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Why sampling?
Suppose you are interested in some target probability distribution on Rd ,
denoted µ∗, and you have access only to partial information, e.g.:

1 its unnormalized density (as in Bayesian inference)
2 a discrete approximation 1

m
∑m

k=1 δxi ≈ µ∗ (e.g. i.i.d. samples, iterates of
MCMC algorithms...)

Problem: approximate µ∗ ∈ P(Rd) by a finite set of n points x1, . . . , xn, e.g.
to compute functionals

∫
Rd f (x)dµ∗(x).

The quality of the set can be measured by the integral error:∣∣∣∣∣1
n

n∑
i=1

f (xi)−
∫
Rd

f (x)dµ∗(x)

∣∣∣∣∣ .

a Gaussian density i.i.d. samples. Particle scheme
(SVGD).
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Sampling as optimization over probability distributions

Assume that µ∗ ∈ P2(Rd) =
{
µ ∈ P(Rd),

∫
‖x‖2dµ(x) <∞

}
.

The sampling task can be recast as an optimization problem:

min
µ∈P2(Rd )

D(µ|µ∗) := F(µ),

where D is a discrepancy, for instance:

a f-divergence:
∫

f
(

µ
µ∗

)
dµ∗, f convex, f (1) = 0

an integral probability metric: supf ∈G
∣∣∫ fdµ−

∫
fdµ∗∣∣

an optimal transport distance (e.g. W1,W2), or Sinkhorn divergence:

Sε(µ, ν) = Wε
2(µ, ν)−

1
2Wε

2(µ, µ)−
1
2Wε

2(ν, ν)

where Wε
2(µ, ν) = infs∈Γ(ν,µ)

∫
Rd×Rd ‖x − y‖2 ds(x , y) + εKL(π|µ⊗ ν).

Starting from an initial distribution µ0 ∈ P2(Rd), one can then consider a
Wasserstein-2∗ gradient flow of F over P2(Rd) to transport µ0 to µ∗.

∗W 2
2 (ν, µ) = infs∈Γ(ν,µ)

∫
Rd×Rd ‖x − y‖2 ds(x, y), where Γ(ν, µ)= couplings between ν, µ.
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Particle system/Gradient descent approximating the WGF
Recall we want to minimize F(µ) = D(µ|µ∗). The family
µ : [0,∞] → P2(Rd), t 7→ µt is a Wasserstein gradient flow of F if:

∂µt

∂t = ∇ · (µt∇W2F(µt)) ,

where ∇W2F(µ) := ∇ ∂F(µ)
∂µ

: Rd → Rd denotes the Wasserstein gradient of
F †. It can be implemented by the deterministic process in Rd :

dxt

dt = −∇W2F(µt)(xt), where xt ∼ µt

Space/time discretization: Introduce a particle system x1
0 , . . . , xn

0 ∼ µ0, a
step-size γ, and an explicit time discretisation:

x i
l+1 = x i

l − γ∇W2F(µ̂l)(x i
l ) for i = 1, . . . , n, where µ̂l =

1
n

n∑
i=1

δx i
l
. (1)

In particular, if F(µ) = D(µ|µ∗) is well-defined for discrete measures µ,
Algorithm (1) simply corresponds to gradient descent of F : RN×d → R,
F (x1, . . . , xn) := F(µn) where µn = 1

n
∑n

i=1 δx i .
†recall lim

ε→0
1
ε (F(µ + ε(ν − µ)) − F(µ)) =

∫
Rd

∂F(µ)
∂µ (x)(dν − dµ)(x), ∂F(µ)

∂µ : Rd → R.
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Some examples for F = D(·|µ∗)

the Kullback-Leibler divergence

KL(µ|µ∗) =

{ ∫
Rd log

(
µ
µ∗ (x)

)
dµ(x) if µ� µ∗

+∞ otherwise.

Pro: the normalization constant Z of µ∗ = e−V /Z is an additive constant;
Con: +∞ if supp(µ) 6⊂ supp(µ∗).
the MMD (Maximum Mean Discrepancy)

MMD2(µ, µ∗) = sup
f ∈Hk ,‖f ‖Hk ≤1

∣∣∣∣∫ fdµ−
∫

fdµ∗
∣∣∣∣ = ∫∫

Rd
k(x , y)dµ(x)dµ(y)

+

∫∫
Rd

k(x , y)dµ∗(x)dµ∗(y)− 2
∫∫

Rd
k(x , y)dµ(x)dµ∗(y).

where k : Rd × Rd → R is a p.s.d. kernel (e.g. k(x , y) = e−‖x−y‖2
) and Hk is

the RKHS associated to k‡ Pro: convenient for discrete measures. Con:
requires access to samples of µ∗.

