Optimization Informed by Geometric Invariant Theory and Symplectic Geometry

Clayton Shonkwiler
Colorado State University
shonkwiler.org

Recent Progress on Optimal Point Distributions and Related Fields
June 3, 2024
Optimization Informed by Geometric Invariant Theory and Symplectic Geometry

Clayton Shonkwiler
Colorado State University
shonkwiler.org/icerm24

Recent Progress on Optimal Point Distributions and Related Fields
June 3, 2024
Collaborators

Tom Needham
Florida State University

Anthony Caine
Colorado State University

Dustin Mixon
The Ohio State University

Soledad Villar
Johns Hopkins University

Funding

National Science Foundation (DMS–2107700)
Simons Foundation (#709150)
Take-Home Message

Symmetry + geometry sometimes tells you an optimization problem is easier than expected.
A spanning set $f_1, \ldots, f_n \in \mathbb{C}^d$ is a frame. \Rightarrow F = [f_1 \cdots f_n] \in \mathbb{C}^{d \times n}$
Equal-Norm Parseval Frames

A spanning set \(f_1, \ldots, f_n \in \mathbb{C}^d \) is a frame. \(\Rightarrow F = [f_1 \cdots f_n] \in \mathbb{C}^{d \times n} \)

Definition.

\(\{f_1, \ldots, f_n\} \subset \mathbb{C}^d \) is a Parseval frame if \(\text{Id}_{d \times d} = FF^* = f_1 f_1^* + \cdots + f_n f_n^* \).
Equal-Norm Parseval Frames

A spanning set $f_1, \ldots, f_n \in \mathbb{C}^d$ is a frame. $\Rightarrow F = [f_1 \cdots f_n] \in \mathbb{C}^{d \times n}$

Definition.

$\{f_1, \ldots, f_n\} \subset \mathbb{C}^d$ is a Parseval frame if $\text{Id}_{d \times d} = FF^* = f_1 f_1^* + \cdots + f_n f_n^*$.

An *equal-norm Parseval frame* (ENP frame) is a Parseval frame f_1, \ldots, f_n with $\|f_i\|^2 = \|f_j\|^2$ for all i and j.
Equal-Norm Parseval Frames

A spanning set $f_1, \ldots, f_n \in \mathbb{C}^d$ is a frame. \(\Rightarrow F = [f_1 \cdots f_n] \in \mathbb{C}^{d \times n} \)

Definition.

\(\{f_1, \ldots, f_n\} \subset \mathbb{C}^d \) is a Parseval frame if \(\text{Id}_{d \times d} = FF^* = f_1 f_1^* + \cdots + f_n f_n^* \).

An equal-norm Parseval frame (ENP frame) is a Parseval frame \(f_1, \ldots, f_n \) with \(\|f_i\|^2 = \|f_j\|^2 \) for all \(i \) and \(j \).

\[
\sum \|f_i\|^2 = \text{tr} F^*F = \text{tr} FF^* = \text{tr} \text{Id}_{d \times d} = d, \text{ so each } \|f_i\|^2 = \frac{d}{n}.
\]
A spanning set $f_1, \ldots, f_n \in \mathbb{C}^d$ is a frame. $\Rightarrow F = [f_1 \cdots f_n] \in \mathbb{C}^{d \times n}$

Definition.

$\{f_1, \ldots, f_n\} \subset \mathbb{C}^d$ is a Parseval frame if $\text{Id}_{d \times d} = FF^* = f_1 f_1^* + \cdots + f_n f_n^*$.

An equal-norm Parseval frame (ENP frame) is a Parseval frame f_1, \ldots, f_n with $\|f_i\|^2 = \|f_j\|^2$ for all i and j.

Equal-Norm Parseval Frames
Frame Potential

Definition [Benedetto–Fickus, Casazza–Fickus]

The *frame potential* is

$$FP(F) = \|FF^*\|_{F}^{2}$$
Frame Potential

Definition [Benedetto–Fickus, Casazza–Fickus]

The *frame potential* is

\[\text{FP}(F) = \|FF^*\|_F^2 \]

Proposition [cf. Welch]

The equal-norm Parseval frames are exactly the global minima of \(\text{FP}_{\text{equal norm}} \).
Frame Potential

Definition [Benedetto–Fickus, Casazza–Fickus]
The frame potential is
\[\text{FP}(F) = \|FF^*\|_{Fr}^2 \]

Proposition [cf. Welch]
The equal-norm Parseval frames are exactly the global minima of \(\text{FP}_{\text{equal norm}} \).

