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Introduction and motivation

Problem: Given observations of trajectories of a dynamical system of interact-
ing agents, learn the interaction rules.

Motivation: particle-/agent-based systems ubiquitous in Physics, Biology, so-
cial sciences, Economics, ... Beyond model-based interaction rules.

Further goals: hypothesis testing for agent-based systems; transfer learning;
agents on networks; collaborative and competitive games.
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Problem formulation

Suppose we have a system driven by of ODEs in the form

and we are given observations of positions and velocities

where:

O:t1<°°°<tL:T;

xeRP f:RP 5 RP

(X(m) (tl)a X(m) <tl))l:1,...,L;m:1,...,M )

.

Q
------

m indexes trajectories corresponding to different initial conditions at t; =0

Problem: construct an estimator fn that is close to f.

Statistical learning version:

f(x) w?

N and RP

given (x(™)(t;), %™ (t;)))1=1.... Lom=1.... 0, With x"™)(t1) ~;ii4. po, we want to

construct an estimator f,, for the unknown f in x(¢) = f(x(¢)).

We are interested in the nonparametric setting, i.e. no assumptions on f except

some regularity.




Statistical Learning version

Suppose we have a system driven by of ODEs in the form
,x e RP f:RY - RP
and we are given observations of positions and velocities

(x"™) (), X" (t)))i=1....Lom=1

where:
O=t1 < --- <t =1,
m indexes trajectories corresponding to different initial conditions at ¢t; =0

Objective: construct an estimator f that is close to f.

Statistical learning version:

Q
------

given (x(™)(t;), %™ (t)))1=1.... Lom=1.... 0, With x"™)(t]) ~iiq. po, we want to

A

construct an estimator f,, for the unknown f in x(t) = f(x(?)).

The estimation consists therefore in constructing a map from the training data
(x(™)(¢,), %™ (t1))i=1....L:m=1,...m to a function f,, the estimator. Therefore

A

f,, is a random element of some normed function space (B, || ||5)-

We may measure the performance of an estimator by asking how small ||f, —f||s
is, for example in expectation over draws of the training data according to ud!.




Nonparametric regression

Statistical learning version:

given (x(™) (), %™ (t;)))1=1.... Lom=1.... 0, With x"™)(t]) ~ii4. po, we want to

A

construct an estimator f,, for the unknown f in x(¢) = f(x(?)).

Possible approach: regression. In regression one is given pairs
{(z;,f(z;) +mn;)} iy, with z; € RP . z; ~iiq p, aprob. measure on R” |
with 1 independent noise, and outputs an estimator f,.

Well-understood problem: estimators that, for f s-Holder regular, satisfy

E[||f, — fH%Q(p)] < " 354D | ARD
Moreover, this learning rate is optimal e
(in the so-called min-max sense: .:,P ) ) o
for any estimator one can find f LI b
for which the estimator does not converge ' ____________ e do(a)
to f any faster than this). - . oo o e



Nonparametric estimation

Suppose we have a system driven by of ODEs in the form

x(t) =f(x(t)) ,xeRP f:RP - RP
and we are given observations of positions and velocities x(t2)
X(l)(tl)I"
. x W (ty) x@)(ty)
(x"™ (%), X(m)(tl))lzl,...,L;mzl,...,M : /'
m=2 . X(z)(tL)
where: x®(t1) 7.
O=t1 <--- <t =75 L N 2>X(t2)
m indexes trajectories corresponding to different initial conditions at t; = 0 @) X () RD

Problem: construct an estimator fn that is close to f.

(x™)(t7), %) ()))i1=1.... Lom=1....01, With x")(t1) ~i i 4. pio, construct f,.

Z'{' f(Zz)

The observations are independent in m, but not in [.
Even if we pretended to have independence, without further assumptions on f,
besides s-Holder regularity, the best attainable rate is E[||f, — f||z2] < n~ %D,
where n = LM (L obs. in each of M traj.) and D = Nd (N agents in R?).

For a system of N agents in RY, D = Nd is typically very large, and the rate
n~ 2s+D0 unsatisfactory. Further assumptions are needed for better rates.




Particle-based systems

Particle- and agent-based systems are driven by ODEs with special structure.
A simple prototypical model:

m ]' m ™m ™m ™m

0™ = 5 ol =D - ™)

Given observations {(x;,x;)})_; at different times {¢;}~, and/or for different
initial conditions {x(")(0)}M_. we want to learn the interaction kernel ¢.
Different limits: N — 400 (mean-field limit, joint work with M. Fornasier and

M. Bongini), M — +oco (joint work with F. Lu, S. Tang and M. Zhong).

- Strong model assumption on the form of the ODE system. Now the un-
known is the function ¢ of 1 variable, r.