‡Hk =

{ m∑
i=1

αi k(·, xi ); m ∈ N; α1, . . . , αm ∈ R; x1, . . . , xm ∈ Rd
}
.
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MMD Gradient flow in practice
Take F(µ) = MMD2(µ, µ∗) =∫∫

k(x , y)dµ(x)dµ(y) +
∫∫

k(x , y)dµ∗(x)dµ∗(y)− 2
∫∫

k(x , y)dµ(x)dµ∗(y).
The first variation and the Wasserstein gradient of F at µ are

∂F(µ)

∂µ
=

∫
k(x , ·)dµ(x)−

∫
k(x , ·)dµ∗(x),

∇W2F(µ) =

∫
∇2k(x , ·)dµ(x)−

∫
∇2k(x , ·)dµ∗(x)

The WGF of the MMD can be implemented via :

dxt

dt = −∇W2F(µt)(xt)

in practice we can implement the discrete-time interacting particle system:

x i
l+1 = x i

l − γ

 n∑
j=1

∇2k(x i
l , x j

l )−
∫

∇2k(x i
l , y)dµ∗(y)


which is gradient descent of (x1, . . . , xn) 7→ MMD2 ( 1

n
∑n

i=1 δx i , µ∗)
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KL Gradient flow in practice https://chi-feng.github.io/mcmc-demo/app.html

Take F(µ) = KL(µ|µ∗) =
∫
log

(
µ
µ∗

)
dµ, we have ∇W2F(µ) = ∇ log

(
µ
µ∗

)
.

The WGF of the KL can be written (rhs = Fokker-Planck equation)
∂µt

∂t = ∇ ·
(
µt∇ log

µt

µ∗

)
= ∇ · (µt∇ logµ∗) + ∆µt

It can be implemented via ”Probability Flow” (2) or Langevin diffusion (3):

dx̃t = −∇ log

(
µt

µ∗

)
(x̃t)dt (2)

dxt = ∇ logµ∗(xt)dt +
√

2dBt (3)

(3) can be discretized in time as Langevin Monte Carlo (LMC)

xl+1 = xl + γ∇ logµ∗(xl) +
√

2γεl , εl ∼ N (0, IdRd ).

(2) can be approximated by a particle system; e.g. Stein Variational Gradient
Descent§ [Liu, 2017, Duncan et al., 2019] for some kernel k : Rd × Rd → R+:

x i
l+1 = x i

l +
γ

N

N∑
j=1

∇ logµ∗(x j
l )k(x

i
l , x j

l ) +∇2k(x i
l , x j

l ), i = 1, . . . ,N.

§WGF of KL w.r.t.
W 2

k (µ, ν) = infµt ,vt

{∫ 1
0 ‖vt‖2

Hk d dt : ∂µt
∂t = ∇ · (µtvt), µ0 = µ, µ1 = ν

}
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Other choices?

Consider the chi-square (CS) divergence, which is a f -divergence:

χ2(µ|µ∗) :=

∫ (
dµ
dµ∗ − 1

)2

dµ∗ if µ� µ∗; +∞ else.

It is not convenient neither when µ, µ∗ are discrete
χ2-gradient requires the normalizing constant of µ∗: ∇ µ

µ∗

However, the GF of χ2 has interesting properties
we have χ2(µ|µ∗) ≥ KL(µ|µ∗).
KL decreases exp. fast along CS flow/χ2 decreases exp. fast along KL
flow if µ∗ satisfies Poincaré [Matthes et al., 2009]
χ2 known to converge polynomially along its WGF [Dolbeault et al., 2007]

If we pick F = W 2
2 (·, µ∗), ∇W2F(µ) = ∇fµ,µ∗ where fµ,µ∗ is the Kantorovitch

potential between µ and µ∗ (not closed-form, we need to solve an OT problem
at each step: O(n3) for n-sample distributions). Same story for Sinkhorn
divergences (O(n2/ε3)).
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Example 1: Bayesian (or Variational) inference
Given labelled data (wi , yi)

m
i=1, we want to sample from the posterior

distribution over the parameters of a model g(·, x)

µ∗(x) ∝ exp (−V (x)) , V (x) =
m∑

i=1

‖yi − g(wi , x)‖2

︸ ︷︷ ︸
loss on labeled data (wi , yi )

m
i=1

+
‖x‖2

2︸ ︷︷ ︸
prior reg.

