \subset M$ the matrix $(\Phi_k(\tau(x_i, x_j)))$ is positive semidefinite.
LP and SDP bounds for spherical codes

\[N \leq \frac{f(1)}{f_0} \]

\[N \leq \frac{f(1) + \hat{h}(n, T, f)}{f_0} \]

\[N^2 \leq \frac{f(1, 1, 1) + 3(N - 1)B}{f_0} \]

\[N^2 \leq \frac{f(1, 1, 1) + 3(N - 1)B + 3N\hat{h}(n, T, g)}{f_0} \]

\[N^3 \leq \frac{f(1, 1, 1, 1, 1) + 4(N - 1)B_1 + 3(N - 1)B_2 + 6(N - 1)(N - 2)B_3}{f_0} \]
Uniqueness of the max kissing arrangement in 4 dim?

David de Laat, Nando M. Leijenhorst, Willem H. H. de Muinck Keizer: “Optimality and uniqueness of the D_4 root system”

arXiv:2404.18794

\[N^3 \leq \frac{f(1,1,1,1,1,1) + 4(N-1)B_1 + 3(N-1)B_2 + 6(N-1)(N-2)B_3}{f_0} \]
Kissing numbers

The SDP and LP bounds for optimal spherical configurations using their distance distribution.
The only exact values of kissing numbers known:

<table>
<thead>
<tr>
<th>n</th>
<th>lattice</th>
<th>regular polytope</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k(1) = 2$</td>
<td>A_1</td>
<td></td>
</tr>
<tr>
<td>$k(2) = 6$</td>
<td>A_2</td>
<td>hexagon</td>
</tr>
<tr>
<td>$k(3) = 12$</td>
<td>H_3</td>
<td>icosahedron</td>
</tr>
<tr>
<td>$k(4) = 24$</td>
<td>?D_4</td>
<td>?24-cell</td>
</tr>
<tr>
<td>$k(8) = 240$</td>
<td>E_8</td>
<td></td>
</tr>
<tr>
<td>$k(24) = 196,560$</td>
<td>Λ_{24}</td>
<td></td>
</tr>
</tbody>
</table>
$n = 4$: There are 24 vectors with two zero components and two components equal to ± 1; they all have length $\sqrt{2}$ and a minimum distance of $\sqrt{2}$. Properly rescaled (that is, multiplied by $\sqrt{2}$), they yield the centers for a kissing configuration of unit spheres and imply that $k(4) \geq 24$. The convex hull of the 24 points yields a famous 4-dimensional regular polytope, the “24-cell”, discovered in 1842 by Ludwig Schlafli. Its facets are 24 regular octahedra.
The four dimensional lattice packing D_4

The checkerboard lattice $D_n := \{(x_1, \ldots, x_n) \in \mathbb{Z}^n : x_1 + \ldots + x_n \text{ even}\}$

$D^*_4 = D_4$

The Voronoi cell of D_4 is the regular 24-cell

The density $\Delta_4 = \pi^2/16 = 0.6169...$

The densest packing by unit spheres in four dimensions is conjectured to be the D_4

The center density $= \Delta/B$:

$CD_4 = 0.12500$;

Cohn–Elkies bound $= 0.13126$;

de Laat – de Oliveira Filho – Vallentin $= 0.130587$
The 24–cell conjecture

Consider the Voronoi decomposition of any given packing P of unit spheres in \mathbb{R}^4. The minimal volume of any cell in the resulting Voronoi decomposition of P is at least as large as the volume of a regular 24–cell circumscribed to a unit sphere.
Theorem (Delsarte et al)

If

\[f(t) = \sum_{k=0}^{d} c_k G_k^{(n)}(t) \]

is nonnegative combination of Gegenbauer polynomials, with \(c_k \geq 0 \) and \(c_0 > 0 \), and if \(f(t) \leq 0 \) holds for all \(t \in [-1, \frac{1}{2}] \), then the kissing number in \(n \) dimensions is bounded by

\[k(n) \leq \frac{f(1)}{c_0} \]
G.A. Kabatiansky and V.I. Levenshtein (1978):

\[2^{0.2075n(1+o(1))} \leq k(n) \leq 2^{0.401n(1+o(1))} \]

In 1979: V. I. Levenshtein and independently A. Odlyzko and N.J.A. Sloane using Delsarte’s method have proved that \(k(8) = 240 \), and \(k(24) = 196560 \).