- We may be able avoid the curse of dimensionality.

- No value ¢(r) is observed, so this is not regression, but an inverse problem.
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Particle- and agent-based systems are driven by ODEs with special structure.
A simple prototypical model:

2™ = =3 (™ - xUM ) - x™)

\

Particle-based systems

Given observations {(x;,x;)}Y; at different times {t;}~, and/or for different

initial conditions {x(")(0)}M_. we want to learn the interaction kernel ¢.

Different limits: N — 400 (mean-field limit, joint work with M. Fornasier and
M. Bongini), M — +oco (joint work with F. Lu, S. Tang and M. Zhong).
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x; > 0 is the ¢-th opinion, : =1, ..., 10.

r (pairwise distance)



Particle-based systems

Particle- and agent-based systems are driven by ODEs with special structure.
A simple prototypical model:

N
e DL SR DICSAESE
'=1

Given observations {(x;,x;)}Y; at different times {t;}~, and/or for different
initial conditions {x(")(0)}M_. we want to learn the interaction kernel ¢.
Different limits: N — 400 (mean-field limit, joint work with M. Fornasier and

M. Bongini), M — +oo (joint work with F. Lu, S. Tang and M. Zhong).

For fixed t = t; and m, we cannot solve for ¢(r;;): N(N —1)/2 unknowns, only
dN known quantities (typically d < ). Need to leverage observations in time.

At time scale [0, 7], we define the probability measure on R :
L N

#(r) = DD
pT(T) T EZE(O)NMO L (N) 6T§?)(tl)(r) :
1=1 \2/) ii'=1i<s’
T T 1 T
average over  average over  average over 0 function on R
initial observations  pairs of agents at every observed

conditions in time pairwise distance



Measures on pairwise distances

Observations: {(x;,%;)(™) (tl)}iv:’f’l]\fl __1, where x(™)(0) ~ pg for some p on

RY. Note that each state of the system is in R%V.

All we want however is the one-dimensional interaction kernel ¢ in the equations

" () = < D (™ (1) = x™ 0] (1) = x{™ (1))
e

At time scale [0, 7], we define the probability measure on R, :

IO%(T) T CB(O)N/,LO Z Z 5 E?)(tl)(fr) .

l 12,0/ =1,2<7’

Example. The Lennard Jones force is the il

derivative of the potential =

-400

Vi (r )—46(( )" - (%)6)-

nght ﬁgure. In blue the LJ ¢, -800 |
superimposed to an empirical estimate of p%, 1000
for a system of N = 7 agents, and L, T small. -1200) |

1 1.5 2 2.5 3 3.5
r, pairwise distances



The estimator for the interaction kernel

Observations: {(Xgm),kgm))(tl) y%lMl m=1, for M different initial conditions

i.i.d. ~ ug, from

%" (1 Z o(11x™ (1) — <™ D (0 (1) - <™ (1) = m@”") (1):).

linear map (in ¢) applied

Consider the emplrlcal error functional, for “any” 1, to unknown ¢
| LMW
._ . (m) (m) 2
ELm (V) = ml 2—1 13,7 (t1) — £((x;" (12))a) ||~ -

Our estimator is defined as a minimizer of £, 5; over ¥ € H, a suitable hypoth-
esis space of functions on R, with dim(#H) = n (with n = n(M)):

5 = in & :
1 = arg min €201 (1)

For H linear subspace, this is a least squares problem (Gauss, Legendre). We
want a large H to reduce bias, but not too large as that increases the number
of parameters to be estimated for a given amount of data, and therefore the
variance of the estimator.



Coercivity condition

1 & m) (m) 2
Er,m(¥) = TMN Z HXz (t1) — £y (x; (tl))‘ :
lm,i=1

} — in & .
¢L,M,”H arg {bflel% L,M(w)

We shall assume that the unknown interaction kernel ¢ is in the admissible class
Kr.s:={¢¥ € C'(Ry) : supp.yp C [0, R],sup,.cjo g1 |9(r)] + [¢'(r)] < S}.

Coercivity condition: Vi) : ¢(-)- € H, for cp N3, Tir = Xi—X4r, Tiir 2= [Tt ||

(I )
CL,N,Huw(') ) "%2(p%)§ ﬁ ZE;EHN Z_:lw(’l“wl (tl))rii/ (tl)H .

