

Quantum Computing with Rydberg-atom quantum processors

ICERM @ Brown University

Interacting Particle Systems: Analysis, Control, Learning and Computation May 2024

Oliver Tse

Based on joint work with Robert de Keijzer, Servaas Kokkelmans, Luke Visser

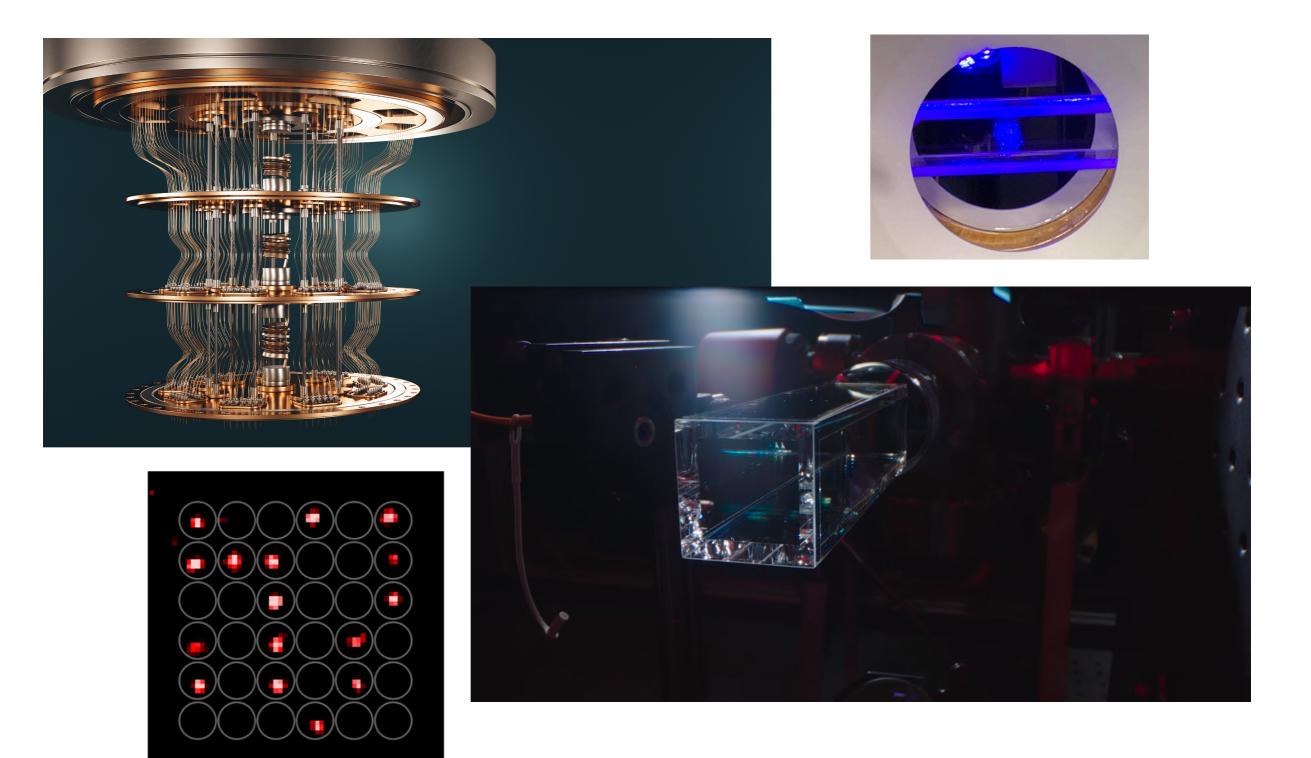
EINDHOVEN

HENDRIK CASIMIR

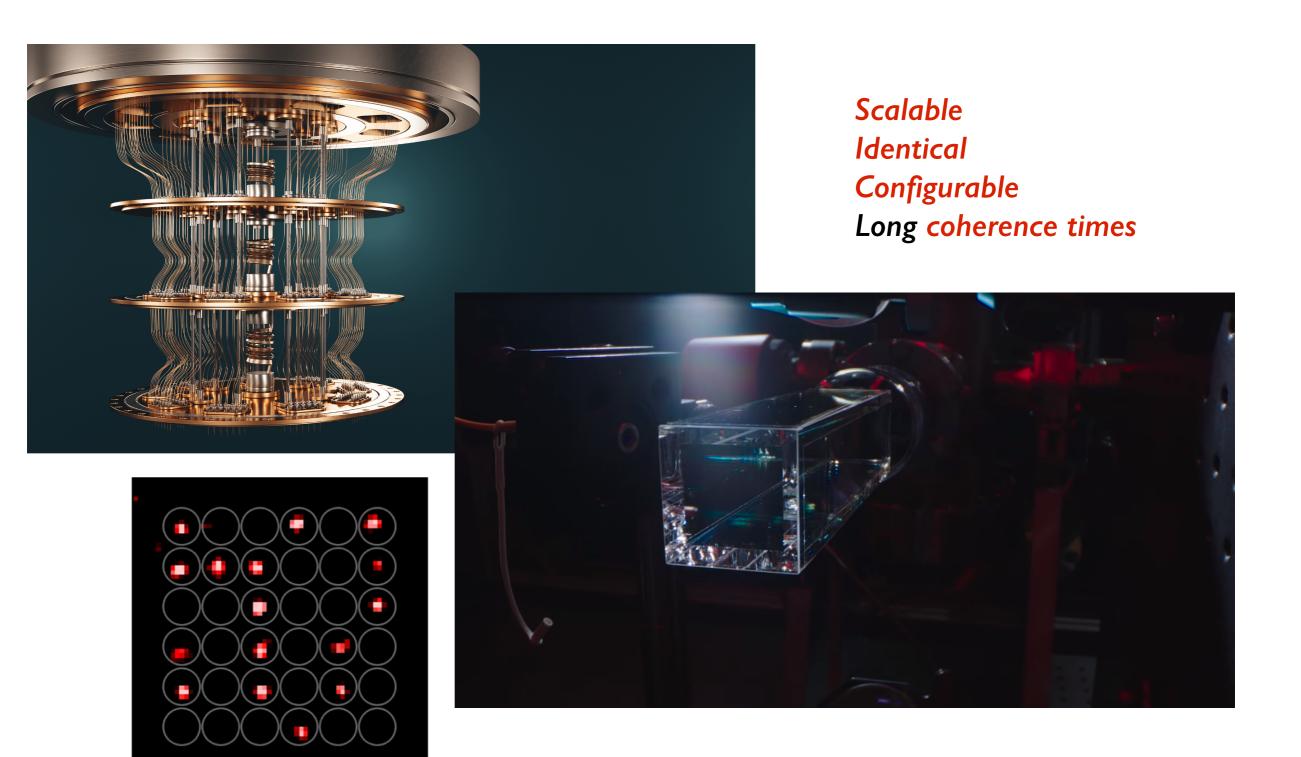
Netherlands Organisation for Scientific Research **OT/e** CENTER FOR QUANTUM MATERIALS AND TECHNOLOGY EINDHOVEN

