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Motivations

¢ High-dimensional (nonconvex) optimization problems are pervasive in many fields, particularly

in cutting-edge areas such as machine learning, signal/image processing and optimal control.

Training neural networks Computer assisted tomography Crowd evacuation control
® Optimization and sampling methods often draw from similar probabilistic principles and

techniques, making them interconnected in various computational contexts.

® Stochastic gradient descent (SGD) methods are are efficient, scalable, and adept at avoiding

critical points. They are closely linked to sampling via Langevin dynamics.

® Metaheuristic algorithms gained popularity for their broad applicability and minimal

assumptions on optimization/sampling problems.
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Metaheuristics

Metaheuristic algorithms, often nature-inspired, combine random and deterministic moves with
local and global strategies to escape local minima and perform a robust search of the solution.

Metropolis-Hastings (1953,1970)

Simplex Heuristics (1965)

Evolutionary Programming (1966)

Genetic Algorithms (GA) (1975)

Simulated Annealing (SA) (1983)

Particle Swarm Optimization (PSO) (1995)
Ant Colony Optimization (ACO) (1997)

= Despite the significant empirical success, most results are experimental in nature and lack a
rigorous mathematical foundation.
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Classical metaheuristics

Consider the optimization problem

z* € argmin, g F(z), J

F(r):R?— Ris a (non convex, high dimensional, possibly non smooth) cost function.

Algorithm \ Feature

Simulated Annealing | Generates a single point X" at each iteration.

(SA) The sequence of points approaches an optimal solution.
Genetic Algorithm Generates a population of points X' at each iteration.
(GA) The fittest evolve towards an optimal solution.

Particle Swarm Generates a swarm of points (X, V") at each iteration.
Optimization (PSO) | The swarm moves towards an optimal solution.
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Metaheuristics optimization in action

Ackley function

Rastrigin function
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Ackley2D.mp4
Media File (video/mp4)


Rastrigin2D.mp4
Media File (video/mp4)


CBO methods: a PDEs perspective on metaheuristcs

Consensus-based optimization (CBO) considers the evolution of N particles X} € R? according to:

dX! = —\X!-X®dt + oD(X;—X2)dB! |

alignment exploration

where A > 0, 0 > 0, D(X;) = | X;|1; (isotropic) or D(X;) = diag {(X¢)1, ..., (Xt)a} (anisotropic)

a——400

X2 = ) ZXl —aF(XD argmin(F(X}), ..., F(X)) (Laplace principle)
Z e oc]:(X

The behavior for N > 1 is obtained by assuming that the (X}), i = 1,..., N are i.i.d. with the
same distribution p(z,t) (propagation of chaos assumption) satisfying the Fokker—Planck equation

2

d
Bup =V Mz — )+ > Z “(M)ie(t))

1Pinnau, Totzeck, Tse, Martin '17; Carrillo, Choi, Totzeck, Tse '18; Carrillo, Jin, Li, Zhu '20; Fornasier, Huang,
Siinnen, Pareschi 21; Carrillo, Hoffmann, Stuart, Vaes '22; Borghi, Herty, Pareschi '23; ...
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Questions arising

e Can we extend the concepts and analysis of CBO to other widely used
metaheuristic algorithms?

® (Can this approach lead to the design of new, more efficient and mathematically
explainable algorithms?

® Could this approach enhance our understanding of the relationship between
metaheuristics and gradient-based methods?
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Outline

® Motivations

® Optimization by linear kinetic equations
Simulated annealing
Convergence to equilibrium
Mean-field Langevin limit
Generalizations

©® Concluding remarks
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Simulated Annealing

ﬁ Xn—&-l - X" _|_O_n§

N. Metropolis where ¢ ~ U(—1,1)? and 0™ > 0 depends on T". Typically o™ ~ /T™.

Starting from a random trial point X° € R? and a control temperature T?, the
simulated annealing (SA) algorithm can be summarized as’

@ Move the current point

@ If X1 is better than the current point F(X"!) < F(X™), it becomes the next point.
5 . 5 _ . - FXMH - F(x™)
If X7+ is worse F(X™H1) > F(X™) it is accepted with probability e~ ™
© The algorithm systematically lowers the temperature, accordingly to a law of the type
T =\ LT, A" e (0,1),
where Ty > 0 is a given initial temperature. A classical choice is A = 1/1In(n + 2).

