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Spaces of Point Configurations

Unit norm, Tight frames:

Normal Matrices: {A ∈ ℂd×d ∣ AA* = A*A}
{F = [ f1 ∣ f2 ∣ … | fN] ∈ ℂd×N ∣ ∥fj∥ = 1 ∀ j and FF* =

N
d

Id}

Weighted Adjacency Matrices for Balanced Digraphs:

A = (aij)ij ∈ ℝd×d
≥0 ∣ ∑

i

aik = ∑
j

akj ∀ k

Tight Frame Fields on Vector Bundles:

{σ = (σ1, …, σn) : M → EN ∣ π ∘ σj = IdM, σ(p) tight for all p ∈ M}

We consider structural aspects of certain spaces of vector configurations and structured matrices:
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Main Idea:

Prove theorems about the coarse structure of these spaces using tools from symplectic geometry 
and algebraic topology.

Tight Frame Fields on Vector Bundles:

We consider structural aspects of certain spaces of vector configurations and structured matrices:

{σ = (σ1, …, σn) : M → EN ∣ π ∘ σj = IdM, σ(p) tight for all p ∈ M}
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UNTF(d, N) = {F = [ f1 ∣ f2 ∣ … | fN] ∈ ℂd×N ∣ ∥fj∥ = 1 ∀ j and FF* =
N
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Id}
An -frame in  is a full rank matrix . The space of Unit norm, Tight frames isN ℂd F ∈ ℂd×N
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Frames are used to give redundant representations of signals v ∈ ℂd

UNTF(d, N) = {F = [ f1 ∣ f2 ∣ … | fN] ∈ ℂd×N ∣ ∥fj∥ = 1 ∀ j and FF* =
N
d

Id}

Unit Norm Tight Frames

ℂd ∋ v ↦ F*v = (⟨v, fj⟩)N
j=1

∈ ℂN

An -frame in  is a full rank matrix . The space of Unit norm, Tight frames isN ℂd F ∈ ℂd×N

The signal  measurement  reconstruction process is the sequence→ →

v ↦ F*v ↦ FF*v

Theorem (Casazza–Kovačevic, Goyal–Kovačevic–Kelner, Holmes–Paulsen). Among -frames 
in , unit norm, tight frames give optimal reconstruction error under white noise or 
measurement erasures.

N
ℂd

Unit norm, tight frames generalize orthonormal bases: UNTF(d, d) = U(d)
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Structure of UNTFs
The space of UNTFs

is a potentially singular real algebraic variety with potentially complicated topology.
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Proved by Cahill-Mixon-Strawn in ’17. We generalize this using ideas from symplectic geometry:
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UNTF(d, N) = {F = [ f1 ∣ f2 ∣ … | fN] ∈ ℂd×N ∣ ∥fj∥ = 1 ∀ j and FF* =
N
d

Id}

Structure of UNTFs
The space of UNTFs

is a potentially singular real algebraic variety with potentially complicated topology.

Frame Homotopy Conjecture - Larson, ’02: The space  is connected .UNTF(d, N ) ∀ N ≥ d ≥ 1

Proved by Cahill-Mixon-Strawn in ’17. 

Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

ℱ(r, S) = {F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and FF* = S}
•  with  is a collection of vector norms and r = (r1, …, rN) ∈ ℝN r1 ≥ r2 ≥ … ≥ rN ≥ 0

•  is a positive-definite Hermitian frame operatorS

We generalize this using ideas from symplectic geometry:

allows variable “measurement power”
frame operator can be tuned for “colored noise”



Concepts from Symplectic Geometry

A symplectic manifold  is an even-dimensional manifold  endowed with a closed, 
nondegenerate -form . A symplectic manifold  locally looks like 

(M, ω) M
2 ω (M, ω) (ℂd, − Im⟨ ⋅ , ⋅ ⟩)



Concepts from Symplectic Geometry

A symplectic manifold  is an even-dimensional manifold  endowed with a closed, 
nondegenerate -form . A symplectic manifold  locally looks like 

(M, ω) M
2 ω (M, ω) (ℂd, − Im⟨ ⋅ , ⋅ ⟩)

ωx(u, v) = x ⋅ (u × v)

x
u

v

Examples.

