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Motivation



Calderon’s Problem (Electrical Impedance Tomography, EIT)
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V-(y(x)Vu) =0, xe€Q
u(x) =19, xeoQ

Given “Dirichlet-to-Neumann” map

Ao HYR(0Q) — HTV2(09)
Ay P —>7Vuw-n‘89
the goal is to find

y(x), xe.

Kohn, R. V., & Vogelius, M. (1987). Relaxation of a variational method for impedance
computed tomography. CPAM.



Image Processing

Denoising, Deblurring, Blind Deconvolution
(nonlinear)...
fe=A(o)u +e

where A(c) could be

- Identity I (denoising)
« Known Kernel K (deblurring)

« Unknown Kernel A(c) (blind deconvolution,
nonlinear)




Learning the Dynamics

Parameterized dynamical system in the Lagrangian form
“Chen” System [Chen-Ueta, 1999]
x=v(x;0) or dX;=v(x;0)dt+ ocdW;
or the Eulerian form (Fokker-Planck Eqn.)
2

Dep(%,1) +V - (vV(X; 0)p(x, 1) = —-Ap(x, 1)

where 6 can correspond to

+ basis coefficients
e.g., SINDy [Brunton-Proctor-Kutz, 2016],

- neural network weights
Y.-Nurbekyan-Negrini-Martin-Pasha, 2023. SIADS. e.g., Neural-ODE [Chen et al., 2018],

BotvinickGreenhousellolblartin RS 2023 4ehaosy « other parameterizations [Lu-Maggioni-Tang,2021]

 or nonparametric using Frobenius—Perron or
Koopman operators [Kloeckner, 2018]



Deterministic Inverse Problem

M) =g, M:P—D, (1)

where 6 € P is the function space of parameters, M is the forward operator, with
g € D, the function space of data. M can be implicitly defined.
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Deterministic Inverse Problem

M) =g, M:P—D, (1)

where 6 € P is the function space of parameters, M is the forward operator, with
g € D, the function space of data. M can be implicitly defined.

Examples

« In image processing, 6 is the clean image and g is the noisy/blurred image.
V-(0Vu)=0 onQ
u=¢ on 092

« Calderon’s Problem: { , g isthe DtN map.

+ In cryo-electron microscopy (cryo-EM): 6 is the 3D protein structure, g is the
noisy 2D projection image with an unknown random rotation.



Cryo-EM

Cryo-Electron Microscopy

1. Snap-freeze solution of a biomolecule into a thin layer of
vitreous ice

Image with transmission electron microscope

Extract images of individual biomolecules

Back out electron density

Fit atomistic structure

aorODN




Sand Percentage in River
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Stochastic Inverse Problem [Breidt-Butler-Estep, 2011]

In certain applications, the deterministic framework is challenging.

« The math modeling is based on data gathered from a variety of subjects.

« It is impractical to conduct repeated measurements on a single subject.

Thus, one must employ a model that incorporates a parameter distribution,
which gives rise to the so-called Stochastic Inverse Problem.

For forward problem is a push-forward map and py is the unknown:
pg = Mipg =: Fu(pg) , Fm : N(P) — N(D). )

We say v = My if for any Borel measurable set B, v(B) = 1 (M~"(B)).



Deterministic Inverse Problem to Stochastic Inverse Problem

27777777772

A diagram showing the relations between deterministic (1) and the stochastic problem (2).



Comparisons with Bayesian Framework

Bayesian Framework

Stochastic Inverse Problem

source of noise prior & measurement parameter
consistency Dirac delta parameter distribution
prior information Yes No
measure-theoretic Yes Yes
require sampling Yes Yes
solution is a distribution Yes Yes
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Comparisons with Bayesian Framework

Bayesian Framework | Stochastic Inverse Problem
source of noise prior & measurement parameter
consistency Dirac delta parameter distribution
prior information Yes No
measure-theoretic Yes Yes
require sampling Yes Yes
solution is a distribution Yes Yes

One can regard the new setup as a “deterministic inverse problem” over the
M(P) (all prob. measures over P) rather than the classic setup over P.