Theorem [Benedetto–Fickus]
As a function on equal-norm frames with fixed \(d \) and \(n \), \(\text{FP} \) has no spurious local minima.
Frame Potential
Optimization

Theorem [with Mixon, Needham, and Villar]

On the space of equal-norm frames, consider the initial value problem

\[
\Gamma(F_0, 0) = F_0, \quad \frac{d}{dt}\Gamma(F_0, t) = -\text{grad} \text{FP}(\Gamma(F_0, t)).
\]

If \(F_0\) has full spark, then \(\lim_{t \to \infty} \Gamma(F_0, t)\) is an ENP frame.
Optimization

Theorem [with Mixon, Needham, and Villar]

On the space of equal-norm frames, consider the initial value problem

\[\Gamma(F_0, 0) = F_0, \quad \frac{d}{dt} \Gamma(F_0, t) = -\text{grad} F\Pi(\Gamma(F_0, t)). \]

If \(F_0 \) has full spark, then \(\lim_{t \to \infty} \Gamma(F_0, t) \) is an ENP frame.

Theorem [with Needham]

Same for fusion frames.
Why Not the Other Way?

Definition [cf. Bodmann–Casazza]

The *normalizing potential* is

\[
\text{NP}(f_1, \ldots, f_n) = \sum_{i=1}^{n} \|f_i\|^4.
\]
Why Not the Other Way?

Definition [cf. Bodmann–Casazza]
The *normalizing potential* is

\[\text{NP}(f_1, \ldots, f_n) = \sum_{i=1}^{n} \|f_i\|^4. \]

Proposition [Bodmann–Haas]
The ENP frames are exactly the global minima of \(\text{NP} \mid \text{Parseval} \).
Why Not the Other Way?

Definition [cf. Bodmann–Casazza]
The normalizing potential is

\[\text{NP}(f_1, \ldots, f_n) = \sum_{i=1}^{n} \| f_i \|^4. \]

Proposition [Bodmann–Haas]
The ENP frames are exactly the global minima of \(\text{NP} \big|_{\text{Parseval}} \).

Theorem [with Caine and Needham]
On the space of Parseval frames, consider the initial value problem

\[\tilde{\Gamma}(F_0, 0) = F_0 \quad \frac{d}{dt} \tilde{\Gamma}(F_0, t) = -\text{grad} \text{NP}(\tilde{\Gamma}(F_0, t)). \]

If \(F_0 \) is full spark, then \(\lim_{t \to \infty} \tilde{\Gamma}(F_0, t) \) is an ENP frame.
Normal Matrices

Definition.

$A \in \mathbb{C}^{d \times d}$ is normal if $AA^* = A^* A$.

Normal Matrices

Definition.

$A \in \mathbb{C}^{d \times d}$ is normal if $AA^* = A^*A$.

Equivalently,

Normal Matrices

Definition.

$A \in \mathbb{C}^{d \times d}$ is *normal* if $AA^* = A^*A$.

Equivalently,

Define the *non-normal energy* $E : \mathbb{C}^{d \times d} \to \mathbb{R}$ by

$E(A) := \|[A, A^*]\|^2$.
Normal Matrices

Definition.
A ∈ \mathbb{C}^{d \times d} is normal if \(AA^* = A^* A \).

Equivalently,
\[
0 = AA^* - A^* A = [A, A^*].
\]

Define the non-normal energy \(E : \mathbb{C}^{d \times d} \to \mathbb{R} \) by
\[
E(A) := ||[A, A^*]||^2.
\]

Obvious Fact.
The normal matrices are the global minima of \(E \).
Normal Matrices

Definition.
$A \in \mathbb{C}^{d \times d}$ is normal if $AA^* = A^* A$.

Equivalently,

Define the non-normal energy $E : \mathbb{C}^{d \times d} \to \mathbb{R}$ by
$E(A) := \|[A, A^*]\|^2$.

Obvious Fact.
The normal matrices are the global minima of E.

Theorem [with Needham]
The only critical points of E are the global minima; i.e., the normal matrices.
Theorem [with Needham]
The only critical points of E are the global minima; i.e., the normal matrices.