• (S2, ω =  signed area)

• (ℂd, − Im⟨ ⋅ , ⋅ ⟩)

• (ℂd×N, − Im⟨ ⋅ , ⋅ ⟩Fro)



Concepts from Symplectic Geometry
Let  be a Lie group with an action on  which preserves . A momentum map for this action is a 
smooth map

G M ω

μ : M → 𝔤*
which is equivariant with respect to the co-adjoint action  and which satisfiesG ↷ 𝔤*

dpμ(X)(ξ) = ωp(Yξ |p , X)

for , ,  the associated infinitesimal vector field.X ∈ TpM ξ ∈ 𝔤 Yξ

≈ 𝔤



Concepts from Symplectic Geometry
Let  be a Lie group with an action on  which preserves . A momentum map for this action is a 
smooth map

G M ω

μ : M → 𝔤*
which is equivariant with respect to the co-adjoint action  and which satisfiesG ↷ 𝔤*

dpμ(X)(ξ) = ωp(Yξ |p , X)

for , ,  the associated infinitesimal vector field.X ∈ TpM ξ ∈ 𝔤 Yξ

≈ 𝔤

Intuitively,  encodes conserved quantities of the action:μ

To each , define a function  by . Then the flow of  preserves 

level sets of 

ξ ∈ 𝔤 μξ : M → ℝ μξ(p) = μ(p)(ξ) Yξ

μξ

!
 by rotation around -axis


height (identifying )

S1 ↷ S2 z

μ = Lie(S1) ≈ ℝ

Example.



Connectivity of Frame Spaces
Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

ℱ(r, S) = {F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and FF* = S}
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{F ∈ ℂd×N ∣ spec(FF*) = λ}/U(d)

has a natural symplectic structure (isomorphic to a complex flag manifold; Grassmannian if ). λ = 1
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Connectivity of Frame Spaces
Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

It has a Hamiltonian action by the torus  (right multiplication) with momentum mapU(1)N

[F] ↦ μ([F]) = (−
1
2

∥fj∥2)N
j=1

∈ ℝN

Theorem (Atiyah ’82). Level sets of momentum maps of torus actions are connected.

Connectivity of , with , follows easily from connectivity of .ℱ(r, S) spec(S) = λ μ−1( −
1
2 (r2

j )j)
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Question: When is a frame space a smooth manifold?



Geometry of Frame Spaces

Theorem (N-Shonkwiler, ’22). Given vectors of norms  and eigenvalues , the spacer λ

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}
is a smooth manifold   partitions  and  with  and . ⇔ /∃ r = r′� ⊔ r′�′� λ = λ′� ⊔ λ′�′� r′� ≺ λ′� r′�′� ≺ λ′�′�

Question: When is a frame space a smooth manifold?

For,  and , write  if   

(pad  with zeros).

r = (r1 ≥ ⋯ ≥ rN) λ = (λ1 ≥ ⋯ ≥ λd) r ≺ λ
k

∑
j=1

rj ≤
k

∑
j=1

λj ∀k = 1,…, N

λ
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Geometry of Frame Spaces

Theorem (N-Shonkwiler, ’22). Given vectors of norms  and eigenvalues , the spacer λ

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}

If it has singularities, they occur exactly at orthodecomposable 
frames, and singularities locally look like products of a quadratic 
cone and a manifold.

Generalizes a result of Dykema-Strawn ’06: The space  is a smooth manifold if 
 and  are relatively prime. Answers open questions of Cahill-Mixon-Strawn ’17.

UNTF(d, N )
d N

Description of singularities uses a result of 
Arms-Marsden-Moncrief ’81.
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Full Spark Frames
Rough idea of Compressed Sensing: “A random matrix  is good at compressing 
sparse vectors in , via , with high probability.”

F ∈ ℂd×N

ℂN ℂN ∋ v ↦ Fv ∈ ℂd

Can the quantitative version be improved if we choose a random unit norm tight frame? 
Empirical evidence suggests that the answer is “yes” [Chen-Rodrigues-Wassell, ’12, ’13].



• We say a frame  is full spark if any choice of  columns is spanning.F ∈ ℂd×N d
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Can the quantitative version be improved if we choose a random unit norm tight frame? 
Empirical evidence suggests that the answer is “yes” [Chen-Rodrigues-Wassell, ’12, ’13].

