TOPOLOGY OF SPACES OF STRUCTURED VECTOR CONFIGURATIONS

Tom Needham (Florida State University)
Joint work with Clayton Shonkwiler (Colorado State University)

Workshop on Recent Progress on Optimal Point Distributions and Related Fields
ICERM
June 3, 2024
Spaces of Point Configurations

We consider structural aspects of certain spaces of vector configurations and structured matrices:

Unit norm, Tight frames: \[
\left\{ F = [f_1 | f_2 | \ldots | f_N] \in \mathbb{C}^{d \times N} \mid \|f_j\| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d}I_d \right\}
\]

Normal Matrices: \[
\left\{ A \in \mathbb{C}^{d \times d} \mid AA^* = A^*A \right\}
\]

Weighted Adjacency Matrices for Balanced Digraphs:
\[
\left\{ A = (a_{ij})_{ij} \in \mathbb{R}_{\geq 0}^{d \times d} \mid \sum_i a_{ik} = \sum_j a_{kj} \ \forall \ k \right\}
\]

Tight Frame Fields on Vector Bundles:
\[
\left\{ \sigma = (\sigma_1, \ldots, \sigma_n) : M \to E^N \mid \pi \circ \sigma_j = \text{Id}_M, \sigma(p) \text{ tight for all } p \in M \right\}
\]
Spaces of Point Configurations

We consider structural aspects of certain spaces of vector configurations and structured matrices:

Unit norm, Tight frames: \[\left\{ F = \begin{bmatrix} f_1 & f_2 & \ldots & f_N \end{bmatrix} \in \mathbb{C}^{d \times N} \mid \| f_j \| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} \text{Id} \right\} \]

Normal Matrices: \[\left\{ A \in \mathbb{C}^{d \times d} \mid AA^* = A^*A \right\} \]

Weighted Adjacency Matrices for Balanced Digraphs:

\[\left\{ A = (a_{ij})_{ij} \in \mathbb{R}_{\geq 0}^{d \times d} \mid \sum_i a_{ik} = \sum_j a_{kj} \ \forall \ k \right\} \]

Tight Frame Fields on Vector Bundles:

\[\left\{ \sigma = (\sigma_1, \ldots, \sigma_n) : M \to E^N \mid \pi \circ \sigma_j = \text{Id}_M, \ \sigma(p) \text{ tight for all } p \in M \right\} \]

Main Idea:

Prove theorems about the coarse structure of these spaces using tools from symplectic geometry and algebraic topology.
Spaces of Frames
Unit Norm Tight Frames

An N-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is

$$\text{UNTF}(d, N) = \left\{ F = [f_1 | f_2 | \ldots | f_N] \in \mathbb{C}^{d \times N} \mid \|f_j\| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} I_d \right\}$$
Unit Norm Tight Frames

An N-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is

$$\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \ldots \mid f_N] \in \mathbb{C}^{d \times N} \mid ||f_j|| = 1 \text{ } \forall \ j \text{ and } \frac{FF^*}{d} = \frac{N}{d} \mathbb{I}_d \right\}$$
Unit Norm Tight Frames

An N-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is

$$\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \ldots \mid f_N] \in \mathbb{C}^{d \times N} \mid \|f_j\| = 1 \ \forall \ j \ \text{and} \ FF^* = \frac{N}{d} I_d \right\}$$

Frames are used to give redundant representations of signals $v \in \mathbb{C}^d$

$$\mathbb{C}^d \ni v \mapsto F^*v = (\langle v, f_j \rangle)_{j=1}^N \in \mathbb{C}^N$$
Unit Norm Tight Frames

An N-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is

$$\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \ldots \mid f_N] \in \mathbb{C}^{d \times N} \mid \|f_j\| = 1 \ \forall \ j \ \text{and} \ FF^* = \frac{N}{d} I_d \right\}$$

Frames are used to give redundant representations of signals $v \in \mathbb{C}^d$

$$\mathbb{C}^d \ni v \mapsto F^*v = (\langle v, f_j \rangle)_{j=1}^N \in \mathbb{C}^N$$

The signal → measurement → reconstruction process is the sequence

$$v \mapsto F^*v \mapsto FF^*v$$
Unit Norm Tight Frames

An N-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is

$$\text{UNTF}(d, N) = \left\{ F = [f_1 | f_2 | \ldots | f_N] \in \mathbb{C}^{d \times N} \mid \|f_j\| = 1 \ \forall j \text{ and } FF^* = \frac{N}{d} I_d \right\}$$

