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Motivations

• High-dimensional (nonconvex) optimization problems are pervasive in many fields, particularly

in cutting-edge areas such as machine learning, signal/image processing and optimal control.

Training neural networks Computer assisted tomography Crowd evacuation control

• Optimization and sampling methods often draw from similar probabilistic principles and

techniques, making them interconnected in various computational contexts.

• Stochastic gradient descent (SGD) methods are are efficient, scalable, and adept at avoiding

critical points. They are closely linked to sampling via Langevin dynamics.

• Metaheuristic algorithms gained popularity for their broad applicability and minimal

assumptions on optimization/sampling problems.
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Metaheuristics

Metaheuristic algorithms, often nature-inspired, combine random and deterministic moves with
local and global strategies to escape local minima and perform a robust search of the solution.

• Metropolis-Hastings (1953,1970)

• Simplex Heuristics (1965)

• Evolutionary Programming (1966)

• Genetic Algorithms (GA) (1975)

• Simulated Annealing (SA) (1983)

• Particle Swarm Optimization (PSO) (1995)

• Ant Colony Optimization (ACO) (1997)

• . . .

⇒ Despite the significant empirical success, most results are experimental in nature and lack a
rigorous mathematical foundation.
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Classical metaheuristics

Consider the optimization problem

x∗ ∈ argminx∈RF(x) ,

F(x) : Rd → R is a (non convex, high dimensional, possibly non smooth) cost function.

Algorithm Feature

Simulated Annealing Generates a single point Xn at each iteration.
(SA) The sequence of points approaches an optimal solution.

Genetic Algorithm Generates a population of points Xn
i at each iteration.

(GA) The fittest evolve towards an optimal solution.

Particle Swarm Generates a swarm of points (Xn
i , V

n
i ) at each iteration.

Optimization (PSO) The swarm moves towards an optimal solution.
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Metaheuristics optimization in action

Ackley function Rastrigin function

Examples of swarm-based optimization processes
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CBO methods: a PDEs perspective on metaheuristcs

Consensus-based optimization (CBO) considers the evolution of N particles Xi
t ∈ Rd according to1:

dXi
t = −λ(Xi

t − X̄α
t )dt︸ ︷︷ ︸

alignment

+ σD(Xi
t − X̄α

t )dBit︸ ︷︷ ︸
exploration

,

where λ > 0, σ > 0, D(Xt) = |Xt|Id (isotropic) or D(Xt) = diag {(Xt)1, . . . , (Xt)d} (anisotropic)

X̄α
t =

1∑
i e
−αF(Xi

t)

∑
i

Xi
te
−αF(Xi

t) −−−−−→
α→+∞

argmin(F(X1
t ), . . . ,F(XN

t )) (Laplace principle)

The behavior for N � 1 is obtained by assuming that the (Xi
t), i = 1, . . . , N are i.i.d. with the

same distribution ρ(x, t) (propagation of chaos assumption) satisfying the Fokker–Planck equation

∂tρ = ∇x · λ(x− x̄α(ρ))ρ(t) +
σ2

2

d∑
j=1

∂jj((x− x̄α(ρ))2
jρ(t))

1Pinnau, Totzeck, Tse, Martin ’17; Carrillo, Choi, Totzeck, Tse ’18; Carrillo, Jin, Li, Zhu ’20; Fornasier, Huang,
Sünnen, Pareschi 21; Carrillo, Hoffmann, Stuart, Vaes ’22; Borghi, Herty, Pareschi ’23; . . .
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Questions arising

• Can we extend the concepts and analysis of CBO to other widely used
metaheuristic algorithms?

• Can this approach lead to the design of new, more efficient and mathematically
explainable algorithms?

• Could this approach enhance our understanding of the relationship between
metaheuristics and gradient-based methods?
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Simulated Annealing

N. Metropolis

Starting from a random trial point X0 ∈ Rd and a control temperature T 0, the
simulated annealing (SA) algorithm can be summarized asb

1 Move the current point
X̃n+1 = Xn + σnξ

where ξ ∼ U(−1, 1)d and σn > 0 depends on Tn. Typically σn ∼
√
Tn.

