Optimization and sampling by linear kinetic equations

Lorenzo Pareschi
School of Mathematical and Computer Sciences and Maxwell Institute for Mathematical Sciences
Heriot-Watt University, Edinburgh, UK
Department of Mathematics and Computer Science
University of Ferrara, IT

Interacting Particle Systems: Analysis, Control, Learning and Computation
ICERM, May 6-10, 2024
• High-dimensional (nonconvex) optimization problems are pervasive in many fields, particularly in cutting-edge areas such as machine learning, signal/image processing and optimal control.

• Optimization and sampling methods often draw from similar probabilistic principles and techniques, making them interconnected in various computational contexts.

• Stochastic gradient descent (SGD) methods are efficient, scalable, and adept at avoiding critical points. They are closely linked to sampling via Langevin dynamics.

• Metaheuristic algorithms gained popularity for their broad applicability and minimal assumptions on optimization/sampling problems.
Metaheuristics

Metaheuristic algorithms, often nature-inspired, combine random and deterministic moves with local and global strategies to escape local minima and perform a robust search of the solution.

- Metropolis-Hastings (1953, 1970)
- Simplex Heuristics (1965)
- Evolutionary Programming (1966)
- Genetic Algorithms (GA) (1975)
- Simulated Annealing (SA) (1983)
- Particle Swarm Optimization (PSO) (1995)
- Ant Colony Optimization (ACO) (1997)
- ...

⇒ Despite the significant empirical success, most results are experimental in nature and lack a rigorous mathematical foundation.
Consider the optimization problem

\[x^* \in \arg\min_{x \in \mathbb{R}} F(x), \]

\(F(x) : \mathbb{R}^d \to \mathbb{R} \) is a (non convex, high dimensional, possibly non smooth) cost function.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulated Annealing (SA)</td>
<td>Generates a single point (X^n) at each iteration. The sequence of points approaches an optimal solution.</td>
</tr>
<tr>
<td>Genetic Algorithm (GA)</td>
<td>Generates a population of points (X^n_i) at each iteration. The fittest evolve towards an optimal solution.</td>
</tr>
<tr>
<td>Particle Swarm Optimization (PSO)</td>
<td>Generates a swarm of points ((X^n_i, V^n_i)) at each iteration. The swarm moves towards an optimal solution.</td>
</tr>
</tbody>
</table>
Metaheuristics optimization in action

Examples of swarm-based optimization processes

- Ackley function
- Rastrigin function
Consensus-based optimization (CBO) considers the evolution of N particles $X^i_t \in \mathbb{R}^d$ according to\(^1\):

$$
\frac{dX^i_t}{dt} = -\lambda (X^i_t - \bar{X}^\alpha_t)dt + \sigma D(X^i_t - \bar{X}^\alpha_t)dB^i_t,
$$

where $\lambda > 0$, $\sigma > 0$, $D(X_t) = |X_t|I_d$ (isotropic) or $D(X_t) = \text{diag}\{(X^1_t), \ldots, (X^d_t)\}$ (anisotropic).

$$
\bar{X}^\alpha_t = \frac{1}{\sum_i e^{-\alpha F(X^i_t)}} \sum_i X^i_t e^{-\alpha F(X^i_t)} \rightarrow \text{argmin}(F(X^1_t), \ldots, F(X^N_t)) \text{ (Laplace principle)}
$$

The behavior for $N \gg 1$ is obtained by assuming that the (X^i_t), $i = 1, \ldots, N$ are i.i.d. with the same distribution $\rho(x,t)$ (propagation of chaos assumption) satisfying the Fokker–Planck equation

$$
\partial_t \rho = \nabla_x \cdot (\lambda (x - \bar{x}^\alpha(\rho))\rho(t)) + \frac{\sigma^2}{2} \sum_{j=1}^d \partial_{jj}((x - \bar{x}^\alpha(\rho))^2)\rho(t))
$$

\(^1\)Pinnau, Totzeck, Tse, Martin ’17; Carrillo, Choi, Totzeck, Tse ’18; Carrillo, Jin, Li, Zhu ’20; Fornasier, Huang, Sünnen, Pareschi 21; Carrillo, Hoffmann, Stuart, Vaes ’22; Borghi, Herty, Pareschi ’23; ...
Questions arising

- Can we extend the concepts and analysis of CBO to other widely used metaheuristic algorithms?
- Can this approach lead to the design of new, more efficient and mathematically explainable algorithms?
- Could this approach enhance our understanding of the relationship between metaheuristics and gradient-based methods?
1 Motivations