Frames are used to give redundant representations of signals $v \in \mathbb{C}^d$

$$\mathbb{C}^d \ni v \mapsto F^*v = (\langle v, f_j \rangle)_{j=1}^N \in \mathbb{C}^N$$

The signal \rightarrow measurement \rightarrow reconstruction process is the sequence

$$v \mapsto F^*v \mapsto FF^*v$$

“frame operator for F”
Unit Norm Tight Frames

An N-frame in \mathbb{C}^d is a full rank matrix $F \in \mathbb{C}^{d \times N}$. The space of Unit norm, Tight frames is

$$\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \ldots \mid f_N] \in \mathbb{C}^{d \times N} \mid \|f_j\| = 1 \ \forall \ j \ \text{and} \ \ FF^* = \frac{N}{d} I_d \right\}$$

Frames are used to give redundant representations of signals $v \in \mathbb{C}^d$

$$\mathbb{C}^d \ni v \mapsto F^*v = (\langle v, f_j \rangle)_{j=1}^N \in \mathbb{C}^N$$

The signal → measurement → reconstruction process is the sequence

$$v \mapsto F^*v \mapsto FF^*v$$

Theorem (Casazza–Kovačevic, Goyal–Kovačevic–Kelner, Holmes–Paulsen). Among N-frames in \mathbb{C}^d, unit norm, tight frames give optimal reconstruction error under white noise or measurement erasures.

Unit norm, tight frames generalize orthonormal bases: $\text{UNTF}(d, d) = U(d)$
Structure of UNTFs
Structure of UNTFs

The space of UNTFs

\[\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \ldots \mid f_N] \in \mathbb{C}^{d \times N} \mid \|f_j\| = 1 \ \forall \ j \ \text{and} \ FF^* = \frac{N}{d} I_d \right\} \]

is a potentially singular real algebraic variety with potentially complicated topology.
Structure of UNTFs

The space of UNTFs

\[\text{UNTF}(d, N) = \left\{ F = [f_1 \mid f_2 \mid \ldots \mid f_N] \in \mathbb{C}^{d \times N} \mid \|f_j\| = 1 \ \forall \ j \ \text{and} \ \FF^* = \frac{N}{d} \Id \right\} \]

is a potentially singular real algebraic variety with potentially complicated topology.

Frame Homotopy Conjecture - Larson, ’02: The space \(\text{UNTF}(d, N) \) is connected \(\forall \ N \geq d \geq 1 \).

Proved by Cahill-Mixon-Strawn in ’17. We generalize this using ideas from symplectic geometry:
Structure of UNTFs

The space of UNTFs

$$\text{UNTF}(d, N) = \left\{ F = [f_1 \ | \ f_2 \ | \ ... \ | f_N] \in \mathbb{C}^{d \times N} \mid \|f_j\| = 1 \ \forall j \ \text{and} \ FF^* = \frac{N}{d} I_d \right\}$$

is a potentially singular real algebraic variety with potentially complicated topology.

Frame Homotopy Conjecture - Larson, ’02: The space $\text{UNTF}(d, N)$ is connected $\forall N \geq d \geq 1$.

Proved by Cahill-Mixon-Strawn in ’17. We generalize this using ideas from symplectic geometry:

Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

$$\mathcal{F}(r, S) = \left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \ \forall j \ \text{and} \ FF^* = S \right\}$$

- $r = (r_1, \ldots, r_N) \in \mathbb{R}^N$ with $r_1 \geq r_2 \geq \ldots \geq r_N \geq 0$ is a collection of vector norms and
- S is a positive-definite Hermitian frame operator
Structure of UNTFs

The space of UNTFs

\[\text{UNTF}(d, N) = \left\{ F = [f_1 | f_2 | \ldots | f_N] \in \mathbb{C}^{d \times N} \mid \|f_j\| = 1 \ \forall \ j \text{ and } FF^* = \frac{N}{d} I_d \right\} \]

is a potentially singular real algebraic variety with potentially complicated topology.

Frame Homotopy Conjecture - Larson, ’02: The space UNTF(d, N) is connected \(\forall \ N \geq d \geq 1 \).