10



Some Metrics & Divergences




Probability metric and divergence

Definition of the Wasserstein Distance
For g1,9, € N(P) (91,9, > 0and [ g, = [ g, = 1), the Wasserstein distance is

Wy(gr.92) = (jinf, [ 1x = T00P g:(x00x ) ®)

M: the set of all maps that rearrange the distribution g, into g..

The problem of optimal transportation was first raised by Monge in 1781.

1"



Probability metric and divergence

Definition of the Wasserstein Distance
For g1,9, € N(P) (91,9, > 0and [ g, = [ g, = 1), the Wasserstein distance is

Wy(gr.92) = (jinf, [ 1x = T00P g:(x00x ) ®)

M: the set of all maps that rearrange the distribution g, into g..

The problem of optimal transportation was first raised by Monge in 1781.

When p = 2 (the W, metric), we can have a Wasserstein gradient flow of any

functional E
0E

Otp=—Vw,E(p) =V - <p vép) :

1"



Probability metric and divergence

Definition of the Hellinger Distance
Consider two probability measures 14, and v, both defined on a measure space P

that are absolutely continuous with respect to an auxiliary measure g, i.e.,

v(dx) = g1 (X)u(dx),  va(dx) = g2(X)u(dx) .

The Hellinger distance between v, and v, is

H(wn,v2) = \/ 2 | (Vo) - va:9) (o).

12



Probability metric and divergence

Definition of the f-Divergence
Consider 14, v, € MN(P) from the previous slide. Consider a convex function

f:RT — (—o0, +o0] such that f(x) < oo for any x > 0, f(1) = 0 and f(0) could be
+oo. The f-divergence of v, from 15 is

Dy(v2) = Dy(arllgs) = [ f (g) Go(dx) (4)

13



Probability metric and divergence

Definition of the f-Divergence
Consider 14, v, € MN(P) from the previous slide. Consider a convex function

f:RT — (—o0, +o0] such that f(x) < oo for any x > 0, f(1) = 0 and f(0) could be
+oo. The f-divergence of v, from 15 is

Dy(v2) = Dy(arllgs) = [ f (g) Go(dx) (4)

Examples:

The case f(x) = xlog x is the well-known Kullback-Leibler (KL) divergence.
The case f(x) = J|x — 1| is the total variation (TV) distance.

The case f(x) = (x — 1)? is the x? divergence.

13



Computational Aspects




Stochastic Inverse Problem — Solvers

- Deterministic Inverse problem:
M(0) =g
 Optimization problem:
min do(M(6),g°)

 Optimization algorithms: gradient
descent, nonlinear CG, etc.

14



Stochastic Inverse Problem — Solvers

- Deterministic Inverse problem: « Stochastic Inverse problem:
M(0) =g pg = M;po
 Optimization problem: + Optimization problem:
m@in do(M(0),g9") n;:)n D(M;pg, pg)
+ Optimization algorithms: gradient  Optimization algorithms: ??? over

descent, nonlinear CG, etc. the probability space
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Stochastic Inverse Problem — Solvers

- Deterministic Inverse problem: « Stochastic Inverse problem:
M(0) =g pg = M;po
 Optimization problem: + Optimization problem:
min do(M(9),9%) min D(M;ps, ;)
+ Optimization algorithms: gradient  Optimization algorithms: ??? over
descent, nonlinear CG, etc. the probability space

There are two important metric/divergence that matter here (D and &):

ps = argmin D(Mpy, p5) . (5)
po€(N(P),8)

14



Gradient Flow (Analogous to Gradient Descent)

The gradient flow for the energy J(pg) := D(M;py, pj) under the metric & is

Otpp = —8radg)(pe) = —gradg D(Mypg, py) |- (6)

15
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Otpp = —8radg)(pe) = —gradg D(Mypg, py) |- (6)

Example 1: Consider & = W, and D = KL:
Otpg = Vg - (Peve <|Og ZE(M(Q))>> :
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Gradient Flow (Analogous to Gradient Descent)