2 Optimization by linear kinetic equations
 - Simulated annealing
 - Convergence to equilibrium
 - Mean-field Langevin limit
 - Generalizations

3 Concluding remarks
Simulated Annealing

Starting from a random trial point $X^0 \in \mathbb{R}^d$ and a control temperature T^0, the simulated annealing (SA) algorithm can be summarized as\(^b\)

1. Move the current point

$$\tilde{X}^{n+1} = X^n + \sigma^n \xi$$

where $\xi \sim U(-1, 1)^d$ and $\sigma^n > 0$ depends on T^n. Typically $\sigma^n \sim \sqrt{T^n}$.

2. If \tilde{X}^{n+1} is better than the current point $\mathcal{F}(\tilde{X}^{n+1}) < \mathcal{F}(X^n)$, it becomes the next point.

 If \tilde{X}^{n+1} is worse $\mathcal{F}(\tilde{X}^{n+1}) \geq \mathcal{F}(X^n)$ it is accepted with probability $e^{-\frac{\mathcal{F}(\tilde{X}^{n+1}) - \mathcal{F}(X^n)}{T^n}}$.

3. The algorithm systematically lowers the temperature, accordingly to a law of the type

$$T^{n+1} = \lambda^{n+1} T_0, \quad \lambda^n \in (0, 1),$$

where $T_0 > 0$ is a given initial temperature. A classical choice is $\lambda^n = 1/\ln(n + 2)$.

⇒ For a fixed T the algorithm corresponds to Metropolis-Hasting sampling from the Boltzmann-Gibbs probability density $Ce^{-\frac{\mathcal{F}(x)}{T}}$.

\(^b\)Metropolis et al. ’53; Kirkpatrick, Gelatt, Vecchi ’83
Simulated annealing and Langevin dynamics

Consider the stochastic differential process\(^2\)

\[
dX_t = -\nabla_x F(X_t) dt + \sqrt{2T} dB_t,
\]

referred to as Langevin equation. It can be understood as the limit for small learning rates of a stochastic gradient descent (SGD) method.

The process is referred to as continuous simulated annealing since its mean field description

\[
\frac{\partial f}{\partial t}(x, t) = \nabla_x \cdot (\nabla_x F(x) f(x, t)) + T \Delta_{xx} f(x, t),
\]

where \(f(x, t)\) is the probability density to have a trial point in position \(x \in \mathbb{R}^d\) at time \(t > 0\), admits as stationary state the Boltzmann-Gibbs distribution

\[
f^\infty_F (x) = Ce^{\frac{-F(x)}{T}}.
\]

\(^2\)Geman, Hwang '86; Hwang et al '87; Locatelli '00; Monmarché '18; Chizat '22
Annealing process

By the Laplace principle

$$\lim_{T \to 0} -T \log \left(\int_{\mathbb{R}^d} g(x) e^{-\frac{F(x)}{T}} \, dx \right) = \inf_{x \in \text{supp}(g)} F(x),$$

where $g(x)$ is a pdf in \mathbb{R}^d. For $T \ll 1$, the equilibrium state concentrates on global minima of $F(x)$

$$f^\infty_{\mathcal{F}}(x) \to \delta(x - x^*).$$

Time to reach equilibrium increases exponentially with $1/T$!

Slowly decreasing $T(t)$ so that the solution approaches $f^\infty_{\mathcal{F}}(x)$ at a faster rate and concentrates on minima asymptotically. For $T(t) \sim \frac{1}{\log(2 + t)}$ it converges weakly to the set of global minima3.

⇒ It requires the gradient evaluation, in contrast with the gradient-free nature of SA algorithm.

⇒ Derivation of the SDE Langevin diffusion from Metropolis-Hasting4.

