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The Rydberg-Atom Quantum Computer



The Rydberg-Atom Quantum Computer

Scalable 
Identical 
Configurable 
Long coherence times



Immanuel Bloch 
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The Task

Quantum Inspire 
platform

Experiments

Measurements 
Implementation 
Uncertainties

Pulse Generation

FPGA 
Noise characterization 

Modularity

Optimization

Classical (HPC) 
Pulse-based 
Gate-based

Simulation

Atomic calculations 
Hamiltonian generation 
Open system evolutions

In the beginning…



1-Qubit |ψ⟩ ∈ Spanℂ({ |0⟩, |1⟩}) =: ℋ ≅ ℂ2 with |ψ | = 1

The Qubit

Bloch sphere

Unitary maps  unitaryU ∈ ℒ(ℋ) ≅ ℂ2×2

U† := U⊤ = U

Quantum gates



1-Qubit |ψ⟩ ∈ Spanℂ({ |0⟩, |1⟩}) =: ℋ ≅ ℂ2 with |ψ | = 1

Unitary maps  unitaryU ∈ ℒ(ℋ) ≅ ℂ2×2

The Qubit

Bloch sphere

U = eiH H Hermitian

σx = (0 1
1 0), σy = (0 −i

i 0 ), σz = (1 0
0 −1)Pauli matrices

Pauli matrices are quantum gates
σx |0⟩ = |1⟩
σx |1⟩ = |0⟩

NOT gate

Quantum gates

Hadamard gate UH =
1

2
( |0⟩ + |1⟩)⟨0 | +

1

2
( |0⟩ − |1⟩)⟨1 | Superposition

Pauli rota+ons Rj (θ) = exp(−i
θ
2

σj) , j ∈ {x, y, z}



Unitary maps

The Qubit

Bloch sphere

U = eiH H Hermitian

Quantum gates

|ψ⟩ ∈ ℋ⊗2 ≅ ℂ22
with |ψ | = 12-Qubit

 unitaryU ∈ ℒ(ℋ⊗2)

Product states |a⟩ ⊗ |b⟩

|ψ⟩ =
1
2 ( |00⟩ − |01⟩ + |10⟩ − |11⟩)

=
1

2
( |0⟩ + |1⟩) ⊗

1

2
( |0⟩ − |1⟩)



Unitary maps

The Qubit

Bloch sphere

U = eiH H Hermitian

Quantum gates

|ψ⟩ ∈ ℋ⊗2 ≅ ℂ22
with |ψ | = 12-Qubit

 unitaryU ∈ ℒ(ℋ⊗2)

Product states |a⟩ ⊗ |b⟩

Entangled 
states

|ψ⟩ =
1

2
( |00⟩ + |11⟩)

Bell state 50% probability for  and  
0% for  and    

|00⟩ |11⟩
|01⟩ |10⟩

Spooky action at a distance 
Albert Einstein (1879-1955, German-born theore;cal physicist)



Unitary maps

The Qubit

Bloch sphere

U = eiH H Hermitian

Quantum gates

|ψ⟩ ∈ ℋ⊗2 ≅ ℂ22
with |ψ | = 12-Qubit

 unitaryU ∈ ℒ(ℋ⊗2)

Product states |a⟩ ⊗ |b⟩

Entangled 
states

|ψ⟩ =
1

2
( |00⟩ + |11⟩)

CNOT gate UCNOT = |00⟩⟨00 | + |01⟩⟨01 | + |11⟩⟨10 | + |10⟩⟨11 |

|0⟩ |0⟩ ⟼
|0⟩ + |1⟩

2
⊗ |0⟩ ⟼

1

2
( |00⟩ + |11⟩)

UH ⊗ I UCNOT



Unitary maps

The Quantum Circuit

|ψ⟩ ∈ ℋ⊗n ≅ ℂ2n
with |ψ | = 1-Qubitn

 unitaryU ∈ ℒ(ℋ⊗n)

15 July 2023



Realizing Qubits

Any two-level quantum-mechanical system can be used as a qubit

Superconducting (Google, IBM, Intel, China) 
Neutral atoms (Atom computing, Coldquanta, QuEra) 

Trapped ions (Ionq, Alpine QT)

Optical (China, Xanadu) 
Quantum dots (QuTech) 

Topological (Microsoft, QuTech)

Issues: Gate fidelity ~ 90-99% 
Faults from physical implementation (decoherence)



Realizing Qubits

Any two-level quantum-mechanical system can be used as a qubit

Issues: Gate fidelity ~ 90-99% 
Faults from physical implementation (decoherence)

Noisy Intermediate-Scale Quantum (NISQ) Computers

‣ Variational Quantum Algorithms, approximate the lowest energy level of a Hamiltonian. 
‣ Quantum Approximate Optimization Algorithm, for CO problems. 
‣ Quantum Neural Networks, as quantum analogues of classical neural nets. 
‣ The Variational Quantum Linear Solver, for solving linear systems of equations. 
‣ Quantum simulator, for simulating low-temperature, many-body physics
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The Agenda