The gradient flow for the energy J(pg) := D(M;py, pj) under the metric & is

Otpp = —8radg)(pe) = —gradg D(Mypg, py) |- (6)

Example 1: Consider & = W, and D = KL:
Otpg = Vg - (PQVG <|Og ZE(M(Q))>> :

9
Example 2: Consider & = W, and D = W,:

Otpg = Vo - (poVe d(M(0))) ¢ is the Kantorovich potential
Example 3: Consider & = H? (Hellinger) and D = y*:
_ Pg Pg
oum =800 | [ 22Ot~ m(0)

9 9
15



Well-Posedness: Stability




Stability

We need probability metrics to quantify the size of the blue and red balls.

16



M is invertible

Suppose M~ exists and is Holder continuous:

IM~(g1) = M~Y(g2)[| < Cu—ligr — 2|17, B € (0,1].
(Deterministic inverse problem is well-posed.)

17
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M is invertible

Suppose M~ exists and is Holder continuous:

IM7'(g1) = M7(g2)| < Cullga — a1, B € (0,1].
(Deterministic inverse problem is well-posed.)
Let pg, pg € T(R") be two data distributions. Their parameter distributions are

po=M"pg, and 7 =M;"7

Theorem (Ernst et al.,2022) .
Consider the p-Wasserstein metric.

~ ~\p
Wp (pg, po) < Cu—1 Wp (Pga Pg) -
On the other hand, under the total variation distance of measures (TV), we have

TV (pg, po) = TV (pg, pg) => can be generalized to any Ds . 17



M is non-invertible

For simplicity, consider M is linear. Then we have two cases
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2. M is over-determined
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M is non-invertible

For simplicity, consider M is linear. Then we have two cases

1. M is under-determined
2. M is over-determined

In the under-determined case, we lose uniqueness.

In the over-determined case, we may not have existence.

Both can be implicitly “regularized” by considering an optimization framework!

Optimization framework: J(pg) := D(M;ypq, pg)
Gradient Flow framework: dtpg = —grade D(M;ps, pg), With initial guess py(0).

[Li, Wang, Y., 2024] 18



Under-determined Case (Deterministic Case)

We first augment A € R"™™ n < m, A =VSU'. We use A to form a rank-m matrix,
and define the augmented g®*:

Aex:[e eRmxm geszEXHZIAgizlg
A ’ g

~ E Rm . 7

19



Under-determined Case (Deterministic Case)

We first augment A € R"™™ n < m, A =VSU'. We use A to form a rank-m matrix,
and define the augmented g®*:

Aex:[e eRmxm geszEXHZIAgizlg
A ’ g

~ E Rm . 7

Suppose 6* € {6 : AG = g*}. Then the solution set can be written as
S={0*"+6: AJ=o0}={0*+spanUt}. (8)
The GD solution for min [|Ag — g||* given the initial guess 6, is
oo __ T p* Ly N\T
g = uu'g +  utUuhH T,

€col(AT), deteremined by g*  cnuyll(a), deteremined by o

19



Under-determined Case (Stochastic Case)

Theorem (Sketch)

J(po) := D(Mypy, py) with D =KL or W,. Let p3° be the equilibrium solution to

)
Otpg = Vg - <peve ((5;9)) :

with initial guess p§, and let pge. = Af*pg°. Then we can uniquely determine the
marginal distribution of pge:

» The marginal distribution on g of pgs. entirely recovers that of the data pg,

* The marginal distribution on g of pgs is uniquely determined by that of pg.

20



Over-determined Case (Deterministic Case)

Consider the configuration that provides the minimum misfit under the vector
2-norm. That is, ;
in —||A0 — g*|3.
min ~[1A8 — g3

For a linear system like this, the minimizer is explicit:
6" = (ATA)'ATg* =: Afg*,
and hence, with A=VSUT,
g =Ag" = AATg* =W g*, orequivalently g=g; = Proj,g*.
(Column space of A is also the column space of V).