Odlyzko & Sloane: upper bounds on \(k(n) \) for \(n = 4, 5, 6, 7, \) and 8 are 25, 46, 82, 140, and 240, respectively.
Let \(f(x) = \sum f_k G_k^{(n)}(x), \ f_k \geq 0, \ f_0 > 0 \)
\(f(x) \leq 0 \) for all \(x \in [-1, 1/2] \setminus T \).

Then
\[
N \leq \frac{f(1) + \hat{h}(n, T, f)}{f_0}.
\]

\(n = 4; \ T = [-1, -0.6058], \ f_0 = 1, \ N < 24.865 \)
The kissing problem in four dimensions

\[f_4(t) = 53.76t^9 - 107.52t^7 + 70.56t^5 + 16.38t^4 - 9.83t^3 - 4.12t^2 + 0.434t - 0.016 \]

Lemma

Let \(P = \{p_1, \ldots, p_m\} \) be unit vectors in \(\mathbb{R}^4 \) (i.e. points on the unit sphere \(S^3 \)). Then

\[
S(P) = \sum_{k, \ell} f_4(p_k \cdot p_\ell) \geq m^2.
\]

Lemma

Let \(P = \{p_1, \ldots, p_m\} \) be a kissing arrangement on the unit sphere \(S^3 \) (i.e. \(p_k \cdot p_\ell \leq \frac{1}{2} \)). Then

\[
S(P) = \sum_{k, \ell} f_4(p_k \cdot p_\ell) < 25m.
\]
The graph of $y = f_4(t)$
D := \{(x, y, z) : -1 \leq x, y, z \leq 1/2, 1 + 2xyz - x^2 - y^2 - z^2 \geq 0\}.

\text{BV}(n, f_0) := \{F : F(x, y, z) = \sum \langle F_k, S^n_k(x, y, z) \rangle, F_k \succeq 0, F_0 - f_0E_0 \succeq 0\}

Suppose
(1) \(F \in \text{BV}(n, f_0)\),
(2) \(F(x, x, 1) \leq B\) for all \(x \in [-1, 1/2]\),
(3) \(F(x, y, z) \leq 0\) for all \((x, y, z) \in D\),

Then
\[N^2 \leq \frac{F(1, 1, 1) + 3(N - 1)B}{f_0}\]
LP bound [Odlyzko & Sloane; Arestov & Babenko] = 25.558...

M. (2003): \(k(4) < 24.865 \)

C. Bachoc & F. Vallentin (2008): \(S_7(4) = 24.5797... \)

\[
\begin{align*}
S_{11}(4) &= 24.10550859... \\
S_{12}(4) &= 24.09098111... \\
S_{13}(4) &= 24.07519774... \\
S_{14}(4) &= 24.06628391...
\end{align*}
\]

F.C. Machado & F.M. de Oliveira Filho (2018)

\[
\begin{align*}
S_{15}(4) &= 24.062758... \\
S_{16}(4) &= 24.056903...
\end{align*}
\]
\(g_T(x) = g(x) \) for \(x \in T \) and \(g_T(x) = 0 \) otherwise.

Definition

For given \(n, f_0, T \subset [-1, 1], g : T \to \mathbb{R}, B \) and \(\theta \) denote by \(\mathcal{F}(n, f_0, T, g, B, \theta) \) the class of symmetric polynomials \(F(x, y, z) \) that satisfy the following properties:

1. \(F \in \text{BV}(n, f_0), \)
2. \(F(x, x, 1) \leq B + 6g_T(x) \) for all \(x \in [-1, \cos \theta], \)
3. \(F(x, y, z) \leq g_T(x) + g_T(y) + g_T(z) \) for all \((x, y, z) \in D(\theta). \)

Theorem (M., 2019)

Let \(F \in \mathcal{F}(n, f_0, T, g, B, \theta). \) Then an \((N, n, \theta) \) spherical code satisfies the following inequality

\[
N^2 \leq \frac{F(1, 1, 1) + 3(N - 1)B + 3N \hat{h}(n, \theta, T, g)}{f_0}.
\]
Let C be an (N, n, θ) spherical code. The \textit{distance distribution} of C is the system of numbers $\{A_t : -1 \leq t \leq 1\}$.

\[A_t(u) := |\{v \in C : v \cdot u = t\}|, \quad A_t := \frac{1}{N} \sum_{u \in C} A_t(u). \]

$A_t = 0$ for $s := \cos \theta < t < 1$, $\sum_{-1 \leq t \leq s} A_t = N - 1$.