A first step:

• Question: What is the probability that a random UNTF is full spark?

Full Spark Frames

Cahill-Mixon-Strawn: full spark frames are open and dense in UNTFs
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F ∈ ℂd×N

ℂN ℂN ∋ v ↦ Fv ∈ ℂd

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}
Theorem (N-Shonkwiler, ’22). Given vectors of norms  and eigenvalues , the spacer λ

satisfies exactly one of three conditions:

• It is empty (when Schur-Horn condition  fails)r ≺ λ
• It is nonempty and contains only frames which are not full spark (S-H condition non-strict)

• It is nonempty and full spark frames are a subset of full Hausdorff measure (otherwise)
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Can the quantitative version be improved if we choose a random unit norm tight frame? 
Empirical evidence suggests that the answer is “yes” [Chen-Rodrigues-Wassell, ’12, ’13].

• We say a frame  is full spark if any choice of  columns is spanning.F ∈ ℂd×N d

A first step:

• Question: What is the probability that a random UNTF is full spark?
Cahill-Mixon-Strawn: full spark frames are open and dense in UNTFs



Full Spark Frames

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}
Theorem (N-Shonkwiler, ’22). Given vectors of norms  and eigenvalues , the spacer λ

satisfies exactly one of three conditions:

• It is nonempty and contains only frames which are not full spark (S-H condition non-strict)

• It is nonempty and full spark frames are a subset of full Hausdorff measure (otherwise)
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{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}/(U(d) × U(1)N)
is a symplectic stratified space [Sjamaar-Lerman, ’91] with Hamiltonian torus action with 
momentum map

where  is the  eigenvalue of the partial frame operator .μjk kth
j

∑
ℓ=1

fℓ f*ℓ

[F] ↦ (μjk)j,k

Proof Ingredients.

These are known as eigensteps in the frame theory community.

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}
Theorem (N-Shonkwiler, ’22). Given vectors of norms  and eigenvalues , the spacer λ

satisfies exactly one of three conditions:

• It is nonempty and contains only frames which are not full spark (S-H condition non-strict)

• It is nonempty and full spark frames are a subset of full Hausdorff measure (otherwise)

Full Spark Frames

• It is empty (when Schur-Horn condition  fails)r ≺ λ



The eigensteps satisfy the Gelfand-Tsetlin pattern.

 G-T patternd = 3

Defines a convex polytope whose Lebesgue measure 
can be used to compute Hausdorff measure on frame 
space (Duistermaat-Heckmann Theorem).

Proof Ingredients.

{F ∈ ℂd×N ∣ ∥fj∥ = rj ∀ j and spec(FF*) = λ}
Theorem (N-Shonkwiler, ’22). Given vectors of norms  and eigenvalues , the spacer λ

satisfies exactly one of three conditions:

• It is nonempty and contains only frames which are not full spark (S-H condition non-strict)

• It is nonempty and full spark frames are a subset of full Hausdorff measure (otherwise)

Full Spark Frames

• It is empty (when Schur-Horn condition  fails)r ≺ λ



Normal Matrices and Balancing 
Directed Graphs



{A ∈ ℂd×d ∣ AA* = A*A} = {UDU* ∣ U unitary, D diagonal}
Normal matrices the general setting for the Spectral Theorem 

Normal Matrices
A matrix  is normal if .A ∈ ℂd×d AA* = A*A



{A ∈ ℂd×d ∣ AA* = A*A} = {UDU* ∣ U unitary, D diagonal}
Normal matrices have spectra which are Lipschitz 
stable under perturbations [Bauer-Fike Theorem, 1960] 

 applications in control theory⇒

Normal matrices the general setting for the Spectral Theorem 

Normality plays a role in dynamics on networks 
[Asllani-Carletti, 2018] 

 applications in mathematical biology⇒

Normal Matrices
A matrix  is normal if .A ∈ ℂd×d AA* = A*A

This motivates algorithms for finding the nearest normal matrix to a given .A ∈ ℂd×d



Theorem [N-Shonkwiler, ‘24]. Gradient descent of the functional  

converges to a normal matrix .  has the same eigenvalues as  and if  is real, then so is .  
Moreover, there exist  such that, if  then .                               