3Hajek '88

4Roberts, Gelman, Gilks '97; Roberts, Rosenthal '01; Pillai, Stuart, Thiéry '14
After introducing the probability density $f(x, t)$, we can write the evolution equation\footnote{Kolokoltsov '10; Pareschi, Toscani '13}

\[
\frac{\partial f(x, t)}{\partial t} = \mathcal{L}_\mathcal{F}(f(x, t)) \\
\mathcal{L}_\mathcal{F}(f(x, t)) = \langle B_{\mathcal{F}}(x' \rightarrow x) f(x', t) \rangle - \langle B_{\mathcal{F}}(x \rightarrow x') f(x, t) \rangle
\]

where $\langle \cdot \rangle = \mathbb{E}_\xi [\cdot]$ denotes the expectation with respect to the selection probability $p(\xi)$, $\xi \in \mathbb{R}^d$, $x' = x + \sigma(t)\xi$, is the new trial-point position, and

\[
B_{\mathcal{F}}(x \rightarrow x') = \min \left\{ 1, \frac{f^\infty_{\mathcal{F}}(x')}{f^\infty_{\mathcal{F}}(x)} \right\} = \begin{cases}
1, & \mathcal{F}(x') < \mathcal{F}(x), \\
\frac{f^\infty_{\mathcal{F}}(x')}{f^\infty_{\mathcal{F}}(x)}, & \mathcal{F}(x') \geq \mathcal{F}(x),
\end{cases}
\]

is the transition probability from $x \rightarrow x'$.

\footnotetext{Kolokoltsov '10; Pareschi, Toscani '13}
Proposition

The Gibbs distribution $f^\infty_\mathcal{F}(x)$ satisfies $\mathcal{L}_\mathcal{F}(f^\infty_\mathcal{F}(x)) = 0$, $\forall x \in \mathbb{R}^d$.

For a symmetric selection probability we have the weak form

$$\frac{\partial}{\partial t} \int_{\mathbb{R}^d} f(x, t) \phi(x) \, dx = \left\langle \int_{\mathbb{R}^d} B_\mathcal{F}(x \to x')(\phi(x') - \phi(x)) f(x, t) \, dx \right\rangle.$$

The above equation can be written as a classical linear Boltzmann equation

$$\frac{\partial}{\partial t} \int_{\mathbb{R}^d} f(x, t) \phi(x) \, dx = \left\langle \int_{\mathbb{R}^d} \beta_\mathcal{F}(x \to x')(\phi(x') - \phi(x)) f(x, t) f^\infty_\mathcal{F}(x') \, dx \right\rangle,$$

where $\beta_\mathcal{F}(x \to x') \geq 0$ is now a symmetric collision kernel

$$\beta_\mathcal{F}(x \to x') = \begin{cases}
\frac{1}{f^\infty_\mathcal{F}(x')}, & \mathcal{F}(x') < \mathcal{F}(x) \\
\frac{1}{f^\infty_\mathcal{F}(x)}, & \mathcal{F}(x') \geq \mathcal{F}(x).
\end{cases}$$

6Bisi, Canizo, Lods ’15, ’19; Toscani, Spiga ’04; Michel, Mischler, Perthame ’05
Entropies and steady states

Theorem

For any convex function $\Phi(x)$, we have

$$H_\Phi(f|f_\infty^\infty) = \int_{\mathbb{R}^d} f_\infty^\infty(x) \Phi \left(\frac{f(x,t)}{f_\infty^\infty(x)} \right) dx \quad \Rightarrow \quad \frac{dH_\Phi(f|f_\infty^\infty)}{dt} = -I_F[f] \leq 0,$$

where for $h(x,y) = (x - y)(\Phi'(x) - \Phi'(y)) \geq 0$

$$I_F[f] = \frac{1}{2} \left\langle \int_{\mathbb{R}^d} B_F(x \rightarrow x') f_\infty^\infty(x) h \left(\frac{f(x',t)}{f_\infty^\infty(x')}, \frac{f(x,t)}{f_\infty^\infty(x)} \right) dx \right\rangle$$

In the case $\Phi(x) = x \log(x) - x + 1$ we have the Shannon-Boltzmann entropy $H(f|f_\infty^\infty)$ for which a modified logarithmic Sobolev inequality

$$I_F[f] \geq \lambda H(f|f_\infty^\infty) \Rightarrow H(f|f_\infty^\infty) \leq H(f_0|f_\infty^\infty) e^{-\lambda t},$$

thanks to the Csiszár–Kullback inequality implies the convergence in $L_1(\mathbb{R}^d)$ of $f(x,t)$ to $f_\infty^\infty(x)$.