\[A(T) := \sum_{t \in T : A_t > 0} A_t, \quad T \subset [-1, 1]. \]
SDP bounds for distance distribution

Theorem (M., 2019)

Let \(F \in \mathcal{F}(n, f_0, T, g, B, \theta) \). Suppose \(T \subset [-1, \cos \theta] \) and \(g(t) \leq -a < 0 \) for all \(t \in T \). Then for every \((N, n, \theta)\) spherical code \(C\) we have

\[
A(T) \leq \frac{2}{N} \lceil Q \rceil, \quad Q := \frac{F(1, 1, 1) + 3(N - 1)B - f_0N^2}{6a}.
\]

Theorem (M., 2019)

Let \(F \in \mathcal{F}(n, f_0, T, g, B, \theta) \). Let \(a > 0 \). Suppose \(T \subset [-1, \cos \theta] \) and \(g(t) \leq a \) for all \(t \in T \). Then for every \((N, n, \theta)\) spherical code \(C\) we have

\[
A(T) \geq \frac{2}{N} \lfloor R \rfloor, \quad R := \frac{f_0N^2 - F(1, 1, 1) - 3(N - 1)B}{6a}.
\]
Distance distribution of the 24–cell

Kissing arrangement in four dimensions:

\[A(\{-1\}) = 1, \quad A(\{-1/2\}) = 8, \quad A(\{0\}) = 6, \quad A(\{1/2\}) = 8 \]

\[A_t = 0 \quad \text{for all} \quad t \neq \{-1, -1/2, 0, 1/2, 1\} \]
Theorem (Dostert–Kolpakov–Moustrou–M.)

Let C be a $(24, 4, \pi/3)$ – spherical code. Then

\[
A([-1, -0.45]) \leq 9; \quad A([-1, 0.35]) \leq 15,
\]

\[
A([-0.73, 0.35]) \leq 14, \quad A([-0.05, 0.5]) \leq 14,
\]

\[
A([-1, -0.73]) \geq 1, \quad A([0.35, 0.5]) \geq 8.
\]
Let C be an N–element subset of the unit sphere $\mathbb{S}^{n-1} \subset \mathbb{R}^n$.

$$I(C) := \{ t = x \cdot y \mid x, y \in C \text{ & } x \neq y \}.$$

Let $T \subset [-1, 1)$. We say that C is an (N, n, T) spherical code if $I(C) \subset T$.

Let g be a real function on $I(C)$. Define

$$E_g(C) := \sum_{(x, y) \in C^2, x \neq y} g(x \cdot y),$$

$$S_g(C) := \sum_{(x, y) \in C^2} g(x \cdot y) = E_g(C) + Ng(1).$$
Theorem

Let C be an (N, n, T) spherical code. Suppose $g : T \to \mathbb{R}$, $f : [-1, 1] \to \mathbb{R}$ and $f_0 \in \mathbb{R}$ are such that

1. $f(t) \leq g(t)$ for all $t \in T$.
2. $S_f(C) \geq f_0 N^2$.

Then

$$f_0 N^2 \leq Nf(1) + Eg(C)$$
\[D_3(T) := \{(t, u, v) : t, u, v \in T \& 1 + 2tuv - t^2 - u^2 - v^2 \geq 0\} . \]

Theorem

Let \(C \) be an \((N, n, T)\) spherical code and \(F : [-1, 1]^3 \rightarrow \mathbb{R} \) be a symmetric function. Suppose \(f : T \rightarrow \mathbb{R} \) and \(g : T \rightarrow \mathbb{R} \), are such that

1. \(F(1, t, t) \leq f(t) \) for all \(t \in T \),
2. \(F(t, u, v) \leq g(t) + g(u) + g(v) \) for all \((t, u, v) \in D_3(T)\).

If

\[S_F(C) := \sum_{(x, y, z) \in C^3} F(x \cdot y, x \cdot z, y \cdot z) \geq F_0 N^3, \]

where \(F_0 \in \mathbb{R} \), then

\[F_0 N^3 \leq NF(1, 1, 1) + 3E_f(C) + (3N - 6)E_g(C). \]
Under the assumptions of Theorem let \(f(t) = B + 2g(t) - q(t) \) with \(q : [-1, 1] \rightarrow \mathbb{R} \). If \(q(C) \geq 0 \), then

\[
E_g(C) = \sum_{t \in T} A_t g(t) \geq r_g,
\]

\[
r_g = \frac{1}{3} (F_0 N^2 - F(1, 1, 1)) - q(1) - (N - 1)B.
\]