.

Ensemble prediction for a new
input w :

ŷ =

∫
Rd

g(w , x)dµ∗(x)︸ ︷︷ ︸
”Bayesian model averaging”

Predictions of models
parametrized by x ∈ Rd

are reweighted by µ∗(x).
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Sampling as minimization of the KL

Recall µ∗(x) ∝ exp (−V (x)) , V (x) =
m∑

i=1

‖yi − g(wi , x)‖2

︸ ︷︷ ︸
loss

+
‖x‖2

2 .

LMC is known to be a GF of the KL w.r.t. the Wasserstein metric, while
SVGD is w.r.t. to a ”kernelized” Wasserstein metric, hence both solve

min
µ

KL(µ|µ∗)

if V is convex (e.g. g(w , x) = 〈w , x〉), these methods are known to work quite
well [Durmus and Moulines, 2016, Vempala and Wibisono, 2019]
but if its not (e.g. g(w , x) is a neural network), the situation is much more
delicate [Balasubramanian et al., 2022]

A highly nonconvex loss surface, as is common in deep neural nets. From
https://www.telesens.co/2019/01/16/neural-network-loss-visualization.
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Example 2: Thinning (Postprocessing of MCMC output)
How can we post-process the MCMC output, and keep only the states that are
representative of the posterior µ∗ (e.g. to remove burn-in, correct time spent in
each mode...)?

Picture from Chris Oates.

Idea: minimize a KSD divergence from the distribution of the states to µ∗

[Riabiz et al., 2022], [KAMA21]:

µn = argmin
µ

KSD(µ|µ∗), KSD2(µ|µ∗) =

∫∫
kµ∗(x , y)dµ(x)dµ(y)

where kµ∗(x , y) = k(x , y)∇ logµ∗(x)>∇ logµ∗(y) +∇2k(x , y)>∇ logµ∗(x) +
∇1k(x , y)>∇ logµ∗(y) +∇ ·1 ∇2k(x , y), where k p.s.d. and smooth kernel
e.g. k(x , y) = e−‖x−y‖2

.

It is a specific case of MMD with kernel kµ∗ .
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Example 3 : Regression with infinite-width shallow NN

min
(xi )ni=1∈Rd

E(w,y)∼Pdata

[∥∥∥∥y−
1
n

n∑
i=1

φxi (w)︸ ︷︷ ︸
ŷ

∥∥∥∥2
]

−−−−→
n→∞

min
µ∈P(Rd )

E(w,y)∼Pdata

[∥∥∥∥y −
∫
Rd

φx (w)dµ(x)
∥∥∥∥2]

︸ ︷︷ ︸
F(µ)

Optimising the neural network ⇐⇒ approximating µ∗ ∈ argminF(µ)
[Chizat and Bach, 2018, Mei et al., 2018, Rotskoff and Vanden-Eijnden, 2018]

If y(w) = 1
m
∑m

i=1 φxi (w) is generated by a neural network (as in the
student-teacher network setting), then µ∗ = 1

m
∑m

i=1 δxm and F can be
identified to an MMD [AKSG2019]:

min
µ

Ew∼Pdata

[
‖yµ∗ (w)− yµ(w)‖2

]
= MMD2(µ, µ∗), k(x , x ′) = Ew∼Pdata [φx′ (w)Tφx (w)].
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Example 4: Generative modelling
In generative modeling we want to generate novel samples from a distribution
µ∗ (given sample access).
Generative Adversarial Networks (GAN) or Normalizing Flows (NF) can be
trained by minimizing specific distances or divergences:

min
θ

D(µθ|µ∗)

where µ∗ = distribution of the data samples, and µθ = of the generative model.

LSUN bedroom samples vs MMD GAN [Li et al., 2017].

for GANs: originally Jensen-Shannon [Goodfellow et al., 2014], but also MMD
[Li et al., 2017], Sinkhorn divergence [Genevay et al., 2018],...
for NF [Papamakarios et al., 2021], typically the likelihood (KL(µ∗|µθ)).
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Are all functionals good optimization objectives?

We already saw that depending the application and the information on µ∗

(unnormalized density, samples...) we may pick the objective F = D(·|µ∗)
accordingly. But this is not all !