21



Over-determined Case: KL loss under W, gradient flow

Theorem (Sketch) . ' '
Let pg° be the equilibrium solution to the Wasserstein gradient flow of the KL

divergence between synthetic data and reference data distributions,

)
Otpg = Vo - <peve ((%9)) :

The equilibrium data distribution pg° = Aypg° recovers p; conditioned on col(A).

22



Over-determined Case: KL loss under W, gradient flow

23



Over-determined Case: W, loss under W, gradient flow

Theorem (Sketch) . _
Let pg° be the equilibrium solution to the Wasserstein gradient flow of the

squared W, metric between synthetic data and reference data distributions,

)
Otpg = Vg - (P0V9 <5p]9>) .

The equilibrium data distribution pg° = Aypg° = Agpé.

That is, pg° recovers the marginal distribution of pj on col(A).

24



Over-determined Case: W, loss under W, gradient flow

25



Particle Method




Numerical Example: Particle Method

To solve the Wasserstein gradient flow equation, J(pg) := D(Mypy, o),

1)
Otpg — Vg - (Peve <5] >) =0,
Po

we propose a particle method,j =1,2,...,N,
Lo v, (L)) = - voMT| Vo2 (g(t)), where g(t) = M(8(t))
dt”’ P\opg ) T gy V950 9N S

but there are many other deterministic/stochastic variants.

[Li, Wang, Y., 2024] 26
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Numerical Example: Particle Method

To solve the Wasserstein gradient flow equation, J(pg) := D(Mypy, o),

1)
Otpg — Vg - (Peve <5] >) =0,
Po

we propose a particle method,j =1,2,...,N,
Lo v, (L)) = - voMT| Vo2 (g(t)), where g(t) = M(8(t))
dt”’ P\opg ) T gy V950 9N S

but there are many other deterministic/stochastic variants.

+ (Interactive) The trajectory of particle ¢; is also correlated with all the other
particles {0;};; due to the mean-field term “density” — pg = M;ypp, & pj.

« We essentially designed an ensemble particle method.

« The red term can be computed using the adjoint-state method.

[Li, Wang, Y., 2024] 26



Example: under-determined case, W, gradient flow of KL

initial parameter final parameter true parameter

0.1 0.1
0.05 0.05
10 10
10
0 0 0 0 0
-10 -10 -10 -10 -10 -10
Uz iy Uz u Uz uy

(a) Parameter distribution with initial guess u!

initial parameter final parameter true parameter

0.1 0.1 0.1
0.05 0.05 0.05
0 0 0
10 10 g 10 . 10
-10 -10 a0 0 0 10 10

Uz g Uz Uy U2 Ty

(b) Parameter distribution with initial guess u? 27



Example: under-determined case, W, gradient flow of KL

0.3

0.25¢

0.2+

015

0.1}

0.05¢

-10

(c) Data with initial guess u

—initial data
—==final data |
ref data

2

0l—
-10

—initial data

===final data ||

ref data

(d) Data with initial guess uo

28



Example: over-determined case, W, gradient flow of KL

0
-10 5 10
x
final data reference data d}zargiual distribution along col(A)
=== initial data
—e— final data
0.3 reference data
0.2
0.1
0
=100 -10 -10 10 -10 0 10

Y2 Y1 Y2 Y1

Y4, Y projected onto col(A)

29



« A different stochastic framework
with respect to Bayesian Inversion
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7« Well-posedness:

metric/divergence-dependent
stability

« Implicit Regularization: depending
on both D (energy) and &
(dissipation)
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« A different stochastic framework
with respect to Bayesian Inversion

+ Well-posedness:
metric/divergence-dependent
stability

« Implicit Regularization: depending
on both D (energy) and &
(dissipation)

* Rich geometry in probability space
yields various (ensemble) particle
methods

30



Inverse Problem Analysis Inverse Problem Computation

’7 Existence I
i implicit &
(convexity and (i ici
stability) explicit)
m Uniqueness L

uQ for
probability-
valued soln.

Objective/loss
functional

Regularization

31
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