Let \(p \) be a Gegenbauer polynomial \(G_k^n \). Then \(S_p(C) \geq 0 \), i.e.

\[
E_p(C) = \sum_{t \in T} A_t p(t) \geq r_p, \quad r_p = -Np(1)
\]
Corollary

Let \(a_0, \ldots, a_d \geq 0, F_0, \ldots, F_d \geq 0, T \subset [-1, 1), g: T \to \mathbb{R}, M \in \mathbb{R} \), \(F(u, v, t) = \sum_{k} \left\langle F_k, S^n_k(u, v, t) \right\rangle \). If

\[
a_0 + \ldots + a_d + F(1, 1, 1) \leq M - 1, \tag{1}
\]

\[
\sum_{k=0}^d a_k G_k^n(u) + 3F(u, u, 1) \leq -1 + 6g(u) \text{ for } u \in T, \tag{2}
\]

\[
F(u, v, t) \leq g(u) + g(v) + g(t) \text{ for } (u, v, t) \in D_3(T). \tag{3}
\]

Then for every \((N, n, T)\) spherical code, we have

\[
\sum_{t \in T} A_t g(t) \geq \frac{N - M}{3N}
\]
The following polynomial gives a sharp lower bound in \([-1, -0.73]\), \(a = 1/50\) and \(M = 22.645212490128051\)

\[
p_1(x) = \sum_{k=0}^{22} c_k G_k^{(4)}(x),
\]

where \([c_0, \ldots, c_{22}] = [0.222, 0.8648, 1.8875, 3.1425, 4.5059, 5.7052, 6.5739, 6.9286, 6.7119, 6.0157, 4.9575, 3.7767, 2.6446, 1.6914, 0.9947, 0.5249, 0.2524, 0.1097, 0.0409, 0.0153, 0.0042, 0.001, 0.0002]\).

Let \(g_1 = kp_2\), where \(k = 100/p_1(-1)\). Then \(g_1(-1) = 100\). Let \(T = [-1, 0.5]\). The Corollary yields

\[
\sum_{t \in T} A_t g_1(t) \geq B_1(24) \approx 95 > -52.2431 = LP(24).
\]
Example: $gSDP$
Example

Since

\[\sum_{t \in [-1, 0.5]} A_t g_1(t) \geq 95 \]

we have

\[A([-1, -0.73]) \geq 1 \]
Polynomial p_2

\[p_2(x) = \sum_{k=0}^{22} c_k G_k^{(4)}(x), \]

\[[c_0, \ldots, c_{22}] = [-0.5438, -2.0024, -3.8887, -5.6414, -6.7025, -6.8508, -6.0698, -4.6566, -3.0047, -1.4686, 0.3704, 0.6521, 0.6486, 0.5104, 0.3361, 0.1911, 0.0963, 0.0411, 0.0157, 0.0056, 0.001, 0.0004]. \]

The SDP bound in the Corollary gives $M = M_2 := 22.5689$, $B_2(25) = 0.0324$ and $B_2(24) = 0.0199$.
Theorem 1 (M., 2008) yields that

\[k(4) \leq \frac{1}{c_0} \max\{ h_0, h_1, ..., h_\mu, \} \]

Let \(C \) be an \((25, 4, \pi/3)\) spherical code,

\[R_2 := \sum_t A_t g_1(t) \]

Since \(g_2(t) \leq 0 \) for all \(t \in [-\sqrt{2}/2, 1/2] \), we have \(t_0 = -\sqrt{2}/2 \) and \(\mu = 4 \). Then we consider \(\mu = 0, 1, 2, 3, 4 \) to find the maximum of \(R_2 \).

This maximum is achieved at \(\mu = 2 \) and is 0.0266, i.e. \(R_2 < 0.0266 \). On the other side we have \(R_2 > B_2(25) = 0.0324 \), a contradiction.
Polynomial g_3

\[c(0 : 17) = [3.2313 \ 34.6000 \ 97.5893 \ 137.3081 \ 119.9142 \ 74.1812 \ 36.5605 \ 15.0065 \ 4.2796 \ 0.0946 \ -0.7087 \ -0.4672 \ -0.1755 \ -0.0283 \ 0.0097 \ 0.0070 \ 0.0016 \ 0.0001] \]

\[
\sum_{t \in [-1,0.5]} A_t g_3(t) > R_3 = 7.93
\]
Polynomial g_3
Thank you