7Holley, Strook '88; Miclo '92; Trouvé '96; Carlen, Carvalho '04; Toscani, Villani '99; Matthes, Toscani '12; Desvillettes, Mouhot, Villani '11
Annealing and long time behavior

In the general case where $T = T(t)$ we must take into account the normalization constant

$$
\phi(x) = \log \left(\frac{f(x, t)}{f^\infty(x, t)} \right) = \log(f(x, t)) + \frac{\mathcal{F}(x)}{T(t)} - \log(C(t))
$$

to get

$$
\frac{d}{dt} \int_{\mathbb{R}^d} f(x, t) \log \left(\frac{f(x, t)}{f^\infty(x, t)} \right) dx = \int_{\mathbb{R}^d} \frac{\partial f(x, t)}{\partial t} \left(\log(f(x, t)) + \frac{\mathcal{F}(x)}{T(t)} - \log(C(t)) \right) dx
$$

$$
- \frac{T'(t)}{T^2(t)} \int_{\mathbb{R}^d} \mathcal{F}(x) (f(x, t) - f^\infty(x, t)) dx
$$

This requires $T'(t) = o(T^2(t))$ as $T(t) \to 0$. For example if $T(t) \approx 1/t$ we get $T'(t)/T(t)^2 \approx 1$ whereas for $T(t) \approx 1/\log(t)$ we get $T'(t)/T(t)^2 \approx 1/t$ and the quantity can be bounded

$$
\frac{dH(f|f^\infty)}{dt} \leq -\lambda H(f|f^\infty) + \frac{c}{t} \|\mathcal{F}\|_\infty \|f - f^\infty\|_1 \leq - \left(\lambda - \frac{c}{t} \|\mathcal{F}\|_\infty \right) H(f|f^\infty).
$$

\Rightarrow By Laplace principle, as $T(t) \to 0$ the equilibrium $f^\infty(x, t)$ concentrates on the global minimum x^*, then also $f(x, t)$ concentrates on x^* and the solution converges to the global minimum8.

8Borghi, Pareschi '24
Let us observe that the weak form of the kinetic equation can be reformulated as follows

\[
\frac{\partial}{\partial t} \int_{\mathbb{R}^d} f(x, t) \phi(x) \, dx = \left\langle \int_{\mathbb{R}^d} (\phi(x') - \phi(x)) f(x, t) \, dx \right\rangle \\
- \left\langle \int_{\mathbb{R}^d} \left(1 - \frac{f^\infty_F(x')}{f^\infty_F(x)} \right) \Psi(F(x') \geq F(x)) (\phi(x') - \phi(x)) f(x, t) \, dx \right\rangle.
\]

By analogy with the grazing collision limit of the Boltzmann equation, we consider the scaling\(^9\)

\[
t \to t/\varepsilon, \quad \sigma(t) \to \sqrt{\varepsilon} \sigma(t),
\]

and write for small values of \(\varepsilon \ll 1\)

\[
\phi(x') = \phi(x) + (x' - x) \cdot \nabla_x \phi(x) + \frac{1}{2} \sum_{i,j=1}^d (x'_i - x_i)(x'_j - x_j) \frac{\partial^2 \phi(x)}{\partial x_i \partial x_j} + O(\varepsilon^{3/2})
\]

\[
f^\infty_F(x') = f^\infty_F(x) - (x' - x) \cdot \frac{1}{T(t)} (\nabla_x F(x)) f^\infty_F(x) + O(\varepsilon).
\]

\(^9\)Desvillettes '92; Villani '98; Pareschi, Toscani '13
Assuming $p(\xi)$ with mean 0 and identity covariance matrix $\Sigma = I_d$

$$\int_{\mathbb{R}^d} p(\xi) \xi_i \xi_j \, d\xi = \delta_{ij},$$

where δ_{ij} is the Kronecker delta, we formally have

$$\frac{\partial}{\partial t} \int_{\mathbb{R}^d} f(x,t) \phi(x) \, dx = \frac{\sigma(t)^2}{2} \sum_{i=1}^d \int_{\mathbb{R}^d} \frac{\partial^2 \phi(x)}{\partial x_i^2} f(x,t) \, dx$$

$$- \frac{\sigma(t)^2}{2T(t)} \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} p(\xi) \xi \cdot \nabla_x F(x) \xi \cdot \nabla_x \phi(x) f(x,t) \, d\xi \, dx.$$

Taking $2T(t) = \sigma^2(t)$, we can revert to the original variables to recover the Langevin dynamics

$$\frac{\partial f(x,t)}{\partial t} = \nabla_x \cdot (\nabla_x F(x) f(x,t)) + T(t) \Delta_{xx} f(x,t).$$
Variations on the theme, improvements, generalizations

- **Maxwellian SA.**
 If \tilde{X}^{n+1} is worse than X^n we interpolate with a weight proportional to the Gibbs’ measure, thus avoiding acceptance/rejection\(^{10}\).