E is not quasiconvex!
Gradient Descent

Let $\mathcal{F} : \mathbb{C}^{d \times d} \times \mathbb{R} \to \mathbb{C}^{d \times d}$ be negative gradient descent of E; i.e.,

$$\mathcal{F}(A_0, 0) = A_0 \quad \frac{d}{dt} \mathcal{F}(A_0, t) = -\nabla E(\mathcal{F}(A_0, t)).$$

Theorem [with Needham]

For any $A_0 \in \mathbb{C}^{d \times d}$, the matrix $A_\infty := \lim_{t \to \infty} \mathcal{F}(A_0, t)$ exists, is normal, has the same eigenvalues as A_0, and is real if A_0 is.
Balancing Graphs

Define the *unbalanced energy* $B(A) := \|\text{diag}([A, A^*])\|^2 = \sum (\|A_i\|^2 - \|A^i\|^2)^2$.
Balancing Graphs

Define the *unbalanced energy* $B(A) := \|\text{diag}([A, A^*])\|^2 = \sum (\|A_i\|^2 - \|A^i\|^2)^2$.

If $A = (a_{ij})_{i,j} \in \mathbb{R}^{d \times d}$ such that $\text{diag}([A, A^*]) = 0$, then $\hat{A} = (a^2_{ij})_{i,j}$ is the adjacency matrix of a *balanced* multigraph.
Balancing Graphs

Let $\mathcal{F}(A_0, 0) = A_0$, $\frac{d}{dt} \mathcal{F}(A_0, t) = -\nabla B(\mathcal{F}(A_0, t))$ be negative gradient flow of B.
Balancing Graphs

Let $\mathcal{F}(A_0, 0) = A_0$, $\frac{d}{dt} \mathcal{F}(A_0, t) = -\nabla B(\mathcal{F}(A_0, t))$ be negative gradient flow of B.

Theorem [with Needham]

For any $A_0 \in \mathbb{C}^{d \times d}$, the matrix $A_\infty := \lim_{t \to \infty} \mathcal{F}(A_0, t)$ exists, is balanced, has the same eigenvalues and principal minors as A_0, and has zero entries wherever A_0 does.

If A_0 is real, so is A_∞, and if A_0 has all non-negative entries, then so does A_∞.
Balancing Graphs

Theorem (with Needham)
For any $A_0 \in \mathbb{C}^{d \times d}$, the matrix $A_\infty := \lim_{t \to \infty} \mathcal{F}(A_0, t)$ exists, is balanced, has the same eigenvalues and principal minors as A_0, and has zero entries whenever A_0 does.

If A_0 is real, so is A_∞, and if A_0 has all non-negative entries, then so does A_∞.
Theorem (with Needham)

For any $A_0 \in \mathbb{C}^{d \times d}$, the matrix $A_\infty := \lim_{t \to \infty} \mathcal{F}(A_0, t)$ exists, is balanced, has the same eigenvalues and principal minors as A_0, and has zero entries whenever A_0 does.

If A_0 is real, so is A_∞, and if A_0 has all non-negative entries, then so does A_∞.
Balancing Graphs

Theorem (with Needham)
For any \(A_0 \in \mathbb{C}^{d \times d} \), the matrix \(A_\infty := \lim_{t \to \infty} \mathcal{F}(A_0, t) \) exists, is balanced, has the same eigenvalues and principal minors as \(A_0 \), and has zero entries whenever \(A_0 \) does.
If \(A_0 \) is real, so is \(A_\infty \), and if \(A_0 \) has all non-negative entries, then so does \(A_\infty \).
Balancing Graphs

Theorem (with Needham)

For any $A_0 \in \mathbb{C}^{d \times d}$, the matrix $A_{\infty} := \lim_{t \to \infty} \mathcal{F}(A_0, t)$ exists, is balanced, has the same eigenvalues and principal minors as A_0, and has zero entries whenever A_0 does.

If A_0 is real, so is A_{∞}, and if A_0 has all non-negative entries, then so does A_{∞}.
Why?
A symplectic manifold is a smooth manifold M together with a closed, non-degenerate 2-form $\omega \in \Omega^2(M)$.
Symplectic Geometry

A *symplectic manifold* is a smooth manifold M together with a closed, non-degenerate 2-form $\omega \in \Omega^2(M)$.