2 If X̃n+1 is better than the current point F(X̃n+1) < F(Xn), it becomes the next point.

If X̃n+1 is worse F(X̃n+1) ≥ F(Xn) it is accepted with probability e−
F(X̃n+1)−F(Xn)

Tn .

3 The algorithm systematically lowers the temperature, accordingly to a law of the type

Tn+1 = λn+1T0, λn ∈ (0, 1),

where T0 > 0 is a given initial temperature. A classical choice is λn = 1/ ln(n+ 2).

⇒ For a fixed T the algorithm corresponds to Metropolis-Hasting sampling from the

Boltzmann-Gibbs probability density Ce−
F(x)
T .

bMetropolis et al. ’53; Kirkpatrick, Gelatt, Vecchi ’83
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Simulated annealing and Langevin dynamics

Consider the stochastic differential process2

dXt = −∇xF(Xt)dt+
√

2TdBt,

referred to as Langevin equation. It can be understood as the limit for small learning rates of a
stochastic gradient descent (SGD) method.

The process is refereed to as continuous simulated annealing since its mean field description

∂f

∂t
(x, t) = ∇x · (∇xF(x)f(x, t)) + T∆xxf(x, t),

where f(x, t) is the probability density to have a trial point in position x ∈ Rd at time t > 0,
admits as stationary state the Boltzmann-Gibbs distribution

f∞F (x) = Ce
−F(x)

T .

2Geman, Hwang ’86; Hwang et al ’87; Locatelli ’00; Monmarché ’18; Chizat ’22
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Annealing process

By the Laplace principle

lim
T→0
−T log

Å∫
Rd

g(x)e
−F(x)

T dx

ã
= inf
x∈supp(g)

F(x),

where g(x) is a pdf in Rd. For T � 1, the equilibrium state
concentrates on global minima of F(x)

f∞F (x)→ δ(x− x∗).

Time to reach equilibrium increases exponentially with 1/T !

Slowly decreasing T (t) so that the solution approaches f∞F (x) at a faster rate and concentrates on
minima asymptotically. For T (t) ∼ 1/ log(2 + t) it converges weakly to the set of global minima3.

⇒ It requires the gradient evaluation, in contrast with the gradient-free nature of SA algorithm.

⇒ Derivation of the SDE Langevin diffusion from Metropolis-Hasting4.

3Hajek ’88
4Roberts, Gelman, Gilks ’97; Roberts, Rosenthal ’01; Pillai, Stuart, Thiéry ’14
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Optimization by linear kinetic equations

After introducing the probability density f(x, t), we can write the evolution equation5

∂f(x, t)

∂t
= LF (f(x, t))

LF (f(x, t)) = 〈BF (x′ → x)f(x′, t)︸ ︷︷ ︸
gain

− BF (x→ x′)f(x, t)〉︸ ︷︷ ︸
loss

where 〈 · 〉 = Eξ[·] denotes the expectation with respect to the selection probability p(ξ), ξ ∈ Rd,

x′ = x+ σ(t)ξ,

is the new trial-point position, and

BF (x→ x′) = min

ß
1,
f∞F (x′)

f∞F (x)

™
=

1, F(x′) < F(x),
f∞F (x′)

f∞F (x)
, F(x′) ≥ F(x),

is the transition probability from x→ x′.

5Kolokoltsov ’10; Pareschi, Toscani ’13
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Proposition

The Gibbs distribution f∞F (x) satisfies LF (f∞F (x)) = 0, ∀x ∈ Rd.

For a symmetric selection probability we have the weak form

∂

∂t

∫
Rd

f(x, t)φ(x) dx =

≠∫
Rd

BF (x→ x′)(φ(x′)− φ(x))f(x, t) dx

∑
.

The above equation can be written as a classical linear Boltzmann equation6

∂

∂t

∫
Rd

f(x, t)φ(x) dx =

≠∫
Rd

βF (x→ x′)(φ(x′)− φ(x))f(x, t)f∞F (x′) dx

∑
,

where βF (x→ x′) ≥ 0 is now a symmetric collision kernel

βF (x→ x′) =

{
1

f∞F (x′) , F(x′) < F(x)

1
f∞F (x) , F(x′) ≥ F(x).

