_		
	ν.	

Adil Salim

Motivations SVGD Noisy SVGI Proof

Bibliography

I said I would not write on SVGD anymore...

Adil Salim

Microsoft

ICERM May 2024

Joint work with

SVGD

Adil Salim

Motivations SVGD Noisy SVGD Proof Bibliography

Victor Priser

Pascal Bianchi

Ongoing work. References, suggestions, comments are welcome!

Sampling

SVGD

Adil Salim

Motivations SVGD Noisy SVGD Proof Bayesian inference in machine learningGenerative models

"Pikachu eating a sandwich"

Outline

Outline

SVGD	
Adil Salim	
Motivations	
SVGD	
Noisy SVGD	
Proof	
Bibliography	2 Noisy SVGD
	3 Proof

Stein Variational Gradient Descent

SVGD

Adil Salim

Motivations SVGD Noisy SVGD Proof

Bibliography

SVGD [Liu and Wang, 2016] is an algorithm to sample from $\mu_{\star} \propto \exp(-F)$, where F L-smooth and nonconvex. SVGD maintains a set of N particles x^1, \ldots, x^N .

$$x_{k+1}^{i} = x_{k}^{i} - \frac{\gamma}{N} \sum_{j=1}^{N} \nabla F(x_{k}^{j}) \mathcal{K}(x_{k}^{i}, x_{k}^{j}) - \nabla_{2} \mathcal{K}(x_{k}^{i}, x_{k}^{j}),$$

where K(x, y) is a kernel associated to a Reproducing Kernel Hilbert Space *H*.

Low dimension vs high dimension

Simulation from [KSA⁺20] (Code from Q. Liu)

However, in higher dimension SVGD particles can collapse due to the deterministic updates [Ba et al., 2021].

What do we know about the convergence of SVGD?

SVGD

Adil Salim

Motivations

SVGD

Noisy SVG

Proof

Bibliography

Let μ_k^N be the empirical measure of SVGD at iteration k, *i.e.*,

$$\mu_k^N = \frac{1}{N} \sum_{j=1}^N \delta_{x_k^j} \tag{1}$$

	k small	k large
N large	$\mathrm{KSD}(\mu_k^\infty \mu_\star) < rac{\mathcal{C}}{k}$	$W_1(\mu_k^\infty,\mu_\star) \to 0$
	[KSA+20]	
N small	$\mathrm{KSD}(\mu_k^N \mu_\star) < \frac{C'}{k}, k < \log\log(N)$???
	[Shi and Mackey, 2024]	

Remarks on the asymptotics of μ_k^N when $k \to \infty$

SVGD

Adil Salim

- Motivation SVGD Noisy SVG
- Proof
- Bibliography

When $N < \infty$,

- 1 $(\mu_k^N)_k$ does not converge to μ_\star as $k \to \infty$. Because μ_k^N is discrete with $N < \infty$ masses whereas μ_\star has a continuous density.
- 2 The best hope is for $(\mu_k^N)_k$ to converge to something that converges to μ_{\star} as N grows.
- 3 Even if we were able to show that (μ_k^N) converges to some \mathscr{L}^N as $k \to \infty$ (already non trivial, the particles could diverge), \mathscr{L}^N would probably not converge to μ_{\star} as $N \to \infty$.

Because of particles collapse in SVGD.

Outline

SVGD	
Adil Salim	
Motivations	
SVGD	1 SVCD
Noisy SVGD	
Proof	
Bibliography	2 Noisy SVGD
	3 Proof

We study noisy SVGD

SVGD

Adil Salim

Motivations SVGD Noisy SVGD Proof Bibliography **Noisy** SVGD is SVGD with Langevin regularization.

$$\begin{aligned} x_{k+1}^{i} &= x_{k}^{i} - \frac{\gamma_{k}}{N} \sum_{j=1}^{N} \nabla F(x_{k}^{j}) \mathcal{K}(x_{k}^{i}, x_{k}^{j}) - \nabla_{2} \mathcal{K}(x_{k}^{i}, x_{k}^{j}) \\ &- \varepsilon \gamma_{k} \nabla F(x_{k}^{i}) + \sqrt{2\gamma_{k}\varepsilon} \xi_{k}^{i} \end{aligned}$$

where $\varepsilon > 0$ is noise parameter, $\gamma_k \to 0$ and $(\xi_k^i)_{i,k}$ i.i.d standard Gaussian.