Proved by Cahill-Mixon-Strawn in ’17. We generalize this using ideas from symplectic geometry:

Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

\[\mathcal{F}(r, S) = \left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \ \forall \ j \text{ and } FF^* = S \right\} \]

- \(r = (r_1, \ldots, r_N) \in \mathbb{R}^N \) with \(r_1 \geq r_2 \geq \ldots \geq r_N \geq 0 \) is a collection of vector norms and

- \(S \) is a positive-definite Hermitian frame operator

frame operator can be tuned for “colored noise”

allows variable “measurement power”
A symplectic manifold \((M, \omega)\) is an even-dimensional manifold \(M\) endowed with a closed, nondegenerate 2-form \(\omega\). A symplectic manifold \((M, \omega)\) locally looks like \((\mathbb{C}^d, - \text{Im}\langle \cdot , \cdot \rangle)\).
A **symplectic manifold** \((M, \omega)\) is an even-dimensional manifold \(M\) endowed with a closed, nondegenerate 2-form \(\omega\). A symplectic manifold \((M, \omega)\) locally looks like \((\mathbb{C}^d, - \text{Im} \langle \cdot, \cdot \rangle)\).

Examples.

- \((\mathbb{C}^d, - \text{Im} \langle \cdot, \cdot \rangle)\)
- \((\mathbb{C}^{d \times N}, - \text{Im} \langle \cdot, \cdot \rangle_{\text{Fro}})\)
- \((S^2, \omega = \text{signed area})\)

\[
\omega_x(u, v) = x \cdot (u \times v)
\]
Concepts from Symplectic Geometry

Let G be a Lie group with an action on M which preserves ω. A momentum map for this action is a smooth map

$$\mu : M \to \mathfrak{g}^* \approx \mathfrak{g}$$

which is equivariant with respect to the co-adjoint action $G \curvearrowright \mathfrak{g}^*$ and which satisfies

$$d_p\mu(X)(\xi) = \omega_p(Y_\xi|_p, X)$$

for $X \in T_pM$, $\xi \in \mathfrak{g}$, Y_ξ the associated infinitesimal vector field.
Concepts from Symplectic Geometry

Let G be a Lie group with an action on M which preserves ω. A **momentum map** for this action is a smooth map

$$\mu : M \rightarrow \mathfrak{g}^* \approx \mathfrak{g}$$

which is equivariant with respect to the co-adjoint action $G \curvearrowright \mathfrak{g}^*$ and which satisfies

$$d_p\mu(X)(\xi) = \omega_p(Y_\xi|_p, X)$$

for $X \in T_pM$, $\xi \in \mathfrak{g}$, Y_ξ the associated infinitesimal vector field.

Intuitively, μ encodes **conserved quantities** of the action:

To each $\xi \in \mathfrak{g}$, define a function $\mu_\xi : M \rightarrow \mathbb{R}$ by $\mu_\xi(p) = \mu(p)(\xi)$. Then the flow of Y_ξ preserves level sets of μ_ξ.

Example.

$S^1 \curvearrowright S^2$ by rotation around z-axis

$\mu =$ height (identifying $\text{Lie}(S^1) \approx \mathbb{R}$)
Connectivity of Frame Spaces

Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

$$\mathcal{F}(r, S) = \left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \; \forall \; j \text{ and } FF^* = S \right\}$$
Connectivity of Frame Spaces

Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

\[\mathcal{F}(r, S) = \left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \ \forall \ j \text{ and } FF^* = S \right\} \]

Proof Idea. Given \(\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0) \), the space

\[\left\{ F \in \mathbb{C}^{d \times N} \mid \text{spec}(FF^*) = \lambda \right\} / \text{U}(d) \]

has a natural symplectic structure (isomorphic to a complex flag manifold; Grassmannian if \(\lambda = 1 \)).
Connectivity of Frame Spaces

Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

\[\mathcal{F}(r, S) = \left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \ \forall j \text{ and } FF^* = S \right\} \]

Proof Idea. Given \(\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0) \), the space

\[\left\{ F \in \mathbb{C}^{d \times N} \mid \text{spec}(FF^*) = \lambda \right\} / U(d) \]

has a natural symplectic structure (isomorphic to a complex flag manifold; Grassmannian if \(\lambda = 1 \)).

It has a Hamiltonian action by the torus \(U(1)^N \) (right multiplication) with momentum map

\[[F] \mapsto \mu([F]) = \left(-\frac{1}{2}\|f_j\|^2\right)_{j=1}^N \in \mathbb{R}^N \]
Connectivity of Frame Spaces

Theorem (N-Shonkwiler, ’21). Any space of frames of the following form is connected:

\[\mathcal{F}(r, S) = \left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \; \forall \; j \text{ and } FF^* = S \right\} \]

Proof Idea. Given \(\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d \geq 0) \), the space

\[\left\{ F \in \mathbb{C}^{d \times N} \mid \text{spec}(FF^*) = \lambda \right\} / U(d) \]

has a natural symplectic structure (isomorphic to a complex flag manifold; Grassmannian if \(\lambda = 1 \)).