= For a fixed T the algorithm corresponds to Metropolis-Hasting sampling from the
F(x)

Boltzmann-Gibbs probability density Ce™ 7 .

bMetropoIis et al. '53; Kirkpatrick, Gelatt, Vecchi '83
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Simulated annealing and Langevin dynamics

Consider the stochastic differential process?

dX, = —V,F(X,)dt + V2TdB,,

referred to as Langevin equation. It can be understood as the limit for small learning rates of a
stochastic gradient descent (SGD) method.

The process is refereed to as continuous simulated annealing since its mean field description

of

E(l‘,t) =V (vmf(m)f(xat)) + TAmacf(xvt)»

where f(x,t) is the probability density to have a trial point in position x € R? at time t > 0,
admits as stationary state the Boltzmann-Gibbs distribution

—F (@)
T

[3(2) = Ce™r.

2Geman, Hwang '86; Hwang et al '87; Locatelli '00; Monmarché '18; Chizat '22
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Annealing process

By the Laplace principle ‘ ‘ ‘ =
—ry

_F(x) . —T=25
lim —T log </ g(xz)e T dx) = inf F(a), i —7-5 ]
T—0 Rd x€supp(g) 25} 1

where g(z) is a pdf in R, For T < 1, the equilibrium state <
concentrates on global minima of F(x)

fr(z) = o(xz —a*). 050

0
Time to reach equilibrium increases exponentially with 1/7'! @ 2

Slowly decreasing T'(t) so that the solution approaches f3°(x) at a faster rate and concentrates on

minima asymptotically. For T'(t) ~ 1/log(2 +t) it converges weakly to the set of global minima3.

= It requires the gradient evaluation, in contrast with the gradient-free nature of SA algorithm.

= Derivation of the SDE Langevin diffusion from Metropolis-Hasting*.

3Hajek '88
4Roberts, Gelman, Gilks '97; Roberts, Rosenthal '01; Pillai, Stuart, Thiéry '14
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Optimization by linear kinetic equations

After introducing the probability density f(x,t), we can write the evolution equation®

1D _ (a1
Lr(f(z,t) = (Br(z' — z)f(2',t) — Br(x — ') f(x,t))
gain loss

where () = E¢[-] denotes the expectation with respect to the selection probability p(¢), £ € R,

¥ =+ o(t)E,
is the new trial-point position, and
n fEEN 1,00 / F(2') < F(x),
B“”*“‘mm%wym}‘ IFW) - Faty > F),
[7(x)

is the transition probability from z — 2.

5Kolokoltsov '10; Pareschi, Toscani '13
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Proposition

The Gibbs distribution f3°(z) satisfies Lx(f(z)) =0, Vo € RY.

For a symmetric selection probability we have the weak form

[t s do=

2 Br(a = o/)(9(a’) — 6(2)f (z, ) d) . J

R2

The above equation can be written as a classical linear Boltzmann equation®

0

5 L f@00t)dz = {

(e = )(0) ~ o) OIF ) de) |

R4

where Sr(z — 2') > 0 is now a symmetric collision kernel

T, F(2') < F(x)
AN f]:(z)
/Bf(xﬁx)_{f%}(z)’ F(z') > F(z).

6Bisi, Canizo, Lods '15, '19; Toscani, Spiga '04; Michel, Mischler, Perthame '05

Lorenzo Pareschi Optimization and sampling by linear kinetic equations 13 /30



Entropies and steady states

For any convex function ®(x), we have

f(m))dx ., LUIFE) <o

& () dt

where for h(z,y) = (z — y)(P'(x) — D'(y)) > 0

111 = 5 ([ Brto o) 150

Ha(f115) = [ 7@ (

oy 7))

In the case ®(z) = zlog(x) — z + 1 we have the Shannon-Boltzmann entropy H(f|f%) for which
a modified logarithmic Sobolev inequality”

Ir[f] 2 NH(fIf5) = H(fIfF) < H(fol fF)e™,

thanks to the Csiszar—Kullback inequality implies the convergence in L1 (R%) of f(z,t) to f3°(x).

7Ho||ey, Strook '88; Miclo '92; Trouvé '96; Carlen, Carvalho '04; Toscani, Villani '99; Matthes, Toscani '12;
Desvillettes, Mouhot, Villani '11
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Annealing and long time behavior

In the general case where T' = T'(t) we must take into account the normalization constant

¢(z) = log (%) = log(f(z,1)) + J;i;) —log (C(t))
to get
% /R f(w,t)log (M) du = /]R ) 8f(aﬁ’t) (log(f(x,w) + J;((f)) - log(C(t))) do
T'(t) -
7T2(t) - F(x) (f(z,t) — f7(z,1) dx

This requires T"(t) = o(T?(t)) as T(t) — 0. For example if T'(t) ~ 1/t we get T'(t)/T(t)? ~ 1
whereas for T'(t) ~ 1/ log(t) we get T"(t)/T(t)? ~ 1/t and the quantity can be bounded

AH(fI ) _
dt -

= By Laplace principle, as T'(t) — 0 the equilibrium f9°(z,t) concentrates on the global minimum

x*, then also f(z,t) concentrates on x* and the solution converges to the global minimum®.