Example: $(\mathbb{R}^2, dx \wedge dy) = (\mathbb{C}, \frac{i}{2} dz \wedge d\bar{z})$
Symplectic Geometry

A symplectic manifold is a smooth manifold M together with a closed, non-degenerate 2-form $\omega \in \Omega^2(M)$.

Example: $(\mathbb{R}^2, dx \wedge dy) = (\mathbb{C}, \frac{i}{2}dz \wedge d\bar{z})$

\[dx \wedge dy \left(a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y}, c \frac{\partial}{\partial x} + d \frac{\partial}{\partial y} \right) = ad - bc\]

\[(c, d) = c\bar{e}_1 + d\bar{e}_2 = c \frac{\partial}{\partial x} + d \frac{\partial}{\partial y}\]

\[(a, b) = a\bar{e}_1 + b\bar{e}_2 = a \frac{\partial}{\partial x} + b \frac{\partial}{\partial y}\]
Examples

\[(\mathbb{R}^2, dx \wedge dy) = (\mathbb{C}, \frac{i}{2} dz \wedge d\bar{z}) \]
Examples

\((\mathbb{R}^2, dx \wedge dy) = (\mathbb{C}, \frac{i}{2} dz \wedge d\bar{z})\)

\((\mathbb{C}^n, \frac{i}{2} \sum d z_k \wedge d\bar{z}_k)\)
Examples

\((\mathbb{R}^2, dx \wedge dy) = (\mathbb{C}, \frac{i}{2} dz \wedge d\bar{z})\)

\((\mathbb{C}^n, \frac{i}{2} \sum d\bar{z}_k \wedge d\bar{z}_k)\)

\((\mathbb{C}^{m \times n}, \omega) \text{ with } \omega(X_1, X_2) = -\text{Im trace}(X_1^*X_2).\)
Examples

$$(\mathbb{R}^2, dx \wedge dy) = (\mathbb{C}, \frac{i}{2} dz \wedge d\bar{z})$$

$$(\mathbb{C}^n, \frac{i}{2} \sum dz_k \wedge d\bar{z}_k)$$

$$(\mathbb{C}^{m \times n}, \omega) \text{ with } \omega(X_1, X_2) = -\text{Im} \text{ trace}(X_1^*X_2).$$

$$(S^2, \omega), \text{ where } \omega_p(u, v) = (u \times v) \cdot p$$
Examples

\((\mathbb{R}^2, \, dx \wedge dy) = (\mathbb{C}, \, \frac{i}{2} \, dz \wedge d\bar{z})\)

\((\mathbb{C}^n, \, \frac{i}{2} \, \sum \, dz_k \wedge d\bar{z}_k)\)

\((\mathbb{C}^{m \times n}, \omega) \text{ with } \omega(X_1, X_2) = -\text{Im trace}(X_1^* X_2).\)

\((S^2, \omega), \text{ where } \omega_p(u, v) = (u \times v) \cdot p\)

\((S^2, d\theta \wedge dz)\)
Functions and Symplectic Gradients

If $H : M \to \mathbb{R}$ is smooth, then there exists a unique vector field X_H so that $dH = \iota_{X_H} \omega$, i.e.,

$$dH(\cdot) = \omega(X_H, \cdot)$$

(X_H is called the Hamiltonian vector field for H, or sometimes the symplectic gradient of H)
Functions and Symplectic Gradients

If $H : M \to \mathbb{R}$ is smooth, then there exists a unique vector field X_H so that $dH = \iota_{X_H} \omega$, i.e.,

$$dH(\cdot) = \omega(X_H, \cdot)$$

(X_H is called the Hamiltonian vector field for H, or sometimes the symplectic gradient of H)

Example. $H : (S^2, d\theta \wedge dz) \to \mathbb{R}$ given by $H(\theta, z) = z$.
Functions and Symplectic Gradients

If $H : M \rightarrow \mathbb{R}$ is smooth, then there exists a unique vector field X_H so that $dH = \iota_{X_H} \omega$, i.e.,

$$dH(\cdot) = \omega(X_H, \cdot)$$

(X_H is called the Hamiltonian vector field for H, or sometimes the symplectic gradient of H)

Example. $H : (S^2, d\theta \wedge dz) \rightarrow \mathbb{R}$ given by $H(\theta, z) = z$.

$$dH = dz = \iota_{\frac{\partial}{\partial \theta}} (d\theta \wedge dz), \text{ so } X_H = \frac{\partial}{\partial \theta}.$$
Functions and Symplectic Gradients

If $H : M \to \mathbb{R}$ is smooth, then there exists a unique vector field X_H so that $dH = \iota_{X_H} \omega$, i.e.,

$$dH(\cdot) = \omega(X_H, \cdot)$$

(X_H is called the Hamiltonian vector field for H, or sometimes the symplectic gradient of H)

Example. $H : (S^2, d\theta \wedge dz) \to \mathbb{R}$ given by $H(\theta, z) = z$.