I. Pulse-based Quantum Circuits and VQOC 

II. Learning Quantum Channels 

III. Understanding Noisy Qubits
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Variational Quantum Optimal Control

Given a molecular Hamiltonian , find  :Hmol |ψg⟩

|ψg⟩ = argmin ⟨ψ |Hmol |ψ⟩ s.t. |ψ | = 1



Given a molecular Hamiltonian , find  :Hmol |ψg⟩

|ψg⟩ = argmin ⟨ψ |Hmol |ψ⟩ s.t. |ψ | = 1

Analog quantum circuit

Pulses

Digital quantum circuit

Gates

Variational Quantum Optimal Control



Digital quantum circuit

Gates

iℏ∂t |ψt⟩ = Ht |ψt⟩Schrödinger equation:

Given a molecular Hamiltonian , find  :Hmol |ψg⟩

|ψg⟩ = argmin ⟨ψT |Hmol |ψT⟩ s.t.

Control Hamiltonian

Variational Quantum Optimal Control

Analog quantum circuit

Pulses



Schrödinger equation: iℏ∂tUt = HtUt

|ψt⟩ = Ut |ψ0⟩
Ut =̂ Unitary propagator ∈ ℒ(ℋ)

Idea:  Discretizations of  gives rise to quantum gatesUt

Given a molecular Hamiltonian , find  :Hmol |ψg⟩

|ψg⟩ = argmin ⟨ψT |Hmol |ψT⟩ s.t.

Find a unitary propagator that brings  to |ψ0⟩ |ψg⟩
Challenge:

fastest , and with least effort , on a quantum computer

Variational Quantum Optimal Control

Digital quantum circuit

Gates

Analog quantum circuit

Pulses



Schrödinger equation: iℏ∂tUt = H[zt]Ut

Physically realizable Hamiltonians

Hcoup =
n

∑
k=1

Hcoup
k

Single qubit Hamiltonian

Hcoup
k = zcoup

k |0⟩k⟨1 |k + z̄coup
k |1⟩k⟨0 |k

Entanglement Hamiltonian

Hent
kl = Re[zent] |11⟩kl⟨11 |kl

Hent =
n

∑
k=1

∑
l≠k

Hent
kl

Given a molecular Hamiltonian , find  :Hmol zg

zg = argmin ⟨ψ0 |U†
T Hmol UT |ψ0⟩ + λℛ(z) s.t.   Schrödinger equation

Pulse-based Variational Quantum Eigensolver T ? 
Quantum evaluations ? 

Topology ?

Adjoint-based method

Variational Quantum Optimal Control

 Pulse-based varia.onal quantum op.mal control for hybrid quantum compu.ng. Quantum, 2023
Recapture probability for an.-trapped Rydberg states in op.cal tweezers. APS Physical Review A, 2023



LiH  Lithium hydride=̂

Simulation Results

 4 qubits, minimally entangled∼
Li H

H H H HH4  Hydrogen-4=̂  6 qubits, highly entangled∼



The Agenda

I. Pulse-based Quantum Circuits and VQOC 

II. Learning Open Quantum Systems 

III. Understanding Noisy Qubits



Open Quantum Processes 

S. Wald. Thermalisation and Relaxation of Quantum Systems. 2017

Z. Hu et al. A general quantum algorithm for open quantum dynamics
demonstrated with the Fenna-Matthews-Olson complex. Quantum 2022.

De Jong et al. Quantum Simulation of open quantum
systems in heavy-ion collisions. Phys. Rev. D 2020.

Schrödinger equation:

iℏ∂tUt = HtUt

Quantum channel

iℏ∂tρt = [H, ρt] + Lρt

Lindblad equation:

Lρ = ∑ γn[AnρA†
n −

1
2 {A†

n An, ρ}]
ρt = Φt(ρ0) t

1

1

0Pr
ob

ab
ili
ty

iℏ∂tρt = [H, ρt] := Hρt − ρtH

ρt = Utρ0U†
t

Quantum Liouville equation:

t

1 1

0Pr
ob

ab
ili
ty

Learn and construct quantum circuit to simulate quantum channelsChallenge:



Dilation of Quantum Channels

Stinespring Dilation Theorem

Φ(ρ) = Tr𝒦[U ρ ⊗ |0⟩⟨0 |U†], ρ ∈ S(ℋ)

For any quantum channel , there exists a Hilbert space  
and a unitary map  such that

Φ : S(ℋ) → S(ℋ) 𝒦
U : ℋ ⊗ 𝒦 → ℋ ⊗ 𝒦

In particular,  can be chosen such that 𝒦 dim 𝒦 ≤ (dim ℋ)2 ≤ n + 1 qubits

iℏ∂tρt = [H, ρt] + Lρt

General idea:

ρnτ = Φτ(ρ(n−1)τ) = Φτ ∘ Φt ∘ ⋯ ∘ Φτ(ρ0)

‣ Given a time step , learn  by learning the unitary map  

‣ Predict  at time , , by repeated evaluation of  , i.e.