It has a Hamiltonian action by the torus \(U(1)^N \) (right multiplication) with momentum map

\[[F] \mapsto \mu([F]) = \left(-\frac{1}{2} \|f_j\|^2 \right)_{j=1}^N \in \mathbb{R}^N \]

Theorem (Atiyah ’82). Level sets of momentum maps of torus actions are connected.

Connectivity of \(\mathcal{F}(r, S) \), with \(\text{spec}(S) = \lambda \), follows easily from connectivity of \(\mu^{-1} \left(-\frac{1}{2} (r_j^2) \right) \).
Geometry of Frame Spaces

Question: When is a frame space a smooth manifold?
Geometry of Frame Spaces

Question: When is a frame space a smooth manifold?

Theorem (N-Shonkwiler, ’22). Given vectors of norms r and eigenvalues λ, the space

$$\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \ \forall \ j \ \text{and} \ \text{spec}(FF^*) = \lambda \}$$

is a smooth manifold \iff there are no partitions $r = r' \sqcup r''$ and $\lambda = \lambda' \sqcup \lambda''$ with $r' < \lambda'$ and $r'' < \lambda''$.

For, $r = (r_1 \geq \cdots \geq r_N)$ and $\lambda = (\lambda_1 \geq \cdots \geq \lambda_d)$, write $r < \lambda$ if $\sum_{j=1}^{k} r_j \leq \sum_{j=1}^{k} \lambda_j \ \forall k = 1,\ldots,N$ (pad λ with zeros).
Geometry of Frame Spaces

Question: When is a frame space a smooth manifold?

Theorem (N-Shonkwiler, ’22). Given vectors of norms r and eigenvalues λ, the space

$$\left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \ \forall \ j \text{ and } \text{spec}(FF^*) = \lambda \right\}$$

is a smooth manifold \iff there do not exist partitions $r = r' \sqcup r''$ and $\lambda = \lambda' \sqcup \lambda''$ with $r' < \lambda'$ and $r'' < \lambda''$.

For, $r = (r_1 \geq \cdots \geq r_N)$ and $\lambda = (\lambda_1 \geq \cdots \geq \lambda_d)$, write $r < \lambda$ if $\sum_{j=1}^{k} r_j \leq \sum_{j=1}^{k} \lambda_j \ \forall k = 1, \ldots, N$ (pad λ with zeros).

Theorem (Shur-Horn Theorem, Casazza-Leon, ‘10).

$$\left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \ \forall \ j \text{ and } \text{spec}(FF^*) = \lambda \right\} \neq \emptyset \iff r < \lambda.$$
Geometry of Frame Spaces

Question: When is a frame space a smooth manifold?

Theorem (N-Shonkwiler, ’22). Given vectors of norms r and eigenvalues λ, the space

$$\left\{ F \in \mathbb{C}^{d \times N} \mid \| f_j \| = r_j \ \forall \ j \text{ and } \text{spec}(FF^*) = \lambda \right\}$$

is a smooth manifold $\iff \not\exists$ partitions $r = r' \sqcup r''$ and $\lambda = \lambda' \sqcup \lambda''$ with $r' < \lambda'$ and $r'' < \lambda''$.

For, $r = (r_1 \geq \cdots \geq r_N)$ and $\lambda = (\lambda_1 \geq \cdots \geq \lambda_d)$, write $r < \lambda$ if $\sum_{j=1}^{k} r_j \leq \sum_{j=1}^{k} \lambda_j \ \forall k = 1, \ldots, N$ (pad λ with zeros).

If it has singularities, they occur exactly at orthodecomposable frames, and singularities locally look like products of a quadratic cone and a manifold.

Description of singularities uses a result of Arms-Marsden-Moncrief ’81.

Generalizes a result of Dykema-Strawn ’06: The space $\text{UNTF}(d, N)$ is a smooth manifold if d and N are relatively prime. Answers open questions of Cahill-Mixon-Strawn ’17.
Full Spark Frames

Rough idea of **Compressed Sensing**: “A random matrix $F \in \mathbb{C}^{d \times N}$ is good at compressing sparse vectors in \mathbb{C}^N, via $\mathbb{C}^N \ni v \mapsto Fv \in \mathbb{C}^d$, with high probability.”

Can the quantitative version be improved if we choose a random unit norm tight frame? Empirical evidence suggests that the answer is “yes” [Chen-Rodrigues-Wassell, ’12, ’13].
We say a frame $F \in \mathbb{C}^{d\times N}$ is full spark if any choice of d columns is spanning.