6Bisi, Canizo, Lods ’15, ’19; Toscani, Spiga ’04; Michel, Mischler, Perthame ’05
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Entropies and steady states

Theorem

For any convex function Φ(x), we have

HΦ(f |f∞F ) =

∫
Rd

f∞F (x)Φ

Å
f(x, t)

f∞F (x)

ã
dx =⇒ dHΦ(f |f∞F )

dt
= −IF [f ] ≤ 0,

where for h(x, y) = (x− y)(Φ′(x)− Φ′(y)) ≥ 0

IF [f ] =
1

2

≠∫
Rd

BF (x→ x′)f∞F (x)h

Å
f(x′, t)

f∞F (x′)
,
f(x, t)

f∞F (x)

ã
dx

∑
In the case Φ(x) = x log(x)− x+ 1 we have the Shannon-Boltzmann entropy H(f |f∞F ) for which
a modified logarithmic Sobolev inequality7

IF [f ] ≥ λH(f |f∞F )⇒ H(f |f∞F ) ≤ H(f0|f∞F )e−λt,

thanks to the Csiszár–Kullback inequality implies the convergence in L1(Rd) of f(x, t) to f∞F (x).

7Holley, Strook ’88; Miclo ’92; Trouvé ’96; Carlen, Carvalho ’04; Toscani, Villani ’99; Matthes, Toscani ’12;
Desvillettes, Mouhot, Villani ’11

Lorenzo Pareschi Optimization and sampling by linear kinetic equations 14 / 30



Annealing and long time behavior

In the general case where T = T (t) we must take into account the normalization constant

φ(x) = log

Å
f(x, t)

f∞F (x, t)

ã
= log(f(x, t)) +

F(x)

T (t)
− log (C(t))

to get

d

dt

∫
Rd

f(x, t) log

Å
f(x, t)

f∞F (x, t)

ã
dx =

∫
Rd

∂f(x, t)

∂t

Å
log(f(x, t)) +

F(x)

T (t)
− log (C(t))

ã
dx

− T
′(t)

T 2(t)

∫
Rd

F(x) (f(x, t)− f∞F (x, t)) dx

This requires T ′(t) = o(T 2(t)) as T (t)→ 0. For example if T (t) ≈ 1/t we get T ′(t)/T (t)2 ≈ 1
whereas for T (t) ≈ 1/ log(t) we get T ′(t)/T (t)2 ≈ 1/t and the quantity can be bounded

dH(f |f∞F )

dt
≤ −λH(f |f∞F ) +

c

t
‖F‖∞‖f − f∞F ‖1 ≤ −

(
λ− c

t
‖F‖∞

)
H(f |f∞F ).

⇒ By Laplace principle, as T (t)→ 0 the equilibrium f∞F (x, t) concentrates on the global minimum
x∗, then also f(x, t) concentrates on x∗ and the solution converges to the global minimum8.

8Borghi, Pareschi ’24
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From SA to Langevin: mean-field scaling

Let us observe that the weak form of the kinetic equation can be reformulated as follows

∂

∂t

∫
Rd

f(x, t)φ(x) dx =

≠∫
Rd

(φ(x′)− φ(x))f(x, t) dx

∑
−
≠∫

Rd

Å
1− f∞F (x′)

f∞F (x)

ã
Ψ(F(x′) ≥ F(x))(φ(x′)− φ(x))f(x, t) dx

∑
.

By analogy with the grazing collision limit of the Boltzmann equation, we consider the scaling9

t→ t/ε, σ(t)→
√
εσ(t),

and write for small values of ε� 1

φ(x′) = φ(x) + (x′ − x) · ∇xφ(x) +
1

2

d∑
i,j=1

(x′i − xi)(x′j − xj)
∂2φ(x)

∂xi∂xj
+O(ε3/2)

f∞F (x′) = f∞F (x)− (x′ − x) · 1

T (t)
(∇xF(x))f∞F (x) +O(ε).