This can be adapted to preserve total weight . 

E : A ↦ ∥AA* − A*A∥2
Fro

A∞ A∞ A0 A0 A∞

c, ϵ > 0 E(A0) < ϵ ∥A0 − A∞∥2
Fro ≤ c E(A0)

∥A0∥2
Fro

Normal Matrices via Gradient Flow
A classical, natural measure of non-normality of a matrix  is .A E(A) := ∥AA* − A*A∥2

Fro

Recall: The function  is not quasi-convex, but for an arbitrary initialization 
, we have:

E : ℂd×d → ℝ
A0 ∈ ℂd×d



The space of normal matrices is contractible. 

The space of unit norm normal matrices

𝒰𝒩𝔽(d) = {A ∈ 𝔽d×d ∣ AA* = A*A and ∥A∥Fro = 1}, 𝔽 = ℝ or ℂ

can have interesting topology.

Application: Topology of Unit Norm Normal Matrices



Application: Topology of Unit Norm Normal Matrices
The space of normal matrices is contractible. 

The space of unit norm normal matrices

𝒰𝒩𝔽(d) = {A ∈ 𝔽d×d ∣ AA* = A*A and ∥A∥Fro = 1}, 𝔽 = ℝ or ℂ

can have interesting topology.

Example.  stereographically 
projected to .

{A ∈ ℝ2×2 ∣ ∥A∥Fro = 1}
ℝ3

Image of  in pink.𝒰𝒩ℝ(2)
Image of unit norm nilpotent matrices in blue.



The space of normal matrices is contractible. 

The space of unit norm normal matrices

𝒰𝒩𝔽(d) = {A ∈ 𝔽d×d ∣ AA* = A*A and ∥A∥Fro = 1}, 𝔽 = ℝ or ℂ

can have interesting topology.

Theorem [N-Shonkwiler, ’24]. •  is trivial for all .πk(𝒰𝒩ℂ(d)) k ≤ 2d − 2

•  is trivial for all .πk(𝒰𝒩ℝ(d)) k ≤ d − 2

Proof.  is homotopy equivalent to , via gradient descent of .


The space of nilpotent matrices is a stratified space with high codimension strata. Use transversality.

𝒰𝒩𝔽(d) {non-nilpotent d × d matrices} E

Example.  stereographically 
projected to .

{A ∈ ℝ2×2 ∣ ∥A∥Fro = 1}
ℝ3

Image of  in pink.𝒰𝒩ℝ(2)
Image of unit norm nilpotent matrices in blue.

Application: Topology of Unit Norm Normal Matrices



∑
i

aik = ∑
j

akj ∀ k

0 1 0 0
0 0 1 1
0 0 0 1
1 0 0 0

1

2 3

4 1

2 3

4

0 2 0 0
0 0 1 1
0 0 0 1
2 0 0 0

Unbalanced Balanced

Balancing is necessary for, e.g., traffic flow problems [Hooi-Tong, 1970].

Balancing Digraphs
Let  be the adjacency matrix of a weighted, directed graph.A = (aij)ij ∈ ℝd×d

We say that the graph is balanced if 



Let  be the entry-wise square of an adjacency matrix of a weighted digraph.A0 ∈ ℝd×d

Theorem [N-Shonkwiler, ’24]. Gradient descent of the functional  
converges to the entry-wise square of the adjacency matrix of a balanced digraph. It has the same 
eigenvalues and principal minors as , and has zero entries whenever  does.                                

This can be adapted to preserve total weight . 

A ↦ ∥diag(AA* − A*A)∥2
Frob

A0 A0

∥A0∥2
Frob

Balancing Graphs by Gradient Descent

Also partially follows by symplectic principles.

Corollary [N-Shonkwiler, ’24]. The space of balanced, unit norm adjacency matrices is homotopy 
equivalent to the space of unit norm normal matrices.



Tight frames on Vector Bundles



Vector Bundles
A rank-  real vector bundle over an -dimensional smooth manifold  is a smooth manifold  with 
projection  whose fibers  are isomorphic to  such that , locally.

d n M E
E π M Ep = π−1(p) ℝd E ≈ M × ℝd

A Riemannian structure on  is a smooth choice of inner product  on each fiber .E ⟨ ⋅ , ⋅ ⟩p Ep

Examples.