µ∗= 2d standard Gaussian µ∗ (SVGD=KL objective, vs MMD/KSD)

Gradient flows of various D(·|µ∗) (to the same µ∗) behave very differently.
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Convexity and Smoothness (in Rd and P2(Rd))
We want to study the convergence of Wasserstein gradient descent (Euler
discretization of Wasserstein gradient flow)

µl+1 = (Id−γ∇F ′(µl))#µl

In Rd , fast rates are obtained if the objective function f : Rd → R is strongly
convex and smooth, which is equivalent (if f twice differentiable) to lower and
upper bounds on its Hessian:

λ‖v‖2
2 ≤ vT∇2f (x)v ≤ M‖v‖2

2 ∀x , v ∈ Rd .

In (P2(Rd),W2), the same story holds [Villani, 2009, Proposition 16.2])¶:

F is λ-convex and M-smooth ⇐⇒ λ‖∇ψ‖2
L2(µ) ≤ Hessµ F(ψ,ψ) ≤ M‖∇ψ‖2

L2(µ),

where the Wasserstein Hessian of a functional F : P2(Rd) → R at µ is

defined for any ψ ∈ C∞
c (Rd) as: Hessµ F(ψ,ψ) := d2

dt2

∣∣∣∣
t=0

F(µt) and

(µt , vt)t∈[0,1] is a Wasserstein geodesic with µ0 = 0, v0 = ∇ψ.
¶if λ ≥ 0 we’ll say F is geo. convex.
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Convexity and Smoothness of KL and MMD
Let µ∗ ∝ e−V , we have [Villani, 2009]

Hessµ KL(·||µ∗)(ψ,ψ) =

∫ [
〈HV (x)∇ψ(x),∇ψ(x)〉+ ‖Hψ(x)‖2

HS

]
µ(x) dx .

If V is m-strongly convex, then the KL is m-geo. convex:

〈HV (x)∇ψ(x),∇ψ(x)〉 ≥ m‖∇ψ(x)‖2 =⇒ Hessµ KL(·||µ∗)(ψ,ψ) ≥ m‖∇ψ‖2
L2(µ).

However it is not smooth (Hessian is unbounded wrt ‖∇ψ‖2
L2(µ)). Similar story

for χ2-square [Ohta and Takatsu, 2011].

For a M-smooth kernel k [AKSG2019]

Hessµ MMD2(·||µ∗)(ψ,ψ) =

∫
∇ψ(x)>∇1∇2k(x , y)∇ψ(y)dµ(x)dµ(y)+

2
∫

∇ψ(x)>
(∫

H1k (x , z) dµ(z)−
∫

H1k (x , z) dµ∗(z)
)
∇ψ(x)dµ(x)

It is M-smooth but not geodesically convex (Hessian lower bounded by a big
negative constant). For KSD we obtain negative results even for strongly log
concave µ∗ [KAMA2021].
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(Some) questions

1 what can we say on their geometrical properties?
2 are there IPMs (integral probability metrics) that enjoys a better

behavior than the MMD?
3 are there good alternatives to the KL?
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Discrete µ∗, and Variational formula of f-divergences

Assume we have sample access to µ∗ (e.g. i.i.d. samples from µ∗).

Remember that MMD is convenient as an optimization objective but its WGF
converges poorly, and KL is not well-suited for a discrete µ∗.

Can we design a better IPM (Integral Probability Metric) than MMD?

Recall that f -divergences write D(µ|µ∗) =
∫

f
(

µ
µ∗

)
dµ∗, f convex, f (1) = 0.

They admit a variational form [Nguyen et al., 2010]:

D(µ|µ∗) = sup
h:Rd→R

∫
hdµ−

∫
f ?(h)dµ∗

where f ?(y) = supx〈x , y〉 − f (x) is the convex conjugate (or Legendre
transform) of f and h measurable.

Examples:
KL(µ|µ∗): f (x) = x log(x)− x + 1 , f ?(y) = ey − 1
χ2(µ|µ∗): f (x) = (x − 1)2, f ?(y) = y + 1

4 y2
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De-Regularized MMD:‖: Interpolate between MMD and χ2

DMMD(µ||µ∗) = (1 + λ)
{
max
h∈Hk

∫
hdµ−

∫
(h +

1
4h2)dµ∗ − 1

4λ‖h‖2
Hk

}
(4)

It is a divergence for any λ, recovers χ2 for λ = 0 and MMD for λ = +∞.
DMMD and its gradient can be written in closed-form

DMMD(µ||µ∗) = (1 + λ)
∥∥∥(Σµ∗ + λ Id)−

1
2 (mµ − mµ∗)

∥∥∥2

Hk
,

∇DMMD(µ||µ∗) = ∇hµ,µ∗

where Σµ∗ =
∫

k(·, x)⊗ k(·, x)dµ∗(x), and hµ,µ∗ solves (4).
In particular for µ, µ∗ discrete (supported on N,M samples respectively), it
writes with kernel Gram matrices over samples of µ, µ∗ in complexity
O(M3 + NM).