τ Φτ U

ρ nτ n ≥ 1 Φτ

Semigroup property

Issue: Requires repeated initialization of ancilla state on 𝒦 Tweezer magic!



Tweezer Magic iℏ∂tρt = [H, ρt] + Lρt

Movable qubits Stable reservoir Good scalability



Learning Phase iℏ∂tρt = [H, ρt] + Lρt

H = ω [0 1
1 0] = ω σx

Decaying Rabi oscillations

τ

Loss(θ) = ∑ Tr[Oℓ (ρℓ(θ) − ρ̄ℓ)]

L = γA, A = [0 1
0 0]
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Prediction Phase iℏ∂tρt = [H, ρt] + Lρt

H = ω [0 1
1 0] = ω σx

L = γA, A = [0 1
0 0]

Decaying Rabi oscillations

τ

Loss(θ) = ∑ Tr[Oℓ (ρℓ(θ) − ρ̄ℓ)]



2-Qubit Lindbladians iℏ∂tρt = [H, ρt] + Lρt

Decaying Rabi oscillations

τ

Transverse-field Ising model

τ

H = J σ1
z σ2

z + ω[σ1
x + σ2

x]H = HvdW + ω[σ1
x + σ2

x]

Gate VS Pulse?

L = γ1 A1 + γ2 A2

Learning quantum channels on a quantum computer. ArXiv
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A Model for Noisy Qubits

Stochastic Schrödinger equation

iℏ dψt = H[ξt]ψt dt
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A Model for Noisy Qubits

Stochastic Schrödinger equation

iℏ dψt = Hψt dt − iγ2S†Sψt dt + γSψt dXt

dXt = 2 dBt

dXt = − kXt dt + 2dBt

White noise:

Ornstein-Uhlenbeck:
Conjecture?

Connections with the Lindblad equation: Setting ,Pt = |ψt⟩⟨ψt |

iℏ dPt = ([H, Pt] + LPt)dt + γ [S, Pt] dXt

iℏ d 𝔼[Pt] = ([H, 𝔼[Pt]] + L𝔼[Pt])dtWhite noise:



Fidelity Estimation
iℏ dψt = Hψt dt − iγ2S†Sψt dt + γSψt dXt

iℏ dϕt = Hϕt dt

Goal: Study statistical properties of the fidelity Ft := |⟨ϕt |ψt⟩ |2

Laser intensity noise: , Sσ = S†
σ S†

σSσ = I Pauli operators

Laser detuning noise: Sp = S†
p = S†

pSp Projection operators



Simulation Results
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Laser intensity noise: , Sσ = S†
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Fσ
t = 1
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Fidelity Estimation
iℏ dψt = Hψt dt − iγ2S†Sψt dt + γSψt dXt

iℏ dϕt = Hϕt dt

Goal: Study statistical properties of the fidelity Ft := |⟨ϕt |ψt⟩ |2

Laser intensity noise: , Sσ = S†
σ S†

σSσ = I Pauli operators

Laser detuning noise: Sp = S†
p = S†

pSp Projection operators

Results: Derived exact solutions for Itô processes when [H, S] = 0

Extensions: 2-qubit, multiple noise frequencies ↝ Power spectral density

Fσ
t = 1

2 (1 + FSσ)+ 1
2 (1 − FSσ) cos(2(Xt − X0)), FSσ = |⟨ϕ0 |Sσ |ϕ0⟩ |

Fp
t = 1 − 2(1 − FSp) FSp (1 − cos(Xt − X0)), FSp = |⟨ϕ0 |Sp |ϕ0⟩ |

Derived hierarchical approximations when [H, S] ≠ 0

Qubit fidelity under stochas.c Schrödinger equa.ons driven by colored noise. In prepara.on



Towards controlled gates
iℏ dψt = Hψt dt − iγ2S†Sψt dt + γSψt dXt

iℏ dϕt = Hϕt dt

Example:   Feedback process

Yt = { Xt for t < τ
Xt − Xt−τ for t ≥ τ
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‣ Quantum optimal transport 
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Summary

Pulse-based Quantum Circuits and VQOC

Learning Open Quantum Systems

Understanding Noisy Qubits
Towards controlled qubits

What’s next?
‣ VQOC with noisy qubits 
‣ Quantum optimal transport 
‣ Integrating HPC

Computers are physical objects, and 
computations are physical processes 

David Deutsch

Thank you!