9Desvillettes ’92; Villani ’98; Pareschi, Toscani ’13
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Assuming p(ξ) with mean 0 and identity covariance matrix Σ = Id∫
Rd

p(ξ)ξiξj dξ = δij ,

where δij is the Kronecker delta, we formally have

∂

∂t

∫
Rd

f(x, t)φ(x) dx =
σ(t)2

2

d∑
i=1

∫
Rd

∂2φ(x)

∂x2
i

f(x, t) dx

− σ(t)2

2T (t)

∫
Rd

∫
Rd

p(ξ)ξ · ∇xF(x)ξ · ∇xφ(x)f(x, t) dξ dx.

Taking 2T (t) = σ2(t), we can revert to the original variables to recover the Langevin dynamics

∂f(x, t)

∂t
= ∇x · (∇xF(x)f(x, t)) + T (t)∆xxf(x, t).
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Variantions on the theme, improvements, generalizations

• Maxwellian SA.
If X̃n+1 is worse than Xn we interpolate with a weight proportional to the Gibbs’ measure,
thus avoiding acceptance/rejection10.

• Entropy controlled SA.
A time evolution of a temperature distribution is considered aimed at minimizing the entropy
to speed up convergence of standard simulated annealing11.

• Parallel tempering SA.
Samples have independent temperatures, so that f = f(x, T, t), which can be modified along
the dynamic in order to lead low temperature samples to the global minima12.

• Sampling.
The ideas can be generalized to the Metropolis-Hasting sampling algorithm. The main
difference lies in the transition probability which defines the kernel in the kinetic equation13.

10Pareschi ’24
11Herty, Pareschi, Zanella ’24
12Blondeel, Pareschi ’24
13Borghi, Pareschi ’24
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Maxwellian SA

We can formulate a simulated annealing-type process avoiding the acceptance-rejection dynamic.

1 We start from the trial point
X̃n+1 = Xn + σnξ.2 Then, we define

Xn+1 =

{
X̃n+1 if F(X̃n+1)−F(Xn) < 0

Xn + e−
F(X̃n+1)−F(Xn)

Tn (X̃n+1 −Xn) if F(X̃n+1)−F(Xn) ≥ 0.

Thus, if X̃n+1 is worse than Xn we interpolate with a weight proportional to the Gibbs’ measure.

In a continuous setting we have the update rule

x′ = x+BF (x→ x+ σ(t)ξ)σ(t)ξ, BF (x→ x+ σ(t)ξ) = min

ß
1,
f∞F (x+ σ(t)ξ)

f∞F (x)

™
.

The corresponding kinetic equation has the form of a Maxwell model and can be written as

∂

∂t

∫
Rd

f(x, t)φ(x) dx =

≠∫
Rd

(φ(x′)− φ(x))f(x, t) dx

∑
.

⇒ It is possible to show that the mean-field scaling yields again the Langevin dynamics.
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The prototype Ackley function

The prototype Ackley function (left) and the corresponding steady states (right) given by the

Boltzmann-Gibbs measure for various values of the control temperature.
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The prototype Ackley function: fixed temperature T = 2

Probability density (top) and relative entropy (bottom) for ε = 0.01 (left) and ε = 0.0001 (right).
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The prototype Ackley function: annealing T (t) = 2 log(2)/ log(2 + t)

Probability density (top) and relative entropy (bottom) for ε = 0.01 (left) and ε = 0.0001 (right).
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Entropy controlled SA

We consider the following system of kinetic equations in weak form

∂

∂t

∫
Rd

f(x, t)ϕ(x)dx

=
1

2
Eξ
ï∫

Rd

(ϕ(x′)− ϕ(x))(BF (x→ x′)f(x, t)−BF (x′ → x)f(x′, t))dx

ò
∂

∂t

∫
R+

g(T, t)ϕ(T )dT = Eη

ñ∫
R+

ϕ(T ′)− ϕ(T )g(T, t)dT

ô
where

x′ = x+
»

2D[g]ξ.