Rough idea of Compressed Sensing: “A random matrix $F \in \mathbb{C}^{d\times N}$ is good at compressing sparse vectors in \mathbb{C}^N, via $\mathbb{C}^N \ni v \mapsto Fv \in \mathbb{C}^d$, with high probability.”

Can the quantitative version be improved if we choose a random unit norm tight frame? Empirical evidence suggests that the answer is “yes” [Chen-Rodrigues-Wassell, ’12, ’13].

A first step:

- We say a frame $F \in \mathbb{C}^{d\times N}$ is full spark if any choice of d columns is spanning.
- **Question:** What is the probability that a random UNTF is full spark?
 - **Cahill-Mixon-Strawn:** full spark frames are open and dense in UNTFs
Full Spark Frames

Rough idea of Compressed Sensing: “A random matrix $F \in \mathbb{C}^{d \times N}$ is good at compressing sparse vectors in \mathbb{C}^N, via $\mathbb{C}^N \ni v \mapsto Fv \in \mathbb{C}^d$, with high probability.”

Can the quantitative version be improved if we choose a random unit norm tight frame? Empirical evidence suggests that the answer is “yes” [Chen-Rodrigues-Wassell, ’12, ’13].

A first step:

- We say a frame $F \in \mathbb{C}^{d \times N}$ is full spark if any choice of d columns is spanning.

 Question: What is the probability that a random UNTF is full spark?

 Cahill-Mixon-Strawn: full spark frames are open and dense in UNTFs

Theorem (N-Shonkwiler, ’22). Given vectors of norms r and eigenvalues λ, the space

$$\left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \forall j \text{ and } \text{spec}(FF^*) = \lambda \right\}$$

satisfies exactly one of three conditions:

- It is empty (when Schur-Horn condition $r < \lambda$ fails)
- It is nonempty and contains only frames which are not full spark (S-H condition non-strict)
- It is nonempty and full spark frames are a subset of full Hausdorff measure (otherwise)
Theorem (N-Shonkwiler, ’22). Given vectors of norms r and eigenvalues λ, the space

$$\left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \ \forall \ j \ \text{and} \ \text{spec}(FF^*) = \lambda \right\}$$

satisfies exactly one of three conditions:

- It is empty (when Schur-Horn condition $r < \lambda$ fails)
- It is nonempty and contains only frames which are not full spark (S-H condition non-strict)
- It is nonempty and full spark frames are a subset of full Hausdorff measure (otherwise)
Full Spark Frames

Theorem (N-Shonkwiler, ’22). Given vectors of norms r and eigenvalues λ, the space

$$\left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \ \forall \ j \text{ and } \text{spec}(FF^*) = \lambda \right\}$$

satisfies exactly one of three conditions:

- It is empty (when Schur-Horn condition $r < \lambda$ fails)
- It is nonempty and contains only frames which are not full spark (S-H condition non-strict)
- It is nonempty and full spark frames are a subset of full Hausdorff measure (otherwise)

Proof Ingredients.

$$\left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \ \forall \ j \text{ and } \text{spec}(FF^*) = \lambda \right\} / (U(d) \times U(1)^N)$$

is a symplectic stratified space [Sjamaar-Lerman, ’91] with Hamiltonian torus action with momentum map

$$[F] \mapsto (\mu_{j,k})_{j,k}$$

where $\mu_{j,k}$ is the k^{th} eigenvalue of the partial frame operator $\sum_{\ell=1}^j f_\ell f_\ell^*$. These are known as eigensteps in the frame theory community.
Full Spark Frames

Theorem (N-Shonkwiler, ’22). Given vectors of norms r and eigenvalues λ, the space
\[
\left\{ F \in \mathbb{C}^{d \times N} \mid \|f_j\| = r_j \; \forall j \; \text{and} \; \text{spec}(FF^*) = \lambda \right\}
\]
satisfies exactly one of three conditions:

- It is empty (when Schur-Horn condition $r < \lambda$ fails)
- It is nonempty and contains only frames which are not full spark (S-H condition non-strict)
- It is nonempty and full spark frames are a subset of full Hausdorff measure (otherwise)

Proof Ingredients.

The eigensteps satisfy the Gelfand-Tsetlin pattern.

Defines a convex polytope whose Lebesgue measure can be used to compute Hausdorff measure on frame space (Duistermaat-Heckmann Theorem).
Normal Matrices and Balancing Directed Graphs
Normal Matrices

A matrix $A \in \mathbb{C}^{d \times d}$ is normal if $AA^* = A^*A$.