‖with H. Chen, A. Gretton, P. Glaser (UCL), A. Mustafi, B. Sriperumbudur (CMU). Soon on
arxiv.
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Properties of DMMD
1 It is a reweighted χ2-divergence: for µ� µ∗

DMMD(µ‖µ∗) = (1 + λ)
∑
i≥1

%i

%i + λ

〈 dµ
dµ∗ − 1, ei

〉2

L2(µ∗)

,

where (ρi , ei ) is the eigendecomposition of Tµ∗ : f ∈ L2(µ∗) 7→
∫

k(x, ·)f (x)dµ∗(x) ∈ L2(µ∗).
2 It is an MMD with a regularized kernel:

k̃(x, x ′) =
∑
i≥1

%i

%i + λ
ei (x)ei (x ′)

which is a regularized version of the original kernel k
(
x, x ′) =

∑
i≥1

%i ei (x)ei (x ′).

3 We can prove that for µ∗ m-strongly log-concave, DMMD is strongly convex
(it is always 1

λ
smooth!)

Related work:
Regularized MMD’s (DMMD(µ||µ + µ∗)) appeared in:
Eric, M., Bach, F., Harchaoui, Z. (2007). Testing for homogeneity with kernel Fisher discriminant
analysis. Neurips
Kernelization of KL divergence variational formulation (but is not closed-form !): Glaser, P.,
Arbel, M., Gretton, A. (2021). Kale flow: A relaxed kl gradient flow for probabilities with disjoint
support. Neurips.
Kernelization of f-divergences variational formulation in : Neumayer, S., Stein, V., Steidl, G.
(2024). Wasserstein Gradient Flows for Moreau Envelopes of f-Divergences in Reproducing Kernel
Hilbert Spaces. arXiv preprint arXiv:2402.04613.
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Ring Experiment

MMD

T=0 T=2 T=30 T=99

KALE

DMMD
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λ = 10−3

λ = 10−2
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λ = 100
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W
2
(·|
π

)
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Another idea - ”Mollified” discrepancies [LLKYS2022]
What if we don’t have access to samples of µ∗? (recall that DMMD
involves an integral over µ∗) e.g. as in Bayesian inference.

Choose a mollifiers/kernels (Gaussian, Laplace, Riesz-s):

kg
ε (x) :=

exp
(
− ‖x‖2

2
2ε2

)
Z g(ε)

, kg
ε (x) :=

exp
(
− ‖x‖2

ε

)
Z l(ε)

, ks
ε(x) :=

1
(‖x‖2

2 + ε2)s/2Z r (s, ε)

We propose the Mollified chi-square:

Eε(µ) =

∫∫
kε(x − y)(µ∗(x)µ∗(y))−1/2µ(x)µ(y) dx dy

=

∫ (
kε ∗

µ√
µ∗

)
(x) µ√

µ∗ (x)dx −−−→
ε→0

χ2(µ|µ∗) + 1

It writes as an interaction energy, allowing to consider µ discrete and µ∗ with a
density. It differs from χ2(kε ? µ|µ∗) as in [Craig et al., 2022], whose
Wasserstein gradient requires an integration over Rd (instead of µ).
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Sampling/Optimization with constraints
Sampling with (hard/support) constraints, i.e.

min
µ∈P2(X)

D(µ‖µ∗)

where if we think of x as being parameter of a model and µ the posterior in
Bayesian inference, X could encode

(1) norm constraints ‖x‖q ≤ C (e.g. Bayesian Lasso q = C = 1)
(2) inequality constraints X =

{
x ∈ Rd , g(x) ≤ 0

}
(e.g. fairness

constraints)
For (1) ”projected/mirror” methods: Projected LMC [Bubeck et al., 2018],
Mirror LMC [Ahn and Chewi, 2021], Mirror SVGD [Shi et al., 2022], for (2)
we can use dynamic barrier [LLKYS2022]

Sampling with (population) inequality constraints [Liu et al., 2021]

min
µ∈P2(Rd )

