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Motivation



Calderón’s Problem (Electrical Impedance Tomography, EIT)

{
∇ · (γ(x)∇u) = 0, x ∈ Ω

u(x) = ψ, x ∈ ∂Ω

Given “Dirichlet-to-Neumann” map

Λγ : H1/2(∂Ω) −→ H−1/2(∂Ω)

Λγ : ψ −→ γ∇uψ · n
∣∣
∂Ω

the goal is to find

γ(x), x ∈ Ω.

Kohn, R. V., & Vogelius, M. (1987). Relaxation of a variational method for impedance
computed tomography. CPAM.
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Image Processing

fε

u

Denoising, Deblurring, Blind Deconvolution
(nonlinear)...

fε = A(σ)u + ε

where A(σ) could be
• Identity I (denoising)
• Known Kernel K (deblurring)
• Unknown Kernel A(σ) (blind deconvolution,

nonlinear)
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Learning the Dynamics

“Chen” System [Chen-Ueta, 1999]

Y.-Nurbekyan-Negrini-Martin-Pasha, 2023. SIADS.

Botvinick-Greenhouse, J., Martin, R. & Y., 2023. Chaos.

Parameterized dynamical system in the Lagrangian form

ẋ = v(x; θ) or dXt = v(x; θ)dt + σdWt

or the Eulerian form (Fokker–Planck Eqn.)

∂tρ(x, t) +∇ · (v(x; θ)ρ(x, t)) =
σ2

2 ∆ρ(x, t)

where θ can correspond to

• basis coe�cients
e.g., SINDy [Brunton-Proctor-Kutz, 2016],

• neural network weights
e.g., Neural-ODE [Chen et al., 2018],

• other parameterizations [Lu-Maggioni-Tang,2021]

• or nonparametric using Frobenius–Perron or
Koopman operators [Kloeckner, 2018] 4



Deterministic Inverse Problem

M(θ) = g , M : P 7→ D , (1)
where θ ∈ P is the function space of parameters, M is the forward operator, with
g ∈ D, the function space of data. M can be implicitly defined.

Examples

• In image processing, θ is the clean image and g is the noisy/blurred image.

• Calderón’s Problem:

∇ · (θ∇u) = 0 on Ω

u = φ on ∂Ω
, g is the DtN map.

• In cryo-electron microscopy (cryo-EM): θ is the 3D protein structure, g is the
noisy 2D projection image with an unknown random rotation.
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Cryo-EM
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Sand Percentage in River

7



Stochastic Inverse Problem [Breidt-Butler-Estep, 2011]

In certain applications, the deterministic framework is challenging.

• The math modeling is based on data gathered from a variety of subjects.

• It is impractical to conduct repeated measurements on a single subject.

Thus, one must employ a model that incorporates a parameter distribution,
which gives rise to the so-called Stochastic Inverse Problem.

For forward problem is a push-forward map and ρθ is the unknown:

ρg = M]ρθ =: FM (ρθ) , FM : Π(P) 7→ Π(D) . (2)

We say ν = M]µ if for any Borel measurable set B, ν(B) = µ (M−1(B)).
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Deterministic Inverse Problem to Stochastic Inverse Problem

θ ∼ ρθ g ∼ ρg

ρθ ∈ Π(P)
ρg ∈ Π(D)

θ ∈ P g ∈ D

ρg = M]ρθ

g = M(θ)

A diagram showing the relations between deterministic (1) and the stochastic problem (2).
9



Comparisons with Bayesian Framework

Bayesian Framework Stochastic Inverse Problem
source of noise prior & measurement parameter

consistency Dirac delta parameter distribution
prior information Yes No

measure-theoretic Yes Yes
require sampling Yes Yes

solution is a distribution Yes Yes

One can regard the new setup as a “deterministic inverse problem” over the
Π(P) (all prob. measures over P) rather than the classic setup over P .
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Some Metrics & Divergences



Probability metric and divergence

Definition of the Wasserstein Distance
For g1,g2 ∈ Π(P) (g1,g2 ≥ 0 and

∫
g1 =

∫
g2 = 1), the Wasserstein distance is

Wp(g1,g2) =

(
inf

T∈M

∫
|x − T(x)|p g1(x)dx

) 1
p

(3)

M: the set of all maps that rearrange the distribution g1 into g2.

The problem of optimal transportation was first raised by Monge in 1781.

When p = 2 (the W2 metric), we can have a Wasserstein gradient flow of any
functional E

∂tρ = −∇W2E(ρ) = ∇ ·
(
ρ∇δE

δρ

)
.
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Probability metric and divergence

Definition of the Hellinger Distance
Consider two probability measures ν1 and ν2 both defined on a measure space P
that are absolutely continuous with respect to an auxiliary measure µ, i.e.,

ν1(dx) = g1(x)µ(dx), ν2(dx) = g2(x)µ(dx) .