“MH(f1S5) + SWF el = £21h < = (A= S1F ) HF1FE).

8Borghi, Pareschi '24
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From SA to Langevin: mean-field scaling

Let us observe that the weak form of the kinetic equation can be reformulated as follows

% e f(z,t)¢(z) dx = </Rd(¢(a:/) — ¢(x)) f(z, 1) dm>

([, (-5 vrw) > Fepee) - s i)

By analogy with the grazing collision limit of the Boltzmann equation, we consider the scaling®
t—tle, o(t)—eo(t),

and write for small values of ¢ < 1

d

Ba') = 8(z) + (&' — ) Vad(e) + 3 D (ah — ) — )

ij=1

(VoI (2)) f5 (2) + O(e).

>’ ¢(x)
O0x;0x;

+ 0(63/2)
fFE) = FF @) - @ —a)
T(t)
9Desvillettes '92; Villani '98; Pareschi, Toscani '13
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Assuming p(€) with mean 0 and identity covariance matrix ¥ = I

/ (6L, dé = 5y,
R4

where §;; is the Kronecker delta, we formally have

P a%;
5 [ Feoa Z/Rd (2,)da

8¢ Vo F ()€ - V() f(2,t) dE d.

_QT(t) Rd JR

Taking 27'(t) = o2(t), we can revert to the original variables to recover the Langevin dynamics

Of (z,t)
ot

=V, (Vo F(2)f(z,t) + T(t)Avz f(,t).
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Variantions on the theme, improvements, generalizations

® Maxwellian SA.
If X7 *1 is worse than X™ we interpolate with a weight proportional to the Gibbs' measure,
thus avoiding acceptance/rejection'®.

® Entropy controlled SA.
A time evolution of a temperature distribution is considered aimed at minimizing the entropy
to speed up convergence of standard simulated annealing®!.

® Parallel tempering SA.
Samples have independent temperatures, so that f = f(x,T,t), which can be modified along
the dynamic in order to lead low temperature samples to the global minima’2.

® Sampling.
The ideas can be generalized to the Metropolis-Hasting sampling algorithm. The main
difference lies in the transition probability which defines the kernel in the kinetic equation®3.

0pareschi '24

11Herty, Pareschi, Zanella '24
12Blondeel, Pareschi '24
13Borghi, Pareschi '24
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Maxwellian SA

We can formulate a simulated annealing-type process avoiding the acceptance-rejection dynamic.
@ We start from the trial point
® Then, we define X = X" 4 0"
ot _ {X’n“ e if]-'():(”“) —~F(X") <0
X" te — —Tm (X Xy if F(XnH) — F(X™) > 0.

Thus, if X! is worse than X™ we interpolate with a weight proportional to the Gibbs' measure.
In a continuous setting we have the update rule
2400
f7 (@)

The corresponding kinetic equation has the form of a Maxwell model and can be written as

¥ =2+ Br(z — x+o(t)€)o(t)§, Br(z — x4+ o(t)€) = min {17

0

5 | f@0s@de = [ (66) - st ds) |

= It is possible to show that the mean-field scaling yields again the Langevin dynamics.
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The prototype Ackley function

—7T=1
L — T =15

T=2

) —T=25

3r —T=3

. 0
3 2 1 0 1 2 3 -3 2 2 3
x T

The prototype Ackley function (left) and the corresponding steady states (right) given by the

Boltzmann-Gibbs measure for various values of the control temperature.
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The prototype Ackley function: fixed temperature 7' = 2

Reference Reference
2 0 KSA 0 KSA
MSA MSA
w-: MFL w-: MFL
15 i 15 [
P 8 i
~ 1 ~ 1 it
4
e i
! 1
05 7t 0.5 P
& [
0 .——-AJM 0
3 2 - 0 1 2 3 E 2 -1 [} 1 2 3
x x
1 1
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0.5 1

15 2

Probability density (top) and relative entropy (bottom) for ¢ = 0.01 (left) and € = 0.0001 (right)
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The prototype Ackley function:

annealing T'(t) = 2log(2)/log(2 + t)