Lemma. Coercivity = unique minimizer of limp;_, o £ () over ¢ € H
v—9peH = crnmllP() —9()- ||i2(pg) < EL,00(t) — )

cr.N,# also controls the condition number of the LS problem for qAb L.MH-



Blas/variance trade-off

1 & m) (m) 2
Erm(e) = oy 2o &™) = f ™ @)
l,m,i=1

} = in & .
¢L,M,”H arg gél% L,M(SD)

+ coercivity

bias decreases as dim H increases; depends only on
approximation properties of H Kr s L?(p%)
variance increases as dim 7 increases, for fixed M; = T
measures randomness of qg LMH EH ¢
bias
Pick dim H an increasing function of M, / e
to attain the minimum of the sum of \Aj va#ance
bias (squared) and variance. H PL.MH € H

Unlike regression, we do not have access to values of ¢, but only observations
that are linear functions (via fy) of ¢; coercivity implies stable invertibility.



Main Theorem (first order systems)

Theorem. Let {H,}, C H be a sequence of subspaces of L*°[0, R], with
dim(H,,) < con and inf e, [[@(-) — &) || Lo ([0,r]) < c1n™?, for some constants
co,c1,s > 0. It exists, for example, if ¢ is s-Holder regular.

Choose n, = (M/logM)TIH: then for some C' = C(cg, c1, R, S)

~ C log M Zo T
Elll¢r, a1, (1) - —&(;) - ”L2(p}f)] < ( ) |

coNnH \ M
thiy is Just the Yunction that,

. The gogﬁlls Rate d@ctﬁgalll ot fagt e veu, %te,p};ﬂ in the case of
regressiggy, ﬁé}ﬁ&ﬁs@%@&ﬂ@p @eogﬂéfﬁ%rérem@ﬁes Mi

COGI‘CIVI y constant: it is a crucial

- 'The bad: no dependency on [, Nugnevicat, examplesysheseet titohha
effective sample size can be LM = #ebss B%lﬂ]%?& fs@n}‘)%{ﬁ&?d%l}yﬁ%@%%tem.

In the examples we choose H,, to be the space of piecewise linear functions on a
uniform partition of cardinality n of [0, Ryay] (estimated supp.pt), for n = n,.
Fourier, wavelets, etc...would be other natural choices.

In the end solving the minimization problem is a least-squares problem in n = n,
dimensions. Algorithms for constructing the LS matrix and computing the
estimator run in time O(N?Ld - M + Mn?) (online versions also possible).



Errors on trajectories

Standard arguments yield bounds on the distance between trajectories of the
true system and those of the system driven by the estimated interaction kernel.

Proposition. Assume g/b\(|| |- € Lip(R%), with Lipschitz constant Cp;,. Let

X (t) and X(¢) be the solutions of systems with kernels ¢ and ¢ respectively,
started from the same initial condition. Then for each trajectory

~ 2o [ 2
sup [K(1) = X (0 < 277 || X(0) — £ X000,
t€[0,T] 0

and on average w.r.t. the distribution ug of initial conditions:

E, [ sup [|X(t) — X(®)[[] < C(T, CLip)VN|I6(-) - —6() - [ 22(pr) -

te[0,T]

where C'(T, Cy,;p) is a constant depending on 7" and Chip,.
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Examp\e: 2nd Order systems
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(food, light, ...)
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Example 2nd order Prey-Predator system. Left: the interaction kernels and
1s. Right: trajectories of the true system (left col.) and learned system (right
col.) with an initial condition from training data (top) and a new one (bottom).



Examples: prey-predator systems
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an initial condition from training data (top) and a new one (bottom).



Examples: prey-predator systems
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Emerging behaviors: Fish mill patterns

The governing equations of fish milling dynamics in R? of (*) are (*) Y. Li Chuang, M. R. D'Orsogna,
D. Marthaler, A. L. Bertozzi, L. S.

Chayes, Physica D: Nonlinear Phe-
nomena 232 (2007)

— Bl%i|[*%x; —

Zi’ VQU(XZ', Xi’) ,

with U(x;,-) is a potential for the interaction of the i*"

agents: U(x;, %) = (—Cue™ Kimxull/ta O o= llximxull/6r)
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Interacting particles on manifolds
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The Stochastic case

d

We have also generalized these results to the stochastic case

N
1
dx; ¢ = N 2—31 (|| xir ¢ — X t||)(Xir ¢ — X3¢ )dt + 0dB ¢ .

Joint work with F. Lu and S. Tang, Learning interaction kernels in stochastic
systems of interacting particles from multiple trajectories, FOCM, 2021.