Normal matrices the general setting for the Spectral Theorem

$$\left\{ A \in \mathbb{C}^{d \times d} \mid AA^* = A^*A \right\} = \left\{ UDU^* \mid U \text{ unitary}, D \text{ diagonal} \right\}$$
Normal Matrices

A matrix $A \in \mathbb{C}^{d \times d}$ is normal if $AA^* = A^*A$.

Normal matrices the general setting for the Spectral Theorem

$$\{ A \in \mathbb{C}^{d \times d} \mid AA^* = A^*A \} = \{ UDU^* \mid U \text{ unitary, } D \text{ diagonal} \}$$

Normal matrices have spectra which are Lipschitz stable under perturbations [Bauer-Fike Theorem, 1960]

\Rightarrow applications in control theory

Normality plays a role in dynamics on networks [Asllani-Carletti, 2018]

\Rightarrow applications in mathematical biology

This motivates algorithms for finding the nearest normal matrix to a given $A \in \mathbb{C}^{d \times d}$.
Normal Matrices via Gradient Flow

A classical, natural measure of non-normality of a matrix A is $E(A) := \|AA^* - A^*A\|_{\text{Fro}}^2$.

Recall: The function $E : \mathbb{C}^{d \times d} \to \mathbb{R}$ is not quasi-convex, but for an arbitrary initialization $A_0 \in \mathbb{C}^{d \times d}$, we have:

Theorem [N-Shonkwiler, '24]. Gradient descent of the functional $E : A \mapsto \|AA^* - A^*A\|_{\text{Fro}}^2$ converges to a normal matrix A_∞. A_∞ has the same eigenvalues as A_0 and if A_0 is real, then so is A_∞. Moreover, there exist $c, \epsilon > 0$ such that, if $E(A_0) < \epsilon$ then $\|A_0 - A_\infty\|_{\text{Fro}}^2 \leq c\sqrt{E(A_0)}$.

This can be adapted to preserve total weight $\|A_0\|_{\text{Fro}}^2$.
Application: Topology of Unit Norm Normal Matrices

The space of normal matrices is contractible.

The space of unit norm normal matrices

\[\mathcal{U} \mathcal{N}_F(d) = \{ A \in F^{d \times d} \mid AA^* = A^*A \text{ and } \|A\|_{\text{Fro}} = 1 \}, \ F = \mathbb{R} \text{ or } \mathbb{C} \]

can have interesting topology.
Application: Topology of Unit Norm Normal Matrices

The space of normal matrices is contractible.

The space of unit norm normal matrices

\[\mathcal{UN}_F(d) = \{ A \in F^{d \times d} \mid AA^* = A^*A \text{ and } \|A\|_{\text{Fro}} = 1 \}, \ F = \mathbb{R} \text{ or } \mathbb{C} \]

can have interesting topology.

Example. \(\{ A \in \mathbb{R}^{2 \times 2} \mid \|A\|_{\text{Fro}} = 1 \} \) stereographically projected to \(\mathbb{R}^3 \).

Image of unit norm nilpotent matrices in blue.

Image of \(\mathcal{UN}_{\mathbb{R}}(2) \) in pink.
Application: Topology of Unit Norm Normal Matrices

The space of normal matrices is contractible.

The space of unit norm normal matrices

\[\mathcal{U} \mathcal{N}_F(d) = \{ A \in F^{d \times d} \mid AA^* = A^*A \text{ and } \|A\|_{\text{Fro}} = 1 \}, \ F = \mathbb{R} \text{ or } \mathbb{C} \]

can have interesting topology.

Example. \(\{ A \in \mathbb{R}^{2 \times 2} \mid \|A\|_{\text{Fro}} = 1 \} \) stereographically projected to \(\mathbb{R}^3 \).

Image of unit norm nilpotent matrices in blue.

Image of \(\mathcal{U} \mathcal{N}_{\mathbb{R}}(2) \) in pink.

Theorem [N-Shonkwiler, ’24].

- \(\pi_k(\mathcal{U} \mathcal{N}_\mathbb{C}(d)) \) is trivial for all \(k \leq 2d - 2 \).
- \(\pi_k(\mathcal{U} \mathcal{N}_\mathbb{R}(d)) \) is trivial for all \(k \leq d - 2 \).

Proof. \(\mathcal{U} \mathcal{N}_F(d) \) is homotopy equivalent to \{ non-nilpotent \(d \times d \) matrices \}, via gradient descent of \(E \).

The space of nilpotent matrices is a stratified space with high codimension strata. Use transversality.
Balancing Digraphs

Let $A = (a_{ij})_{ij} \in \mathbb{R}^{d \times d}$ be the adjacency matrix of a weighted, directed graph.