- **Entropy controlled SA.**
 A time evolution of a temperature distribution is considered aimed at minimizing the entropy to speed up convergence of standard simulated annealing\(^{11}\).

- **Parallel tempering SA.**
 Samples have independent temperatures, so that $f = f(x, T, t)$, which can be modified along the dynamic in order to lead low temperature samples to the global minima\(^{12}\).

- **Sampling.**
 The ideas can be generalized to the Metropolis-Hasting sampling algorithm. The main difference lies in the transition probability which defines the kernel in the kinetic equation\(^{13}\).

\(^{10}\)Pareschi ’24
\(^{11}\)Herty, Pareschi, Zanella ’24
\(^{12}\)Blondeel, Pareschi ’24
\(^{13}\)Borghi, Pareschi ’24
Maxwellian SA

We can formulate a simulated annealing-type process avoiding the acceptance-rejection dynamic.

1. We start from the trial point
 \[
 \tilde{X}^{n+1} = X^n + \sigma^n \xi.
 \]

2. Then, we define
 \[
 X^{n+1} = \begin{cases}
 \tilde{X}^{n+1} & \text{if } F(\tilde{X}^{n+1}) - F(X^n) < 0 \\
 X^n + e^{-\frac{F(\tilde{X}^{n+1}) - F(X^n)}{T^n}} (\tilde{X}^{n+1} - X^n) & \text{if } F(\tilde{X}^{n+1}) - F(X^n) \geq 0.
 \end{cases}
 \]

Thus, if \(\tilde{X}^{n+1} \) is worse than \(X^n \) we interpolate with a weight proportional to the Gibbs’ measure.

In a continuous setting we have the update rule

\[
x' = x + B_F(x \rightarrow x + \sigma(t)\xi)\sigma(t)\xi,
\]

\[
B_F(x \rightarrow x + \sigma(t)\xi) = \min \left\{ 1, \frac{f^\infty(x + \sigma(t)\xi)}{f^\infty(x)} \right\}.
\]

The corresponding kinetic equation has the form of a Maxwell model and can be written as

\[
\frac{\partial}{\partial t} \int_{\mathbb{R}^d} f(x, t) \phi(x) \, dx = \left\langle \int_{\mathbb{R}^d} (\phi(x') - \phi(x)) f(x, t) \, dx \right\rangle.
\]

\Rightarrow It is possible to show that the mean-field scaling yields again the Langevin dynamics.
The prototype Ackley function (left) and the corresponding steady states (right) given by the Boltzmann-Gibbs measure for various values of the control temperature.
The prototype Ackley function: fixed temperature $T = 2$

Probability density (top) and relative entropy (bottom) for $\varepsilon = 0.01$ (left) and $\varepsilon = 0.0001$ (right).
The prototype Ackley function: annealing $T(t) = \frac{2 \log(2)}{\log(2 + t)}$

Probability density (top) and relative entropy (bottom) for $\varepsilon = 0.01$ (left) and $\varepsilon = 0.0001$ (right).
We consider the following system of kinetic equations in weak form

\[
\frac{\partial}{\partial t} \int_{\mathbb{R}^d} f(x, t) \varphi(x) \, dx = \frac{1}{2} \mathbb{E}_\xi \left[\int_{\mathbb{R}^d} (\varphi(x') - \varphi(x)) (B_F(x \to x') f(x, t) - B_F(x' \to x) f(x', t)) \, dx \right]
\]

\[
\frac{\partial}{\partial t} \int_{\mathbb{R}_+} g(T, t) \varphi(T) \, dT = \mathbb{E}_\eta \left[\int_{\mathbb{R}_+} \varphi(T') - \varphi(T) g(T, t) \, dT \right]
\]

where

\[x' = x + \sqrt{2D[g]} \xi. \]