Our goal: describe the "limit" \mathscr{L}^N of noisy SVGD as $k \to \infty$. First remark: $\mu_{\star} \notin \mathscr{L}^N$.

Results

SVGD

Adil Salim

Motivations SVGD Noisy SVGD

Bibliography

Let μ_k^N be the empirical measure of noisy SVGD and $\overline{\mu_k^N}$ its empirical average over time k. We view them as random variables in the metric space $(\mathcal{P}_2(\mathbb{R}^d), W_2)$.

1 "Limit" of noisy SVGD:

For every N > 0, the sequence of r.v. $(\overline{\mu_k^N})_k$ is tight. Therefore $(\overline{\mu_k^N})_k$ converges in distribution as $k \to \infty$ to the set of its cluster points \mathscr{L}^N .

2 Description of the "limit" I:

The set of r.v. $\cup_{N>0} \mathscr{L}^N$ is tight. Therefore $(\mathscr{L}^N)_N$ "converges" in distribution as $N \to \infty$ to the set of its cluster points \mathscr{L}^∞ .

3 Description of the "limit" II: $\mathscr{L}^{\infty} = \{\mu_{\star}\}$ a.s.

Corollaries

SVGD

Adil Salim

Motivations SVGD Noisy SVGD Proof Bibliography All together our results imply

$$\frac{\sum_{\ell=1}^{k} \gamma_{\ell} W_{2}(\mu_{\ell}^{N}, \mu_{\star})}{\sum_{\ell=1}^{k} \gamma_{\ell}} \xrightarrow{\mathbb{P}} 0 \qquad (2)$$

Under Log Sobolev Inequality,

$$W_2(\mu_k^N, \mu_\star) \xrightarrow{\mathbb{P}} 0$$
 (3)

The regime $N \ll k$ is new.

Outline

SVGD	
Adil Salim	
Motivations	
SVGD	1 SVCD
Noisy SVGD	
Proof	
Bibliography	2 Noisy SVGD
	3 Proof

Interpolated process level

SVGD

Adil Salim

Notivations SVGD Noisy SVGE Proof

Bibliography

For each particle trajectory $(x_k^i)_k$ we define the interpolated trajectory $x^i : \mathbb{R}_+ \to \mathbb{R}^d$.

Let C the set of continuous functions from \mathbb{R}_+ to \mathbb{R}^d endowed with the topology of uniform convergence on compact sets. Then, $x^i \in C$. Moreover, $x^i(t + \cdot) \in C$ for every $t \ge 0$.

Next we define the empirical measure of the shifted interpolated trajectories

$$\mu^{N}(t) = \frac{1}{N} \sum_{j=1}^{N} \delta_{x^{j}(t+\cdot)}$$
(4)

We view $\mu^{N}(t)$ as a r.v. in the metric space $(\mathcal{P}_{2}(\mathcal{C}), W_{2})$.

"Limit" of noisy SVGD

SVGD

Adil Salim

Motivations SVGD Noisy SVGD Proof Bibliography Under growth assumption on *F*:

For every N > 0, the sequence of r.v. $(\overline{\mu^N(t)})_t$ is tight. Therefore $(\overline{\mu^N(t)})_t$ converges in distribution as $k \to \infty$ to the set of its cluster points \mathscr{L}^N .

This time each element of \mathscr{L}^N is a random measure supported by *N* continuous functions, *i.e.*, trajectories (instead of *N* points as before).