The Hellinger distance between ν1 and ν2 is

H(ν1, ν2) =

√
1
2

∫
M

(√
g1(x)−

√
g2(x)

)2
µ(dx) .
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Probability metric and divergence

Definition of the f-Divergence
Consider ν1, ν2 ∈ Π(P) from the previous slide. Consider a convex function
f : R+ 7→ (−∞,+∞] such that f (x) <∞ for any x > 0, f (1) = 0 and f (0) could be
+∞. The f -divergence of ν1 from ν2 is

Df (ν1||ν2) = Df (g1||g2) =

∫
f
(

g1
g2

)
g2µ(dx) . (4)

Examples:
The case f (x) = x log x is the well-known Kullback–Leibler (KL) divergence.
The case f (x) = 1

2 |x − 1| is the total variation (TV) distance.
The case f (x) = (x − 1)2 is the χ2 divergence.

13



Probability metric and divergence

Definition of the f-Divergence
Consider ν1, ν2 ∈ Π(P) from the previous slide. Consider a convex function
f : R+ 7→ (−∞,+∞] such that f (x) <∞ for any x > 0, f (1) = 0 and f (0) could be
+∞. The f -divergence of ν1 from ν2 is

Df (ν1||ν2) = Df (g1||g2) =

∫
f
(

g1
g2

)
g2µ(dx) . (4)

Examples:
The case f (x) = x log x is the well-known Kullback–Leibler (KL) divergence.
The case f (x) = 1

2 |x − 1| is the total variation (TV) distance.
The case f (x) = (x − 1)2 is the χ2 divergence.

13



Computational Aspects



Stochastic Inverse Problem — Solvers

• Deterministic Inverse problem:

M(θ) = g

• Optimization problem:

min
θ

do(M(θ),g∗)

• Optimization algorithms: gradient
descent, nonlinear CG, etc.

• Stochastic Inverse problem:

ρg = M]ρθ

• Optimization problem:

min
ρθ
D(M]ρθ, ρ

∗
g)

• Optimization algorithms: ??? over
the probability space

There are two important metric/divergence that matter here (D and G):

ρ∗θ = argmin
ρθ∈(Π(P),G)

D(M]ρθ, ρ
∗
g) . (5)
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Gradient Flow (Analogous to Gradient Descent)

The gradient flow for the energy J(ρθ) := D(M]ρθ, ρ
∗
g) under the metric G is

∂tρθ = −gradGJ(ρθ) = −gradG D(M]ρθ, ρ
∗
g) . (6)

Example 1: Consider G = W2 and D = KL:

∂tρθ = ∇θ ·
(
ρθ∇θ

(
log

ρg
ρ∗g

(M(θ))

))
.

Example 2: Consider G = W2 and D = W2:

∂tρθ = ∇θ · (ρθ∇θ φ(M(θ))) φ is the Kantorovich potential

Example 3: Consider G = H2 (Hellinger) and D = χ2:

∂tρθ = 8ρθ
[∫

ρg
ρ∗g

(M(θ))ρθdθ −
ρg
ρ∗g

(M(θ))

]
.
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Well-Posedness: Stability



Stability

θ2

θ1 M(θ1)
M(θ2)

M

M−1

(P,dp) (D,do)

We need probability metrics to quantify the size of the blue and red balls.
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M is invertible

Suppose M−1 exists and is Hölder continuous:

‖M−1(g1)−M−1(g2)‖ ≤ CM−1‖g1 − g2‖β , β ∈ (0, 1] .

(Deterministic inverse problem is well-posed.)

Let ρg, ρ̂g ∈ Π(Rn) be two data distributions. Their parameter distributions are

ρθ = M−1
] ρg, and ρ̂θ = M−1

] ρ̂g

Theorem (Ernst et al.,2022)
Consider the p-Wasserstein metric.

Wp (ρθ, ρ̂θ) ≤ CM−1 Wp
(
ρg, ρ̂g

)β
.

On the other hand, under the total variation distance of measures (TV), we have

TV (ρθ, ρ̂θ) = TV
(
ρg, ρ̂g

)
=⇒ can be generalized to any Df .
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‖M−1(g1)−M−1(g2)‖ ≤ CM−1‖g1 − g2‖β , β ∈ (0, 1] .

(Deterministic inverse problem is well-posed.)
Let ρg, ρ̂g ∈ Π(Rn) be two data distributions. Their parameter distributions are

ρθ = M−1
] ρg, and ρ̂θ = M−1

] ρ̂g

Theorem (Ernst et al.,2022)
Consider the p-Wasserstein metric.

Wp (ρθ, ρ̂θ) ≤ CM−1 Wp
(
ρg, ρ̂g

)β
.

On the other hand, under the total variation distance of measures (TV), we have

TV (ρθ, ρ̂θ) = TV
(
ρg, ρ̂g

)
=⇒ can be generalized to any Df .

17



M is invertible

Suppose M−1 exists and is Hölder continuous:
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M is non-invertible

For simplicity, consider M is linear. Then we have two cases

1. M is under-determined
2. M is over-determined

In the under-determined case, we lose uniqueness.
In the over-determined case, we may not have existence.

Both can be implicitly “regularized” by considering an optimization framework!

Optimization framework: J(ρθ) := D(M]ρθ, ρ
∗
g)

Gradient Flow framework: ∂tρθ = −gradG D(M]ρθ, ρ
∗
g), with initial guess ρθ(0).