KL(µ‖µ∗)

subject toEx∼µ

[
g(x)

]
≤ 0

using primal-dual optimization.
22 / 30



Sampling as Optimization Applications Choice of the D De-regularized MMD Mollified χ2 Further connections with Optimization

A numerical example from [LLKYS2022]
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We use the mirror map φ(θ) =
∑n

i=1
(
(1 + θi ) log

(
1 + θi

)
+ (1 − θi ) log

(
1 − θi

))
or reparametrization using f = tanh.
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A numerical example from [LLKYS2022]
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Uniform distribution on X = {(x , y) ∈ [−1, 1]2 : (cos(3πx) + cos(3πy))2 < 0.3}.
Mirror LMC/SVGD cannot be applied due to non convexity of the constraints.
MIED with a Riesz mollifier (s = 3) where the constraint is enforced using the dynamic barrier method. The plot in row i column j shows
the samples at iteration 100 + 200(6i + j). The initial samples are drawn uniformly from the top-right square [0.5, 1.0]2.
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Still [LLKYS2022] (Fair Bayesian Neural Network)
Given a dataset D = {w (i), y (i), z(i)}|D|

i=1 consisting of features w (i), labels y (i)

(whether the income is ≥ $50, 000), and genders z(i) (protected attribute), we
set the target density to be the posterior of a logistic regression using a 2-layer
Bayesian neural network ŷ(·; x). Given t > 0, the fairness constraint is

g(x) = (cov(w,y,z)∼D[z, ŷ(w ; x)])2 − t ≤ 0.

0.830.84
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Other methods come from [Liu et al., 2021].
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(1) Bilevel Sampling - Optimize while Sampling ∗∗

min
θ∈Rp

`(θ) := min
θ∈Rp

F(µ∗(θ))

where for instance µ∗(θ) is a Gibbs distribution, minimizing the KL

µ∗(θ)[x ] = exp(−V (x , θ))/Zθ .

Example: Reward training (R(x) = 1x1>0 exp
(
−‖x − µ‖2)) of Langevin

diffusions, V (·, θ) potential of a mixture of Gaussians parametrized by θ.

Sampling from V (·, θ0).

Sampling from V (·, θopt).

Bilevel approach.

V = V (·, θopt)−λRsmooth

∗∗Implicit Diffusion: Efficient Optimization through Stochastic Sampling. Pierre Marion, Anna
Korba, Peter Bartlett, Mathieu Blondel, Valentin De Bortoli, Arnaud Doucet, Felipe
Llinares-Lopez, Courtney Paquette, Quentin Berthet. https://arxiv.org/abs/2402.05468.
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Extension to diffusion models ††

µ∗(θ): output of a diffusion model whose neural network is parametrized
by θ. Different rewards are optimized while training.

††Implicit Diffusion: Efficient Optimization through Stochastic Sampling. Pierre Marion, Anna
Korba, Peter Bartlett, Mathieu Blondel, Valentin De Bortoli, Arnaud Doucet, Felipe
Llinares-Lopez, Courtney Paquette, Quentin Berthet. https://arxiv.org/abs/2402.05468.
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(2) The issue of multimodality and tempering
Langevin Monte Carlo, which is a discrete-time implementation of the
Wasserstein gradient flow of the KL(·|µ∗).

On a µ∗ a mixture of Gaussians, it does not manage to target all modes in
reasonable time, even in low dimensions.

Consider the sequence of tempered targets as:

µ∗
β ∝ µβ

0 (µ
∗)1−β , β ∈ [0, 1]

It corresponds to a discretized Fisher-Rao gradient flow of the KL
[CCK2023].
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Future directions

Other divergences from the field of information/quantum theory? MMD
with non-smooth/psd kernels ‡‡ e.g. k(x , y) = −‖x − y‖r , 0 < r < 2 ?
How to improve the performance of the algorithms for highly non-log
concave targets? e.g. through interpolations between µ0 and µ∗?
Shape of the trajectories? change the underlying metric and consider Wc
gradient flows (e.g. like in SVGD)
Derive theoretical guarantees

on the optimization error (how many iterations needed?)
on the quantization error (how many particles?)
on critical points, e.g. their stability

Some results exist for specific D but a lot remains to be done.