9 s §
s i
8 2
6 4
6
L5 &
7 | g
=~ [ L4
3 f: 3
N 2
1 d 1
i dx
( »
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—— Reference —— Reference
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Probability density (top) and relative entropy (bottom) for ¢ = 0.01 (left) and € = 0.0001 (right).
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Entropy controlled SA

We consider the following system of kinetic equations in weak form

0
5 | f@playe

= 5B | [ (o) — pla))(Br(o )] (0,1) = Br(e! — ) (@', 0))ds
R4

gt /R+ 9(T, t)p(T)dT = E, [ /R eI~ DT, t)dT]

h
where r' = x +4/2D[g)¢.
The term D[g] = D[g](t) > 0 depends on ¢(7,t) and

T'=T = MfIT + /K(T)n,

with A = A[f] € [0, 1] a control parameter which depends on f(z,t), and n a random
variable such that E[n] = 0, E,[n?] = 202 < 400 and is weighted by the function x(-) > 0.
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Mean-field entropy control

Taking Dl[g] as the mean value

one can show that

ALF(®)
D?[g](t)

CH(L)O) = ~Tn(177) - | F@UE @ - 1.0y

where

f(z,t)
a(fIfF)( /D f(z,t)V,log f]:( )da;

Thus one can choose \[f](t) to speed up the convergence rate of the algorithm.
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Rastrigin d = 1

ot

Lorenzo Pareschi
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Parallel tempering SA

In parallel tempering (PT) a collection of particles X" with different temperatures 77" is
considered. Adjacent temperatures i and j are then swapped with probability*

i J

[(Th — ) (FO) - f(X;?“»]
exp T )

where T acts as a global temperature. This is needed to control the acceptance ratio.

A kinetic model embedding SA and PT for f = f(x,T,t) can be derived in the form

of

= Lr() + w1, 9) |

where J£(f, f) is a Boltzmann-type operator modeling the binary particle interactions by
temperature exchanges and p is a scaling factor.

14Swendsen, Wang '86; Geyer '91; Marinari, Parisi '92
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The weak form of this operator reads
/R Jr(f, [)O(T) dT da = /]R Cr (2,20, T, T)((T)~$(T)) f (w0, T.) f (2, T) dT dT. da d..,

where

T

T — 2 )(Flz) — F(as
Cr(w,2, T.T) = W(T = T.| < A) exp (-~ #)F@) - 7 >>]

with ¥(-) the indicator function, A > 0 and 7" =nT + (1 — n)T%.
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Error behavior SA vs SA+PT ;1 =1/3, d =10

10D Ackley

up.log(2) / np.log(t + 2)
100 particles

10:} N
— SA Ty =2
—— PT. T, = [0.01, 1000.q]

101 i

10—1 i

Average log (best) error

1073 1

0 500 1000 1500 2000 2500
Steps
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Generalizations to sampling

The above ideas can be extended to the general Metropolis-Hasting sampling algorithm.

Let M (z) be a function that is proportional to the desired probability density function f°°(x),
namely, M (x)/M(y) = f>(x)/f>(y) for z,y € R%.

The kinetic formalism used in the simulated annealing case applies also to the Metropolis-Hasting
process where the main difference lies in the transition probability that reads
1, p(zlz )M (z") > p(a'|z) M (z)
Buy(z — 2') =< p(z|z )M (2)
p(a'|z)M(x)

where z’ is generated from a given proposal density p(z’|z). The most common choices are the
uniform or the normal distributions centered in x with a given variance o.
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Concluding remarks

A kinetic/mean-field description of stochastic particle optimization methods may pave the
way to a mathematical foundation of metaheuristic algorithms for global optimization.

® This entails new difficulties as we have to deal with concepts such as memory or other
heuristic rules that can be very difficult to translate into differential form.

® The resulting PDEs are studied using classical trend to equilibrium tools (entropy inequalities,
Wasserstain distance, asymptotic limits, ... ), enabling the design of more efficient algorithms.

® Several open problems concerning the limit as N — oo, the behavior for a finite number of

particles, the dependence on the hyper-parameters, the rates of convergence ...

Collaborators:

A. Benfenati (Milano), G. Borghi (Aachen & Ferrara), S. Grassi (Ferrara), M. Herty (Aachen), F. Blondeel (Leuven
& Ferrara), M. Fornasier (Munich), P. Siinnen (Munich), H. Huang (Graz), J. Qiu (Calgary), M. Zanella (Pavia)
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