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Adil Salim

SVGD

Stein Variational Gradient Descent

SVGD | | is an algorithm to sample from
s < exp(—F), where F L-smooth and nonconvex.
SVGD maintains a set of N particles x!,...,xN.

XL+1:X/’; ZVF K(Xk7 k) V2K(Xk7xf<)

where K(x,y) is a kernel associated to a Reproducing Kernel
Hilbert Space H.
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Low dimension vs high dimension

Adil Salim
i (x) o< exp(—F(x))
SVGD
040 Initial distribution 040 500" iteration
Simulation from [ ] (Code from Q. Liu)

However, in higher dimension SVGD particles can
collapse due to the deterministic updates

[ I
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What do we know about the convergence of

SVGD?
T Sl Let MLV be the empirical measure of SVGD at iteration k, i.e.,
T
SVGD N _ )
=y 20 (1)
j=1
k small k large
C
1 ° — W (32, th 0
N large KSD (| pes) < p (RS, w) —
[ ] [ ]
N c 27?
N small KSD(MI( |/U‘*) < 77 k < Ioglog(N) Ut
[ ]
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Remarks on the asymptotics of uy when k — oo

Adil Salim

When N < oo,

(uN)x does not converge to jui, as k — oo.
Because ,uLV is discrete with N < 0o masses whereas (i,
has a continuous density.

SVGD

The best hope is for (u)x to converge to something that
converges to i, as N grows.

Even if we were able to show that (1)) converges to some
ZN as k — oo (already non trivial, the particles could
diverge), 2N would probably not converge to s, as
N — oo.

Because of particles collapse in SVGD.
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Noisy SVGD
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We study noisy SVGD

Adil Salim Noisy SVGD is SVGD with Langevin regularization.

Noisy SVGD

N
i i j i i
Xk+1 = Xk — Nk E VF(Xi)K(Xk»Xi) —V2K(Xk7XJ)
=1

— e VF(xq) + v/ 2k

where € > 0 is noise parameter, 4 — 0 and (&%), « i.i.d
standard Gaussian.

Our goal: describe the "limit” ZV of noisy SVGD as
k — oco. First remark: y, ¢ N,
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Results

Let MLV be the empirical measure of noisy SVGD and W its
empirical average over time k. We view them as random
variables in the metric space (P2(R9), W»).

Adil Salim

Noisy SVGD

”Limit” of noisy SVGD:
For every N > 0, the sequence of r.v. (W)k is tight.
Therefore (J)k converges in distribution as k — oo to
the set of its cluster points ZN.

Description of the "limit” I:
The set of r.v. Unso-ZN is tight. Therefore (ZV)y
"converges”’ in distribution as N — oo to the set of its
cluster points .£°.

Description of the "limit” Il: £ = {u,} a.s.
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Corollaries

Adil Salim

All together our results imply

|
Noisy SVGD Z?:]_ Ye W2 (M?’? M*) P

Zéf_ e k,N—s00

m Under Log Sobolev Inequality,

P
Wa(pui's i) ————0

k,N—oc0

The regime N < k is new.
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Proof
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Interpolated process level

For each particle trajectory (x,’;)k we define the interpolated
Adil Salim trajectory x' : R; — RY.

Let C the set of continuous functions from R, to R? endowed
Proof with the topology of uniform convergence on compact sets.
Then, x' € C. Moreover, x'(t + -) € C for every t > 0.

Next we define the empirical measure of the shifted
interpolated trajectories

N
1
LCEED TP (@
j=1

We view N (t) as a r.v. in the metric space (P2(C), Wh).
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"Limit" of noisy SVGD

Adil Salim
Under growth assumption on F:

- For every N > 0, the sequence of r.v. (uN(t)): is tight.
Therefore (uV(t)): converges in distribution as k — oo to the

set of its cluster points .ZN.

This time each element of .#" is a random measure supported
by N continuous functions, i.e., trajectories (instead of N
points as before).
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Description of the "limit" |
Adil Salim
Under growth assumption on F:

Proof

The set of r.v. Un=o-ZV is tight. Therefore (ZV)y
"converges” in distribution as N — oo to the set of its cluster
points .£°.

It remains to relate .Z*° and pi,.
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McKean Vlasov equation

Adil Salim

dXe = —b(Xe, L(Xp))dt + V/2edB,

b(x, ) = / () VFOIK (x,y) — VaK(x,y) + eVF(x)

where (B¢) standard Brownian motion.

The trajectory of one particle of Noisy SVGD is a discretization
of MKV equation in time and space.

A McKean Vlasov measure = the law of a (weak) solution
(Xt)t of the MKV equation.
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McKean Vlasov measures

Adil Salim

More precisely, p € P»(C) is a MKV measure if p solves the
following martingale problem.
For every g € C2(R),

g(Xr)—/Ot<b( Xs, ps), VE(Xs)) + £ Ag(Xs)ds

is a martingale, where (X;): ~ p.

19/24



Description of the " limit" Il

Adil Salim

Recall that the elements of .Z°° are random measures over the
set of continuous functions.

Proof

Under boundedness assumption of the kernel:

The elements of .Z° are a.s. McKean Vlasov measures.
To understand £ elements (and relate them to ), we need
to understand MKV measures.
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Asymptotics of MKV measures when t — oo

Adil Salim

Let p a (deterministic) MKV measure and denote p; its
marginal distributions.

Proof

If p is stationary, then p; = uy for every t >0
Under LSI, p; — py uniformly.

Basically, the realizations of .Z°° are measures p s.t.
Wa(pe, ptx) — 0. The various conclusions we obtained follow
from this observation.
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Conclusion

Adil Salim

m We provide understanding of .ZN, the limit set of noisy
SVGD as k — .

m We show a dynamical result (convergence to MKV
measures) on the way.

Proof
m Quantification of the convergence to ZN?

m Quantification of the convergence of N to .£>?

m Role of € on the convergence speed?
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