‡‡Hertrich, J., Wald, C., Altekrüger, F., Hagemann, P. (2023). Generative sliced MMD flows
with Riesz kernels. arXiv preprint arXiv:2305.11463.
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Main references
(code available):

Maximum Mean Discrepancy Gradient Flow. Arbel, M., Korba, A., Salim,
A., and Gretton, A. (Neurips 2019).
Korba, A., Aubin-Frankowski, P. C., Majewski, S., Ablin, P. (2021, July).
Kernel stein discrepancy descent. In International Conference on Machine
Learning (ICML 2021).
Accurate quantization of measures via interacting particle-based
optimization. Xu, L., Korba, A., and Slepcev, D. (ICML 2022).
Sampling with mollified interaction energy descent. Li, L., Liu, Q., Korba,
A., Yurochkin, M., and Solomon, J. (ICLR 2023).
Chopin, N., Crucinio, F. R., Korba, A. A connection between Tempering
and Entropic Mirror Descent. arXiv preprint arXiv:2310.11914 (accepted
to ICML 2024).
Marion, P., Korba, A., Bartlett, P., Blondel, M., De Bortoli, V., Doucet,
A., ... Berthet, Q. (2024). Implicit Diffusion: Efficient Optimization
through Stochastic Sampling. arXiv preprint arXiv:2402.05468
(De)-regularized Maximum Mean Discrepancy Gradient Flow. Chen, H.,
Mustafi, A., Glaser, P., Korba, A., Gretton, A., Sriperumbudur, B.
(Submitted 2024)
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Other tempered paths

Figure by S. Coste, available at https://scoste.fr/posts/diffusion/.

”Convolutional path” (β ∈ [0,+∞[) frequently used in Diffusion Models

µ∗
β =

1√
1 − β

µ0

(
.√

1 − β

)
∗ 1√

β
µ∗

(
.√
β

)
(vs ”geometric path” µ∗

β ∝ µβ
0 (µ

∗)1−β)
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Strong convexity of DMMD
Let µ∗ ∝ e−V .

If V is m-strongly convex, for λ small enough, we can lower bound
Hessµ DMMD(·||µ∗)(ψ,ψ) by a positive constant times ‖∇ψ‖2

L2(µ), and obtain:

a general existence result for µ� µ∗

∣∣∣Hessµ DMMD(·||µ∗)(ψ,ψ)− Hessµ χ
2(·||µ∗)(ψ,ψ)

∣∣∣
≤
∑
i≥1

λ

%i + λ

(
K1d +

√
K2d

∥∥∥∥ µµ∗ − 1
∥∥∥∥

L2(µ∗)

)
‖∇ψ‖2

L2(µ)

a ”non-asymptotic” result wrt λ if we have a lower bound on the density
ratios and a source condition ( µ

µ∗ ∈ Ran(T r
π ), 0 < r ≤ 1

2 )∣∣∣Hessµ DMMD(·||µ∗)(ψ,ψ)− Hessµ χ
2(·||µ∗)(ψ,ψ)

∣∣∣
≤
(

K1d + λr√K2d ‖q‖L2(µ∗)

)
‖∇ψ‖2

L2(µ)

where K1d and K2d are constants bounding the first and second derivatives of
the kernel, and q is the preimage of µ

µ∗ .
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Idea of the proof

1 We can write Hessian of χ2

Hessµ χ
2(µ‖µ∗) =

∫
µ(x)2

µ∗(x) (Lµ∗ψ(x))2dx

+

∫
µ(x)2

µ∗(x) 〈HV (x)∇ψ(x),∇ψ(x)〉 dx +

∫
µ(x)2

µ∗(x) ‖Hψ(x)‖2
HS dx

where Lµ∗ is the Langevin diffusion operator
Lµ∗ψ = 〈∇V (x),∇ψ(x)〉 −∆ψ(x).

2 DMMD(µ‖µ∗) = (1 + λ)
∑
i≥1

%i
%i+λ

〈
dµ

dµ∗ − 1, ei

〉2

L2(µ∗)
, where (ρi , ei)

eigendecomposition of
Tµ∗ : f ∈ L2(µ∗) 7→

∫
k(x , ·)f (x)dµ∗(x) ∈ L2(µ∗)
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Quantization - classical results

What can we say on infx1,...,xn D(µn|µ∗) where µn =
∑n

i=1 δxi ?
Quantization rates for the Wasserstein distance
[Kloeckner, 2012, Mérigot et al., 2021]

W2(µn, µ
∗) ∼ O(n− 1

d )