Note that in the stochastic case we do not (cannot!) observe velocities, but only
positions. We have studied carefully the dependence on the observation time
gap At = tl_|_1 — 1 = T/L

R . n T
oL 1m0 — @llr2(pr) < 0T 00,2 — Ol L2(pr) +C (\/ i + 4/ L) :

approximation statistical  discretization
error error error

where &T,OO,H is the projection of the true kernel ¢ onto H.



Stochastic Lennard-Jones
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Interacting Particle
Systems on Networks

We consider a heterogeneous dynamical system with IV interacting particles on
a graph: G = (V, E,a) a graph, a = (a;;) € [0, 1]V a;; > 0iff (4,5) € E.
At each vertex i € {1,..., N} there is a particle X! € R?, with dynamics

Sad dX| =) a;®(X{ - X))dt + cdW/}, i=1,...,N
JFi
Observations: {X§T)}ZE[L],mE[M] + noise, where X = (X;);¢n) € RV*4 .

Want to estimate both a € [0, 1]V %" and & : R? — R,



| ennard-Jones interactions on a network

o(r) = (=377 + 5r73) 1,505 — 160 Lo<r<o.5

True trajectory

@:




Interacting Particle Systems on Networks

We consider a heterogeneous dynamical system with IV interacting particles on
a graph: G = (V, E,a) a graph, a = (a;;) € [0, 1]V a;; > 0iff (4,j) € E.
At each vertex i € {1,..., N} there is a particle X} € R, with dynamics

Sao : dX{ =) ay®d(X] —X])dt+odW;, i=1,...,N
J71
Observations: {X,E;m)}le[L],me[M] + noise, where X = (X;);cin] € RN >d

Want to estimate both a € [0,1]¥*Y and @ : R? — R4,

Parametric setting for simplicity: & € H, for some given finite-dimensional
hypothesis space H = span{y }re[p); then ® = Zke[p] CLk.

(a,¢) = argmin, €L m(a,c)
| LoLM
m m 2
Erm(a,c) = > [|AXE —aB(Xeat|

- MT
[=0,m=1

where B(Xy); := (@Dk(Xg — X,f))j L € RN *1xdXDp for each i € [N].



Interacting Particle Systems on Networks

Sad dX; =Y a;®(X} — X))dt + cdW/}, i=1,...,N
J#1
Observations: {Xgn)}le[L],mE[M] + noise, where X = (X;);ciy) € RV*? .

Parametric setting for simplicity: ® € H, for some given finite-dimensional
hypothesis space H = span{ty }re[p); then ® = ) ;0 ceth.

(a,¢) = argmin, €L, m(a,c)
| LoLM

Erm(ac)i=—= > [AX] - aB(X])cAt|),
MT [=0,m=1

Normalization: ||a;.||2 = 1, defining the set M of admissible weights.

£ nonlinear, non-convex, but separately convex in each of the two arguments.



Alternating Least Squares

(a,¢) = argming, €L m(a,c)

| LoLM ,
Ermlac) = —= > [AX} —aB(X{)eAt|,
MT [=0,m=1

1. Given c, estimate a by directly solving the minimizer of the quadratic loss
function with c fixed, which solves

A AN o= B (B me) = [(AX])i]1m/ A

with [B(X7):l1m € RVX@LM)Xp = AALS . IB(X™),]; e € RVX(ALM) and
t; ) c,M 2 t )

AX T 1m € RNXALMN ghtained by multiplying appropriate tensor slices by c.

2. Given a, estimate ¢ by minimizing the loss function with fixed a by solving
AN @ 1= [aB (X)) = [AX i /AL

where AALS = [aB(X}")];,m € R¥™MIVXP g again obtained by stacking in a
block-row fashion and ARGE = 1aB(X7)ilim




Operation Regression + ALS

(a,¢) = argming, €L m(a,c)
L—1,M

1 m m 2
Er.m(a,c) = UT Z |AX]" — aB(X] )cAtHF
[=0,m=1
Operator Regression. Consider {Z; = a T e RW=UxPIN  treated as vectors

z; € RW=1px1. they solve
Aivrzi = [Ailimz = [(@B(XE)cAt)iim = [(AX )ilim, 4 € [N],

where A; vy = [As]im € R Lx(N=1)p gince the loss function can be written as

L,M,N m 2
ﬁ l,m,i=1 H(AX )i]l,m - [A’L]lmzz‘

Deterministic ALS stage. The rows of a and the vector ¢ are estimated via a
joint factorization of the matrices of the estimated vectors {z; as}, denoted by

Z; nr, with a shared vector c:

2
~AM ~M : Z
(a s € ):argmlnaEM,cERP HZ _a .C H

F




Theoretical results

The system satisfies a rank-2 joint coercivity condition on H if dcyy > 0
s.t. V&, ®y € H with (@1, ®2)12(,,) =0, Val),a?) € M and Vi € [N]

5

(pL

2
1 2 1
D laly @ (i (1) +al) Ba(ri; (1)) ] > cx [l P47, + a2l

=0 ji
uniqueness of the minimizer for M = oo, matrices in the least squares
solution of &1, (a, ®) = 0. steps of ALS are well-conditioned.