The term \(D[g] = D[g](t) \geq 0\) depends on \(g(T, t)\) and

\[T' = T - \lambda[f]T + \sqrt{\kappa(T)} \eta, \]

with \(\lambda = \lambda[f] \in [0, 1]\) a control parameter which depends on \(f(x, t)\), and \(\eta\) a random variable such that \(\mathbb{E}[\eta] = 0\), \(\mathbb{E}_\eta[\eta^2] = 2\sigma^2 < +\infty\) and is weighted by the function \(\kappa(\cdot) \geq 0\).
Taking $\mathcal{D}[g]$ as the mean value

$$\mathcal{D}[g](t) = \int_{\mathbb{R}^+} Tg(T, t) dT,$$

one can show that

$$\frac{d}{dt} \mathcal{H}(f | f^\infty_F)(t) = -I_H(f | f^\infty_F) - \frac{\lambda[f](t)}{\mathcal{D}^2[g](t)} \int_{\mathbb{R}^d} \mathcal{F}(x)(f^\infty_F(x, t) - f(x, t)) dx,$$

where

$$I_H(f | f^\infty_F)(t) = \int_{\mathbb{R}^d} \mathcal{D}[g](t) f(x, t) \nabla_x \log \frac{f(x, t)}{f^\infty_F(x, t)} dx$$

Thus one can choose $\lambda[f](t)$ to speed up the convergence rate of the algorithm.
Rastrigin $d = 1$
In parallel tempering (PT) a collection of particles X^n_i with different temperatures T^n_i is considered. Adjacent temperatures i and j are then swapped with probability

$$
\exp \left[\left(\frac{1}{T^n_i} - \frac{1}{T^n_j} \right) \frac{\mathcal{F}(X^{n+1}_i) - \mathcal{F}(X^{n+1}_j)}{\bar{T}} \right],
$$

where \bar{T} acts as a global temperature. This is needed to control the acceptance ratio.

A kinetic model embedding SA and PT for $f = f(x, T, t)$ can be derived in the form

$$
\frac{\partial f}{\partial t} = \mathcal{L}_\mathcal{F}(f) + \mu J_\mathcal{F}(f, f)
$$

where $J_\mathcal{F}(f, f)$ is a Boltzmann-type operator modeling the binary particle interactions by temperature exchanges and μ is a scaling factor.

14 Swendsen, Wang '86; Geyer '91; Marinari, Parisi '92
The weak form of this operator reads

\[
\int_{\mathbb{R}_+} J_{\mathcal{F}}(f, f) \phi(T) \, dT \, dx = \int_{\mathbb{R}} C_{\mathcal{F}}(x, x_*, T, T_*)(\phi(T') - \phi(T)) f(x_*, T_*) f(x, T) \, dT \, dT_* \, dx \, dx_* ,
\]

where

\[
C_{\mathcal{F}}(x, x_*, T, T_*) = \Psi(|T - T_*| < \Delta) \exp \left[\left(\frac{1}{T} - \frac{1}{T_*} \right) \frac{\mathcal{F}(x) - \mathcal{F}(x_*)}{T} \right]
\]

with \(\Psi(\cdot) \) the indicator function, \(\Delta > 0 \) and \(T' = \eta T + (1 - \eta)T_* \).
Error behavior SA vs SA+PT $\mu = 1/3$, $d = 10$

10D Ackley

\[\frac{\text{np.log}(2)}{\text{np.log}(t + 2)} \]

100 particles

Lorenzo Pareschi

Optimization and sampling by linear kinetic equations
The above ideas can be extended to the general Metropolis-Hasting sampling algorithm.

Let \(M(x) \) be a function that is proportional to the desired probability density function \(f^\infty(x) \), namely, \(M(x)/M(y) = f^\infty(x)/f^\infty(y) \) for \(x, y \in \mathbb{R}^d \).

The kinetic formalism used in the simulated annealing case applies also to the Metropolis-Hasting process where the main difference lies in the transition probability that reads

\[
B_M(x \rightarrow x') = \begin{cases}
1, & p(x|x')M(x') > p(x'|x)M(x) \\
\frac{p(x|x')M(x')}{p(x'|x)M(x)}, & p(x|x')M(x') < p(x'|x)M(x),
\end{cases}
\]

where \(x' \) is generated from a given proposal density \(p(x'|x) \). The most common choices are the uniform or the normal distributions centered in \(x \) with a given variance \(\sigma \).
Concluding remarks

- A kinetic/mean-field description of stochastic particle optimization methods may pave the way to a mathematical foundation of metaheuristic algorithms for global optimization.

- This entails new difficulties as we have to deal with concepts such as memory or other heuristic rules that can be very difficult to translate into differential form.

- The resulting PDEs are studied using classical trend to equilibrium tools (entropy inequalities, Wasserstain distance, asymptotic limits, ...), enabling the design of more efficient algorithms.

- Several open problems concerning the limit as $N \to \infty$, the behavior for a finite number of particles, the dependence on the hyper-parameters, the rates of convergence ...