Forward KL [Li and Barron, 1999]: for every gP =
∫

kε(· − w)dP(w),

argmin
µn

KL(µ∗|kε ? µn) ≤ KL(µ∗|gP) +
C2
µ∗,Pγ

n

where C2
µ∗,P =

∫ ∫
kε(x−m)2dP(m)

(
∫

kε(x−w)dP(w))2 dµ∗(x), and γ = 4 log
(
3
√

e + a
)

is a
constant depending on ε with a = supz,z′∈Rd log (kε(x − z)/kε(x − z ′)).
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Quantization - Recent results
For smooth and bounded kernels in [Xu et al., 2022] and µ∗ with
exponential tails, we get using Koksma-Hlawka inequality

min
µn

MMD(µn, µ
∗) ≤ Cd

(log n)
5d+1

2

n .

This bounds the integral error for f ∈ Hk (by Cauchy-Schwartz):∣∣∣∣∫
Rd

f (x)dµ∗(x)−
∫
Rd

f (x)dµ(x)
∣∣∣∣ ≤ ‖f ‖Hk MMD(µ, π).

For the reverse KL (joint work with Tom Huix) we get (in the
well-specified case) adapting the proof of [Li and Barron, 1999]:

min
µn

KL(kε ? µ|µ∗) ≤ C2
µ∗

log(n) + 1
n .

This bounds the integral error for measurable f : Rd → [−1, 1] (by Pinsker
inequality): ∣∣∣∣∫ fd(kε ? µn)−

∫
fdµ∗

∣∣∣∣ ≤
√

C2
µ∗(log(n) + 1)

2n .
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Generalized dynamic barrier: Dykstra’s algorithm
Observe that

min
v∈Rd

∥∥v −∇xi Eε(ω
t
N)

∥∥2 s.t. ∀j = 1, . . . ,m,∇gj(x t
i )

>v ≥ αigj(x t
i ),

is the same as projecting ∇xi Eε(ω
t
N) on

∩m
i=1{x ∈ Rd ,∇gi(x t)>v ≥ αigi(x t)}.

we use Dykstra’s projection algorithm which in this case is the same as
running coordinate descent on the dual problem, and hence with fast
linear convergence rate.

Since the constraints are the same for all particles, we can parallelize
Dykstra’s algorithm by using a fixed maximum number of iterations for
all particles to find the update direction v∗

i for each i .
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Unconstrained examples I - Gaussian
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II - Product of two Student’s t-distributions (heavy tail)
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Constrained example I - Uniform sampling in a box
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We use the mirror map φ(θ) =
∑n

i=1
(
(1 + θi ) log

(
1 + θi

)
+ (1 − θi ) log

(
1 − θi

))
or reparametrization using f = tanh.
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Sensitivity to the mirror map
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Figure: Visualization of samples for uniform sampling from a 2D box when
using a suboptimal mirror map. All three methods fail to draw samples near
the boundary of the box [−1, 1]2.

Here we use the mirror map φ(θ) =
∑n

i=1

(
log 1

1−θi
+ log 1

1+θi

)
as in

[Ahn and Chewi, 2021].
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Relaxation of convexity: functional inequalities

It is also possible to show fast rates of convergence for Wasserstein gradient
descent (or related schemes) if we have inequalities of the form
F(µ) ≤ 1

λ
‖∇W2F(µ)‖2

L2(µ) where the r.h.s. corresponds to the dissipation of F
along the flow.
For the KL along its WGF it corresponds to the log-Sobolev inequality

A small (bounded) perturbation of π is not necessarily log-concave, but still verifies a Log Sobolev inequality (Holley–Stroock
perturbation theorem).

for SVGD on the r.h.s. we have KSD2(µ|µ∗), which is hard to achieve for
smooth kernels [Duncan et al., 2019]
for MMD we can obtain a functional inequality, but where λ depends on the
whole trajectory, and may be vacuous for discrete measures [AKSG2019]
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Student-teacher networks experiment
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the teacher network w 7→ yµ∗(w) is given by M particles (ξ1, ..., ξM)
which are fixed during training =⇒ µ∗ = 1

M
∑M

j=1 δξj

the student network w 7→ yµ(w) has n particles (x1, ..., xn) that are
initialized randomly =⇒ µ = 1

n
∑n

i=1 δxj

min
µ

Ew∼Pdata

[
(yµ∗(w)− yµ(w)2

]
⇐⇒ min

µ
MMD(µ, µ∗) with k(x , x ′) = Ew∼Pdata [φx′(w)φx(w)].

Same setting as [AKSG2019].
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