We say that the graph is balanced if

$$\sum_i a_{ik} = \sum_j a_{kj} \forall k$$

Balancing is necessary for, e.g., traffic flow problems [Hooi-Tong, 1970].
Balancing Graphs by Gradient Descent

Let $A_0 \in \mathbb{R}^{d \times d}$ be the entry-wise square of an adjacency matrix of a weighted digraph.

Theorem [N-Shonkwiler, '24]. Gradient descent of the functional $A \mapsto \|\text{diag}(AA^* - A^*A)\|_{\text{Frob}}^2$ converges to the entry-wise square of the adjacency matrix of a balanced digraph. It has the same eigenvalues and principal minors as A_0, and has zero entries whenever A_0 does. This can be adapted to preserve total weight $\|A_0\|_{\text{Frob}}^2$.

Also partially follows by symplectic principles.

Corollary [N-Shonkwiler, '24]. The space of balanced, unit norm adjacency matrices is homotopy equivalent to the space of unit norm normal matrices.
Tight frames on Vector Bundles
Vector Bundles

A rank-\(d\) real vector bundle over an \(n\)-dimensional smooth manifold \(M\) is a smooth manifold \(E\) with projection \(E \xrightarrow{\pi} M\) whose fibers \(E_p = \pi^{-1}(p)\) are isomorphic to \(\mathbb{R}^d\) such that \(E \approx M \times \mathbb{R}^d\), locally.

A Riemannian structure on \(E\) is a smooth choice of inner product \(\langle \cdot, \cdot \rangle_p\) on each fiber \(E_p\).

A vector field for \(E\) is a smooth map \(\sigma : M \to E\) such that \(\pi \circ \sigma = \text{Id}_M\).

Examples.

- Trivial bundle \(M \times \mathbb{R}^d \to M\)
- Tangent bundle over a manifold \(TM \to M\)
- Tautological bundle \(E \to \text{Gr}(k, \mathbb{R}^d)\)
Frames on Vector Bundles

Let $E \to M$ be a rank-d vector bundle over an n-dimensional manifold. An N-frame for E is a collection of N vector fields $(\sigma_1, \ldots, \sigma_N)$ such that $\{\sigma_1(p), \ldots, \sigma_N(p)\}$ is spanning for all p.

The frame is a tight frame if $[\sigma_1(p), \ldots, \sigma_N(p)]$ defines a tight frame on the fiber for all p. (Requires a choice of Riemannian structure for this to make sense.)

Prior Work: [Kuchment, ’08], [Freeman-Poore-Wei-Wyse, ’14], [Freeman-Hotovy-Martin, ’14], [Kuchment, ’16], [Auckly-Kuchment, ’18]
Frames on Vector Bundles

Let $E \rightarrow M$ be a rank-d vector bundle over an n-dimensional manifold. An N-frame for E is a collection of N vector fields $(\sigma_1, \ldots, \sigma_N)$ such that $\{\sigma_1(p), \ldots, \sigma_N(p)\}$ is spanning for all p.

The frame is a tight frame if $[\sigma_1(p), \ldots, \sigma_N(p)]$ defines a tight frame on the fiber for all p. (Requires a choice of Riemannian structure for this to make sense.)

Prior Work: [Kuchment, '08], [Freeman-Poore-Wei-Wyse, '14], [Freeman-Hotovy-Martin, '14], [Kuchment, '16], [Auckly-Kuchment, '18]

Motivation: Robust representation of “signals” on vector bundles; i.e., representing vector fields.

Measurements are coefficients of the signal w.r.t. the frame. This gives a map $M \rightarrow \mathbb{R}^N$.

signal = vector field
measurement system = N-frame
Frames on Vector Bundles

Let $E \to M$ be a rank-d vector bundle over an n-dimensional manifold. An N-frame for E is a collection of N vector fields $(\sigma_1, \ldots, \sigma_N)$ such that $\{\sigma_1(p), \ldots, \sigma_N(p)\}$ is spanning for all p.

The frame is a tight frame if $[\sigma_1(p), \ldots, \sigma_N(p)]$ defines a tight frame on the fiber for all p.

(Requires a choice of Riemannian structure for this to make sense.)

Prior Work: [Kuchment, '08], [Freeman-Poore-Wei-Wyse, '14], [Freeman-Hotovy-Martin, '14], [Kuchment, '16], [Auckly-Kuchment, '18]

Motivation: Robust representation of “signals” on vector bundles; i.e., representing vector fields.

Experiment: Signal reconstruction error for noisy signals on S^2 for tight versus random 3-frames.