H is constant on orbits of X_H:

$$\mathcal{L}_{X_H}(H) = dH(X_H) = \omega(X_H, X_H) = 0$$

$$dH = dz = \iota_{\frac{\partial}{\partial \theta}} (d\theta \wedge dz), \text{ so } X_H = \frac{\partial}{\partial \theta}.$$
Noether’s Theorem

“Every continuous symmetry has a corresponding conserved quantity”
Circle Actions

A circle action on (M, ω) determines a vector field X by

$$X(p) = \frac{d}{dt} \bigg|_{t=0} e^{it} \cdot p$$
Circle Actions

A circle action on \((M, \omega)\) determines a vector field \(X\) by

\[
X(p) = \frac{d}{dt} \bigg|_{t=0} e^{it} \cdot p
\]

\(S^1 = U(1)\) acts on \((S^2, d\theta \wedge dz)\) by

\[
e^{it} \cdot (\theta, z) = (\theta + t, z).
\]

So \(X = \frac{\partial}{\partial \theta} \cdot \).
Symmetries and Conserved Quantities

Definition. A circle action on \((M, \omega)\) is *Hamiltonian* if there exists a *momentum map* \(\mu : M \rightarrow \mathbb{R}\) so that
\[
d\mu = \iota_X \omega = \omega(X, \cdot),
\]
where \(X\) is the vector field generated by the circle action. In other words, \(X = X_\mu\).
Symmetries and Conserved Quantities

Definition. A circle action on (M, ω) is *Hamiltonian* if there exists a *momentum map*

$$\mu : M \rightarrow \mathbb{R}$$

so that $d\mu = \iota_X \omega = \omega(X, \cdot)$, where X is the vector field generated by the circle action. In other words, $X = X_\mu$.

$$X = \frac{\partial}{\partial \theta}$$
Symmetries and Conserved Quantities

Definition. A circle action on \((M, \omega)\) is *Hamiltonian* if there exists a *momentum map*

\[\mu : M \to \mathbb{R} \]

so that \(d\mu = \iota_X \omega = \omega(X, \cdot)\), where \(X\) is the vector field generated by the circle action. In other words, \(X = X_\mu\).

\[
X = \frac{\partial}{\partial \theta} \\
\iota_X \omega = \iota \frac{\partial}{\partial \theta} d\theta \wedge dz = (d\theta \wedge dz) \left(\frac{\partial}{\partial \theta} , \cdot \right) = dz
\]
Symmetries and Conserved Quantities

Definition. A circle action on (M, ω) is *Hamiltonian* if there exists a *momentum map*

$$\mu : M \to \mathbb{R}$$

so that $d\mu = \iota_X \omega = \omega(X, \cdot)$, where X is the vector field generated by the circle action. In other words, $X = X_\mu$.

$$X = \frac{\partial}{\partial \theta}$$

$$\iota_X \omega = \iota_{\frac{\partial}{\partial \theta}} d\theta \wedge dz = (d\theta \wedge dz)\left(\frac{\partial}{\partial \theta}, \cdot\right) = dz$$

$$\mu(\theta, z) = z$$
Nice Potentials

Suppose $\mu : (M, \omega) \to g^*$ is the momentum map of a Hamiltonian G action.
Nice Potentials

Suppose $\mu : (M, \omega) \to g^*$ is the momentum map of a Hamiltonian G action.

Define $\Phi : M \to \mathbb{R}$ by $\Phi(p) = \|\mu(p)\|^2$.

Nice Potentials

Suppose $\mu : (M, \omega) \to g^*$ is the momentum map of a Hamiltonian G action.

Define $\Phi : M \to \mathbb{R}$ by $\Phi(p) = \|\mu(p)\|^2$.

This kind of function is really nice!