Description of the "limit" I

SVGD

Adil Salim

Motivation SVGD Noisy SVG

Proof

Bibliography

Under growth assumption on *F*:

The set of r.v. $\cup_{N>0} \mathscr{L}^N$ is tight. Therefore $(\mathscr{L}^N)_N$ "converges" in distribution as $N \to \infty$ to the set of its cluster points \mathscr{L}^∞ .

It remains to relate \mathscr{L}^{∞} and μ_{\star} .

McKean Vlasov equation

The trajectory of one particle of Noisy SVGD is a discretization of MKV equation in time and space.

A McKean Vlasov measure = the law of a (weak) solution $(X_t)_t$ of the MKV equation.

McKean Vlasov measures

SVGD

Adil Salim

Motivations SVGD Noisy SVGD Proof

More precisely, $\rho \in \mathcal{P}_2(\mathcal{C})$ is a MKV measure if ρ solves the following martingale problem. For every $g \in C_c^2(\mathbb{R}^d)$,

$$g(X_t) - \int_0^t \langle b(X_s,
ho_s),
abla g(X_s)
angle + arepsilon^2 \Delta g(X_s) ds$$

is a martingale, where $(X_t)_t \sim \rho$.

Description of the "limit" II

SVGD

Adil Salim

Motivations SVGD Noisy SVGD **Proof** Bibliography Recall that the elements of \mathscr{L}^∞ are random measures over the set of continuous functions.

Under boundedness assumption of the kernel:

The elements of \mathscr{L}^{∞} are a.s. McKean Vlasov measures. To understand \mathscr{L}^{∞} elements (and relate them to μ_{\star}), we need to understand MKV measures.

Asymptotics of MKV measures when $t ightarrow \infty$

SVGD

Adil Salim

Motivations SVGD Noisy SVGD Proof Let ρ a (deterministic) MKV measure and denote ρ_t its marginal distributions.

1 If ρ is stationary, then $\rho_t = \mu_{\star}$ for every t > 02 Under LSI, $\rho_t \rightarrow \mu_{\star}$ uniformly.

Basically, the realizations of \mathscr{L}^{∞} are measures ρ s.t. $W_2(\rho_t, \mu_{\star}) \rightarrow 0$. The various conclusions we obtained follow from this observation.

Conclusion

SVGD

Adil Salim

- Motivation SVGD
- Noisy SVGE
- Proof
- Bibliography

- We provide understanding of \mathscr{L}^N , the limit set of noisy SVGD as $k \to \infty$.
- We show a dynamical result (convergence to MKV measures) on the way.
- Quantification of the convergence to $\mathscr{L}^{N?}$
- Quantification of the convergence of \mathscr{L}^N to \mathscr{L}^∞ ?
- Role of *ε* on the convergence speed?

References I

SVGD	
Adil Salim	
Motivations	
SVGD	
Noisy SVGD	[Ba et al., 2021] Ba, J., Erdogdu, M. A., Ghassemi, M., Sun, S., Suzuki, T., Wu, D., and Zhang, T. (2021).
Proof	Understanding the variance collapse of svgd in high dimensions. In International Conference on Learning Representations.
Bibliography	[Liu and Wang, 2016] Liu, Q. and Wang, D. (2016). Stein variational gradient descent: A general purpose Bayesian inference algorithm. In Advances in Neural Information Processing Systems (NeurIPS), pages 2378–2386.
	[Shi and Mackey, 2024] Shi, J. and Mackey, L. (2024). A finite-particle convergence rate for stein variational gradient descent. Advances in Neural Information Processing Systems, 36.

Selected publications I

SVGD	
Adil Salim	
lotivations	
SVGD	
Noisy SVGD Proof	[KSA ⁺ 20] Anna Korba, Adil Salim, Michael Arbel, Giulia Luise, and Arthur Gretton. A non-asymptotic analysis for Stein variational gradient descent.
Bibliography	 [SSR22] Adil Salim, Lukang Sun, and Peter Richtárik. A convergence theory for SVGD in the population limit under Talagrand's inec In International Conference on Machine Learning (ICML), 2022