Figure 1. Left: plots of the empirical CDFs of the MSE distributions for the Parseval frame (dark blue) and the random frames (light orange). Right: histograms of the MSE distributions for the Parseval frame (dark blue) and for the best of the random frames (lighter orange).
Existence of Tight Frames

Question. When do (tight) N-frames on $E \to M$ exist?
Existence of Tight Frames

Question. When do (tight) N-frames on $E \rightarrow M$ exist?

Examples.

• 3-frame on TS^2
Existence of Tight Frames

Question. When do (tight) N-frames on $E \to M$ exist?

Examples.

• 3-frame on TS^2

• A 2-frame on TS^2 does not exist

Such a frame would require a nonvanishing vector field on S^2, which DNE by the Hairy Ball Theorem.
Existence of Tight Frames

Question. When do (tight) N-frames on $E \to M$ exist?

Examples.

- 3-frame on TS^2

- A 2-frame on TS^2 does not exist

Such a frame frame would require a nonvanishing vector field on S^2, which DNE by the Hairy Ball Theorem.

- A tight N-frame for TM exists for sufficiently large N.

Follows by Whitney embedding argument, see [Freeman-Poore-Wei-Wyse, ’14].
Theorem (Ballas-N-Shonkwiler,’23). Let $E \to M$ be a vector bundle. An N-frame exists if and only if a tight N-frame exists.
Existence of Tight Frames

Theorem (Ballas-N-Shonkwiler,’23). Let $E \to M$ be a vector bundle. An N-frame exists if and only if a tight N-frame exists.

\[
\begin{align*}
\pi_{i+1}(M) &\xrightarrow{\text{Id}} \pi_i(\mathcal{P}^n(\mathbb{R}^k)) \xrightarrow{\iota_*} \pi_i(\mathcal{P}^n(E)) \xrightarrow{\overline{\iota}_*} \pi_i(M) \xrightarrow{\text{Id}} \pi_{i-1}(\mathcal{P}^n(\mathbb{R}^k)) \\
\pi_{i+1}(M) &\xrightarrow{\text{Id}} \pi_i(\mathcal{F}^n(\mathbb{R}^k)) \xrightarrow{\iota_*} \pi_i(\mathcal{F}^n(E)) \xrightarrow{\overline{\iota}_*} \pi_i(M) \xrightarrow{\text{Id}} \pi_{i-1}(\mathcal{F}^n(\mathbb{R}^k))
\end{align*}
\]

Theorem (Ballas-N-Shonkwiler,’23). Let $E \to M$ be a rank-d vector over an n-manifold. Then there exists a tight frame for E if $N \geq d + n$.
Existence of Tight Frames

Theorem (Ballas-N-Shonkwiler,'23). Let $E \to M$ be a vector bundle. An N-frame exists if and only if a tight N-frame exists.

\[\begin{array}{cccccc}
\pi_{i+1}(M) & \to & \pi_i(\mathcal{P}^n(\mathbb{R}^k)) & \to & \pi_i(\mathcal{P}^n(E)) & \to & \pi_i(M) & \to & \pi_{i-1}(\mathcal{P}^n(\mathbb{R}^k)) \\
\downarrow \text{Id} & & \downarrow \iota_* & & \downarrow \bar{\iota}_* & & \downarrow \text{Id} & & \downarrow \iota_* \\
\pi_{i+1}(M) & \to & \pi_i(\mathcal{F}^n(\mathbb{R}^k)) & \to & \pi_i(\mathcal{F}^n(E)) & \to & \pi_i(M) & \to & \pi_{i-1}(\mathcal{F}^n(\mathbb{R}^k))
\end{array} \]

Theorem (Ballas-N-Shonkwiler,'23). Let $E \to M$ be a rank-d vector over an n-manifold. Then there exists a tight frame for E if $N \geq d + n$.

Sufficient, but not necessary!

Theorem (Ballas-N-Shonkwiler,'23). There exists a closed, orientable d-manifold M such that TM does not admit a tight $(d + 1)$-frame if and only if $d > 3$.
Open Questions

• What about higher homotopy/(co)homology of frame spaces?

• What about the corresponding question for spaces of real frames?

• Can symplectic methods be applied to frames in infinite-dimensional Hilbert spaces?

• Can geometry of the Gelfand-Tsetlin polytope be used to get quantitative statements about compressed sensing properties of random frames?

• Can we efficiently generate random frames using Markov chain sampling in G-T polytope?

• Applications of frame theory on vector bundles?
Thanks for Listening!

References:

This research was supported by NSF DMS 2107808.