[Li, Wang, Y., 2024] 18
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Under-determined Case (Deterministic Case)

We first augment A ∈ Rn×m, n < m, A = VSU>. We use Ã to form a rank-m matrix,
and define the augmented gex:

Aex =

[
A
Ã

]
∈ Rm×m , gex = Aexθ =

[
Aθ
Ãθ

]
=

[
g
g̃

]
∈ Rm . (7)

Here, U⊥ is the orthogonal complement of U.

Suppose θ∗ ∈ {θ : Aθ = g∗}. Then the solution set can be written as

S = {θ∗ + θ̃ : Aθ̃ = 0} = {θ∗ + spanU⊥} . (8)

The GD solution for min ‖Aθ − g‖2 given the initial guess θ0 is

θ∞ = UU>θ∗︸ ︷︷ ︸
∈col(A>), deteremined by g∗

+ U⊥(U⊥)>θ0︸ ︷︷ ︸
∈null(A),, deteremined by θ0

.

19
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Under-determined Case (Stochastic Case)

Theorem (Sketch)

J(ρθ) := D(M]ρθ, ρ
∗
g) with D =KL or W2. Let ρ∞θ be the equilibrium solution to

∂tρθ = ∇θ ·
(
ρθ∇θ

(
δJ
δρθ

))
.

with initial guess ρ0
θ , and let ρ∞gex = Aex

] ρ
∞
θ . Then we can uniquely determine the

marginal distribution of ρ∞gex :

• The marginal distribution on g of ρ∞gex entirely recovers that of the data ρ∗g,
• The marginal distribution on g̃ of ρ∞gex is uniquely determined by that of ρ0

g.

20



Over-determined Case (Deterministic Case)

Consider the configuration that provides the minimum misfit under the vector
2-norm. That is,

min
θ

1
2‖Aθ − g∗‖2

2 .

For a linear system like this, the minimizer is explicit:

θ∗ = (A>A)−1A>g∗ =: A†g∗ ,

and hence, with A = VSU>,

g = Aθ∗ = AA†g∗ = VV>g∗ , or equivalently g = g∗A = ProjV g∗ .

(Column space of A is also the column space of V).

21



Over-determined Case: KL loss under W2 gradient flow

Theorem (Sketch)
Let ρ∞θ be the equilibrium solution to the Wasserstein gradient flow of the KL
divergence between synthetic data and reference data distributions,

∂tρθ = ∇θ ·
(
ρθ∇θ

(
δJ
δρθ

))
.

The equilibrium data distribution ρ∞g = A]ρ∞θ recovers ρ∗g conditioned on col(A).

22



Over-determined Case: KL loss under W2 gradient flow

N (A⊤)

cρ∞g

Col(A)

ρ∗g
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Over-determined Case: W2 loss under W2 gradient flow

Theorem (Sketch)
Let ρ∞θ be the equilibrium solution to the Wasserstein gradient flow of the
squared W2 metric between synthetic data and reference data distributions,

∂tρθ = ∇θ ·
(
ρθ∇θ

(
δJ
δρθ

))
.

The equilibrium data distribution ρ∞g = A]ρ∞θ = A†]ρ
∗
g.

That is, ρ∞g recovers the marginal distribution of ρ∗g on col(A).
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Over-determined Case: W2 loss under W2 gradient flow

Col(A)

N (A⊤)

ρ∗g

πA#

ρ∞g
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Particle Method



Numerical Example: Particle Method

To solve the Wasserstein gradient flow equation, J(ρθ) := D(M]ρθ, ρ
∗
g),

∂tρθ −∇θ ·
(
ρθ∇θ

(
δJ
δρθ

))
= 0 ,

we propose a particle method, j = 1, 2, . . . ,N,
d

dt
θj = −∇θ

(
δJ
δρθ

(M(θj))

)
= − ∇θM>

∣∣∣
θj(t)
∇g

δJ
δρθ

(g(t)) , where g(t) = M(θj(t)) ,

but there are many other deterministic/stochastic variants.

• (Interactive) The trajectory of particle θj is also correlated with all the other
particles {θi}i 6=j due to the mean-field term “density” — ρg = M]ρθ, & ρ∗g.

• We essentially designed an ensemble particle method.
• The red term can be computed using the adjoint-state method.

[Li, Wang, Y., 2024] 26
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Example: under-determined case, W2 gradient flow of KL

27



Example: under-determined case, W2 gradient flow of KL
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Example: over-determined case, W2 gradient flow of KL
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Conclusions

θ ∼ ρθ g ∼ ρg

ρθ ∈ Π(P)
ρg ∈ Π(D)

θ ∈ P g ∈ D

ρg = M]ρθ

g = M(θ)

• A di�erent stochastic framework
with respect to Bayesian Inversion

• Well-posedness:
metric/divergence-dependent
stability

• Implicit Regularization: depending
on both D (energy) and G

(dissipation)
• Rich geometry in probability space

yields various (ensemble) particle
methods
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Future Work

Inverse Problem Analysis Inverse Problem Computation
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