The term D[g] = D[g](t) ≥ 0 depends on g(T, t) and

T ′ = T − λ[f ]T +
»
κ(T )η,

with λ = λ[f ] ∈ [0, 1] a control parameter which depends on f(x, t), and η a random
variable such that E[η] = 0, Eη[η2] = 2σ2 < +∞ and is weighted by the function κ(·) ≥ 0.
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Mean-field entropy control

Taking D[g] as the mean value

D[g](t) =

∫
R+

Tg(T, t)dT,

one can show that

d

dt
H(f |f∞F )(t) = −IH(f |f∞F )− λ[f ](t)

D2[g](t)

∫
Rd

F(x)(f∞F (x, t)− f(x, t))dx,

where

IH(f |f∞F )(t) =

∫
Rd

D[g](t)f(x, t)∇x log
f(x, t)

f∞F (x, t)
dx

Thus one can choose λ[f ](t) to speed up the convergence rate of the algorithm.
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Rastrigin d = 1
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Parallel tempering SA

In parallel tempering (PT) a collection of particles Xn
i with different temperatures Tni is

considered. Adjacent temperatures i and j are then swapped with probability14

exp

[( 1
Tn
i
− 1

Tn
j

)
(F(Xn+1

i )−F(Xn+1
j ))

T̄

]
,

where T̄ acts as a global temperature. This is needed to control the acceptance ratio.

A kinetic model embedding SA and PT for f = f(x, T, t) can be derived in the form

∂f

∂t
= LF (f) + µJF (f, f)

where JF (f, f) is a Boltzmann-type operator modeling the binary particle interactions by
temperature exchanges and µ is a scaling factor.

14Swendsen, Wang ’86; Geyer ’91; Marinari, Parisi ’92
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The weak form of this operator reads∫
R+

JF (f, f)φ(T ) dT dx =

∫
R
CF (x, x∗, T, T∗)(φ(T ′)−φ(T ))f(x∗, T∗)f(x, T ) dT dT∗ dx dx∗,

where

CF (x, x∗, T, T∗) = Ψ(|T − T∗| < ∆) exp

[( 1
T −

1
T∗

)
(F(x)−F(x∗))

T̄

]

with Ψ(·) the indicator function, ∆ > 0 and T ′ = ηT + (1− η)T∗.
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Error behavior SA vs SA+PT µ = 1/3, d = 10
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Generalizations to sampling

The above ideas can be extended to the general Metropolis-Hasting sampling algorithm.

Let M(x) be a function that is proportional to the desired probability density function f∞(x),
namely, M(x)/M(y) = f∞(x)/f∞(y) for x, y ∈ Rd.

The kinetic formalism used in the simulated annealing case applies also to the Metropolis-Hasting
process where the main difference lies in the transition probability that reads

BM (x→ x′) =

1, p(x|x′)M(x′) > p(x′|x)M(x)
p(x|x′)M(x′)

p(x′|x)M(x)
, p(x|x′)M(x′) < p(x′|x)M(x),

where x′ is generated from a given proposal density p(x′|x). The most common choices are the
uniform or the normal distributions centered in x with a given variance σ.
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Concluding remarks

• A kinetic/mean-field description of stochastic particle optimization methods may pave the
way to a mathematical foundation of metaheuristic algorithms for global optimization.

• This entails new difficulties as we have to deal with concepts such as memory or other
heuristic rules that can be very difficult to translate into differential form.

• The resulting PDEs are studied using classical trend to equilibrium tools (entropy inequalities,
Wasserstain distance, asymptotic limits, . . . ), enabling the design of more efficient algorithms.

• Several open problems concerning the limit as N →∞, the behavior for a finite number of
particles, the dependence on the hyper-parameters, the rates of convergence . . .

Collaborators:

A. Benfenati (Milano), G. Borghi (Aachen & Ferrara), S. Grassi (Ferrara), M. Herty (Aachen), F. Blondeel (Leuven
& Ferrara), M. Fornasier (Munich), P. Sünnen (Munich), H. Huang (Graz), J. Qiu (Calgary), M. Zanella (Pavia)
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