Frances Kirwan
Nice Potentials

Suppose \(\mu : (M, \omega) \to g^* \) is the momentum map of a Hamiltonian \(G \) action.

Define \(\Phi : M \to \mathbb{R} \) by \(\Phi(p) = \|\mu(p)\|^2 \).

Theorem [Kirwan]

Reductive algebraic group action on Kähler manifold \(\iff \) semistable points flow to global minima of \(\Phi \) by gradient descent.

This kind of function is really nice!

Frances Kirwan
Geometric Invariant Theory (GIT)

The GIT quotient consists of group orbits which can be distinguished by G-invariant (homogeneous) polynomials.
The GIT quotient consists of group orbits which can be distinguished by G-invariant (homogeneous) polynomials.

\[
\mathbb{C}^* \actsleft \mathbb{C} \mathbb{P}^2
\]
\[
t \cdot [z_0 : z_1 : z_2] = [z_0 : tz_1 : \frac{1}{t} z_2]
\]
Geometric Invariant Theory (GIT)

The GIT quotient consists of group orbits which can be distinguished by G-invariant (homogeneous) polynomials.

$$\mathbb{C}^* \curvearrowright \mathbb{C}P^2$$

$$t \cdot [z_0 : z_1 : z_2] = [z_0 : tz_1 : \frac{1}{t}z_2]$$

$$\mathbb{C}P^2 // \mathbb{C}^* \cong \mathbb{C}P^1$$
Geometric Invariant Theory (GIT)

The GIT quotient consists of group orbits which can be distinguished by G-invariant (homogeneous) polynomials.

$$
\mathbb{C}^* \sim \mathbb{C}P^2 \\
t \cdot [z_0 : z_1 : z_2] = [z_0 : tz_1 : \frac{1}{t} z_2]
$$

$$
\mathbb{C}P^2/\mathbb{C}^* \cong \mathbb{C}P^1
$$

Roughly: identify orbits whose closures intersect, throw away orbits on which all G-invariant polynomials vanish.
Groups, Actions, Maps

<table>
<thead>
<tr>
<th>Group</th>
<th>Manifold</th>
<th>Action</th>
<th>Momentum Map</th>
<th>Potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>U(d)</td>
<td>$\left(\mathbb{CP}^{d-1}\right)^n$</td>
<td>$g \cdot [F] = [gF]$</td>
<td>$[F] \mapsto FF^*$</td>
<td>FP</td>
</tr>
<tr>
<td>U(1)n</td>
<td>Gr(d, n)</td>
<td>$g \cdot [F] = [Fg^*]$</td>
<td>$[F] \mapsto \text{diag}(F^*F)$</td>
<td>NP</td>
</tr>
<tr>
<td>SU(d)</td>
<td>$\mathbb{C}^{d\times d}$</td>
<td>$g \cdot A = gAg^{-1}$</td>
<td>$A \mapsto [A, A^*]$</td>
<td>E</td>
</tr>
<tr>
<td>S(U(1)d)</td>
<td>$\mathbb{C}^{d\times d}$</td>
<td>$g \cdot A = gAg^{-1}$</td>
<td>$A \mapsto \text{diag}([A, A^*])$</td>
<td>B</td>
</tr>
</tbody>
</table>
Questions

Do similar techniques work for

1. Tightening (or normalizing) probabilistic frames?
2. Constructing doubly-stochastic matrices?
Questions

Do similar techniques work for

1. Tightening (or normalizing) probabilistic frames?
2. Constructing doubly-stochastic matrices?

Does this machinery tell us anything about the Paulsen problem?
Questions

Do similar techniques work for

1. Tightening (or normalizing) probabilistic frames?
2. Constructing doubly-stochastic matrices?

Does this machinery tell us anything about the Paulsen problem?

What other nice configurations are minima of potentials of this form?
Thank you!
References

Three proofs of the Benedetto–Fickus theorem
Dustin Mixon, Tom Needham, Clayton Shonkwiler, and Soledad Villar
arXiv:2112.02916

Fusion frame homotopy and tightening fusion frames by gradient descent
Tom Needham and Clayton Shonkwiler
Journal of Fourier Analysis and Applications **29** (2023), no. 4, 51
arXiv:2208.11045

Geometric approaches to matrix normalization and graph balancing
Tom Needham and Clayton Shonkwiler
arXiv:2405.06190