The system satisfies an interaction kernel coercivity condition in H if
oy € (0,1) s.t. V& € H and ¢ € |N] ﬁ Zsz_ol D izi Eltr Cov(®@(r;;(4)) |
F)] > conl|l®||5, where F} is the o-algebra generated by (X;,_,, X} ).

rank-2 joint ORALS yields consistent and matrices in ORALS
coercivity asymptotically normal estimator are well-conditioned



Estimation Error

Convergence & sampling

—— |nt. Kernel error (ALS)

—&— Graph error (ALS)
—&— Traj. error (ALS)

~ == |nt. Kernel error (ORALS)
—4@-=- Graph error (ORALS)
—-8-- Traj. error (ORALS)

Int. Kernel error
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M

Top: Estimation errors as a function of M (all other parameters fixed)

Graph error

C R - <SRN\ SR

M

2

Traj. error

LI - A A

M
, for ALS and ORALS, for

a random Fourier interaction kernel with p = 16, N = 32, L = 2 (left) and L = 8 (right). In the
small and medium sample regime, between the two vertical bars, ALS significantly and consistently
outperforms ORALS; for large sample sizes, the two estimators have similar performance. Bottom:
The performance of the ALS estimator improves not only as M increases but also as L increases.
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| ennard-Jones interactions on a network
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Kuramoto Interactions on a network

. . . . M N L T s
dX} =k Y aysin(X] — X})dt + odW; o | 0w

864,512 | 10 | 100 | 1-10~ % | 10~2 | 10~3

JEN;

H = span{cos(x), sin(2z), cos(2z), . . ., cos(7x),sin(7z)}, which does not contain
®, and H, = span{H, ®}.
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Kuramoto Interactions on a network
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Particles of different types

Sa@) o dX; = a;®up(X] — X])dt + odW{,  i=1,...,N
ji
D4 (z) = Zzﬂ CriVw(x) c € RPN C.i = C k(4)

X, = aB(X;)c + oW = (az-.B(Xt),L-c.i) + oW

1€[N]
azB(Xt)Zc,,, — Z];éz a; ZZ:l wk(Xg — X;)C]m S Rd,i =1,....N

Writing ¢ = uv”, with u € RPX¥ the coefficient matrix, and v € RV*Q the type
matrix, both orthogonal, we relax the problem to

LM
1 ’ 2
] m m T
AIGMIN (5 1y v)e MR RPXQ xRN XQ T o E |AX] — aB(X]" )uv AtHF
vTv:IQ [=1,m=1

We use 3-way ALS to solve this problem; to enforce that c is not just low rank, but
has only @ different columns, i.e. c; = c..(;), perform K-means on the cols(c) at
every iteration.



Particles of different types: example

Iog10 Error

dX; = 23752 alj¢lﬁl(2) (Xj

X3)dt + odW;
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k: [N] = [Q], with Q = 2, with ®; short-range, and ®5 long-range.

Error decay with iterations

=== Using K means, kernel error
=== Using K means, a error

1+F ==s== No K means, kernel error
=== No K means, a error

lterations

6,0

Kernel Type 1

m— True
—e— ALS with K means

ALS without K means

6,1

Kernel Type 2

Estimation of two types of kernels: short range and long range. The first panel shows the error
decay with respect to iteration numbers. The algorithm using K-means decays faster and reaches

lower errors than the algorithm without K-means.

The right two columns show the estimation

result of the two kernels. The classification is correct for both of the algorithms, and the one with

K-means yields more accurate estimators, particularly for the kernel Type 1.




Conclusions

e Learning interaction kernels in particle systems may be performed effi-
ciently, nonparametrically, without curse of dimensionality of the state
space...

e ...also on networks, with particles of different types, with interaction ker-
nels, networks and types all unknown.

e Generalizations: 1st- and 2nd-order, multi-type, stochastic; learning vari-
ables; more general interaction kernels.

e many open problems and many connected techniques: singular kernels,
learning variables inside interaction kernels; estimators that use weak for-
mulations (see D. Bortz talk this afternoon); robustness w.r.t. observa-
tional noise and mis-specified models; better connections to mean field
equations; uncertainty quantification; ...
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