• Tangent bundle over a manifold TM → M

• Tautological bundle E → Gr(k, ℝd)

A vector field for  is a smooth map  such that .E σ : M → E π ∘ σ = IdM

TpS2

TS2 ≉ S2 × ℝ2

• Trivial bundle M × ℝd → M



Frames on Vector Bundles
Let  be a rank-  vector bundle over an -dimensional manifold. An -frame for  is a 
collection of  vector fields  such that  is spanning for all .

E → M d n N E
N (σ1, …, σN) {σ1(p), …, σN(p)} p

The frame is a tight frame if  defines a tight frame on the fiber for all . 

(Requires a choice of Riemannian structure for this to make sense.)

[σ1(p), …, σN(p)] p

Prior Work: [Kuchment, ’08], [Freeman-Poore-Wei-Wyse, ’14], [Freeman-Hotovy-Martin, ’14], 
[Kuchment, ’16], [Auckly-Kuchment, ’18]



Frames on Vector Bundles
Let  be a rank-  vector bundle over an -dimensional manifold. An -frame for  is a 
collection of  vector fields  such that  is spanning for all .

E → M d n N E
N (σ1, …, σN) {σ1(p), …, σN(p)} p

The frame is a tight frame if  defines a tight frame on the fiber for all . 

(Requires a choice of Riemannian structure for this to make sense.)

[σ1(p), …, σN(p)] p

Motivation: Robust representation of “signals” on vector bundles; i.e., representing vector fields.

signal = vector field measurement system = -frameN

Measurements are coefficients 
of the signal w.r.t. the frame. 
This gives a map .M → ℝN

Prior Work: [Kuchment, ’08], [Freeman-Poore-Wei-Wyse, ’14], [Freeman-Hotovy-Martin, ’14], 
[Kuchment, ’16], [Auckly-Kuchment, ’18]
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Let  be a rank-  vector bundle over an -dimensional manifold. An -frame for  is a 
collection of  vector fields  such that  is spanning for all .

E → M d n N E
N (σ1, …, σN) {σ1(p), …, σN(p)} p

The frame is a tight frame if  defines a tight frame on the fiber for all . 

(Requires a choice of Riemannian structure for this to make sense.)

[σ1(p), …, σN(p)] p

Motivation: Robust representation of “signals” on vector bundles; i.e., representing vector fields.

Experiment: Signal reconstruction error for noisy signals on  for tight versus random 3-frames.S2

Prior Work: [Kuchment, ’08], [Freeman-Poore-Wei-Wyse, ’14], [Freeman-Hotovy-Martin, ’14], 
[Kuchment, ’16], [Auckly-Kuchment, ’18]
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Existence of Tight Frames

Examples.

• A 2-frame on  does not existTS2

• A tight -frame for  exists for sufficiently large .N TM N

Follows by Whitney embedding argument, see [Freeman-Poore-Wei-Wyse, ’14].

Such a frame frame would require a nonvanishing vector 
field on , which DNE by the Hairy Ball Theorem.S2

From Wikipedia article on Hairy Ball Theorem
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Existence of Tight Frames
Theorem (Ballas-N-Shonkwiler,’23). Let  be a vector bundle. An -frame exists if and only if 
a tight -frame exists.

E → M N
N

Theorem (Ballas-N-Shonkwiler,’23). Let  be a rank-  vector over an -manifold. Then there 
exists a tight frame for  if .

E → M d n
E N ≥ d + n

Sufficient, but not necessary!

Theorem (Ballas-N-Shonkwiler,’23). There exists a closed, orientable -manifold  such that  
does not admit a tight -frame if and only if .

d M TM
(d + 1) d > 3



• What about higher homotopy/(co)homology of frame spaces?

• What about the corresponding question for spaces of real frames?

• Can symplectic methods be applied to frames in infinite-dimensional Hilbert spaces?

• Can geometry of the Gelfand-Tsetlin polytope be used to get quantitative statements about 
compressed sensing properties of random frames?

• Can we efficiently generate random frames using Markov chain sampling in G-T polytope?

• Applications of frame theory on vector bundles?

Open Questions



Thanks for Listening!
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