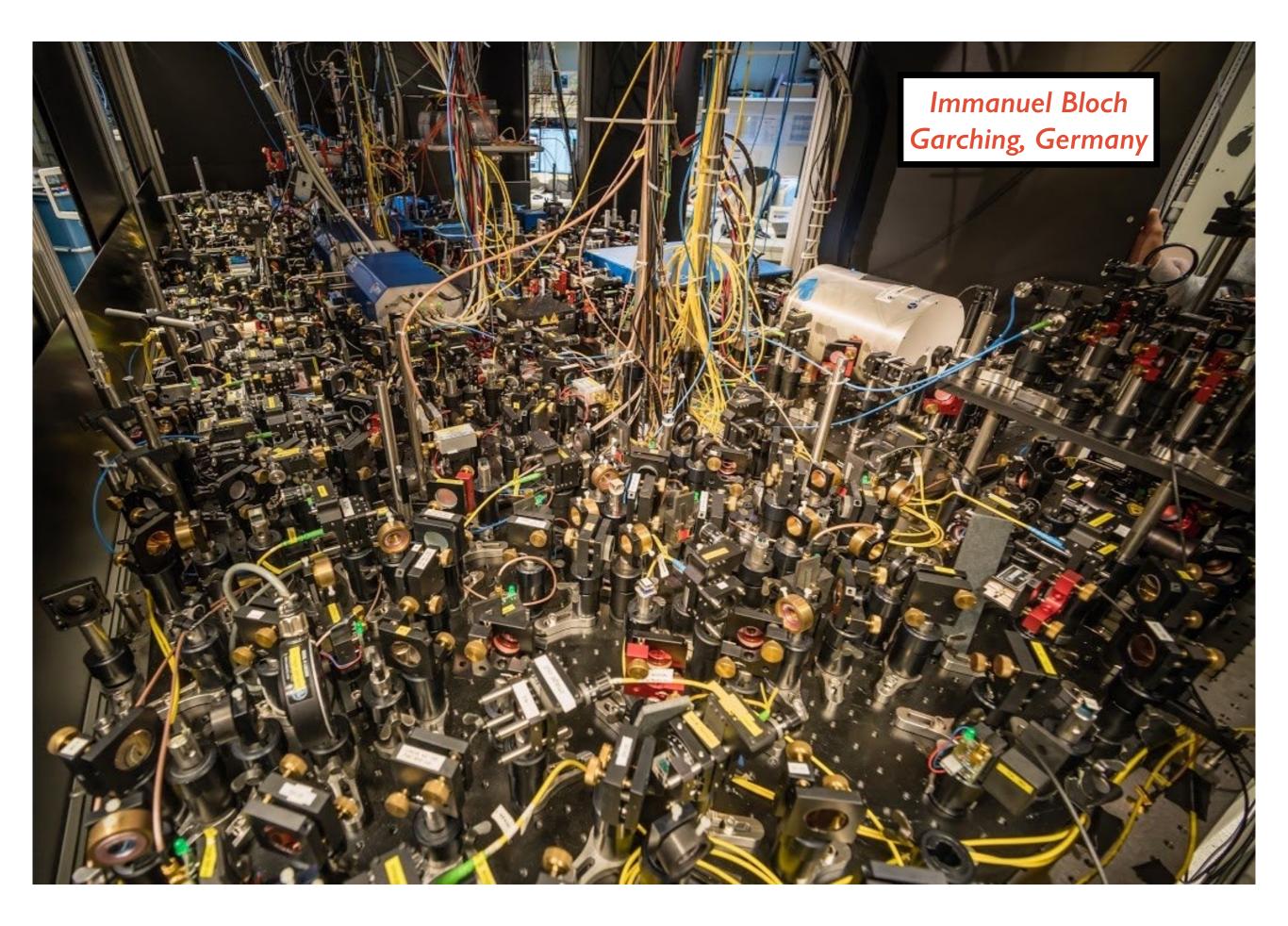
U/e

The Rydberg-Atom Quantum Computer



The Rydberg-Atom Quantum Computer





The Task

In the beginning...

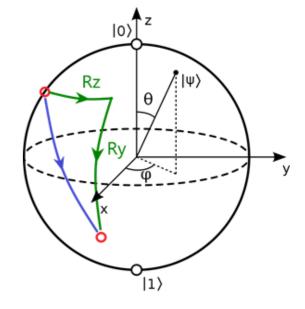
Optimization		Experiments		
Classical (HPC) Pulse-based		Measurements Implementation		
Gate-based Uncertainties Quantum Inspire platform				
pia Simulation	ττο	Pulse Generation		
Atomic calculations Hamiltonian generation Open system evolutions		FPGA Noise characterization Modularity		

I-Qubit
$$|\psi\rangle \in \text{Span}_{\mathbb{C}}(\{|0\rangle, |1\rangle\}) =: \mathscr{H} \cong \mathbb{C}^2 \text{ with } |\psi| = 1$$

Unitary maps $U \in \mathscr{L}(\mathscr{H}) \cong \mathbb{C}^{2 \times 2}$ unitary

Quantum gates

$$U^{\dagger}:=\overline{U}^{\top}=U$$



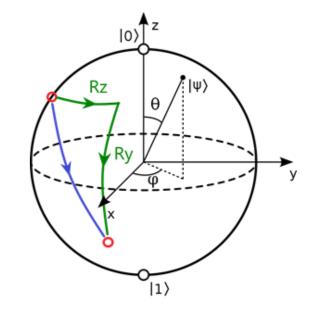
Bloch sphere

$$I-Qubit \quad |\psi\rangle \in Span_{\mathbb{C}}(\{|0\rangle, |1\rangle\}) =: \mathscr{H} \cong \mathbb{C}^2 \quad \text{with} \quad |\psi| = 1$$

Unitary maps $U \in \mathscr{L}(\mathscr{H}) \cong \mathbb{C}^{2 \times 2}$ unitary Quantum gates $U = e^{iH}$ *H* Hermitian

ptrices
$$\sigma_{\mathbf{X}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{\mathbf{Y}} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{\mathbf{Z}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 \mathbf{V}



Bloch sphere

Pauli matrices are *quantum gates*

$$\begin{aligned} \sigma_{\mathbf{X}} \left| \, 0 \right\rangle &= \left| \, 1 \right\rangle \\ \sigma_{\mathbf{X}} \left| \, 1 \right\rangle &= \left| \, 0 \right\rangle \end{aligned} \qquad \text{NOT gate}$$

$$R_{\mathbf{j}}(\theta) = \exp\left(-i\frac{\theta}{2}\sigma_{\mathbf{j}}\right), \quad \mathbf{j} \in \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$$

$$U_{H} = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \langle 0| + \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) \langle 1|$$

Superposition

2-Qubit $|\psi\rangle \in \mathcal{H}^{\otimes 2} \cong \mathbb{C}^{2^2}$ with $|\psi| = 1$

Unitary maps $U \in \mathscr{L}(\mathscr{H}^{\otimes 2})$ unitary $U = e^{iH}$ *H* Hermitian

Quantum gates

Rz Rv 11

y

0)

Bloch sphere

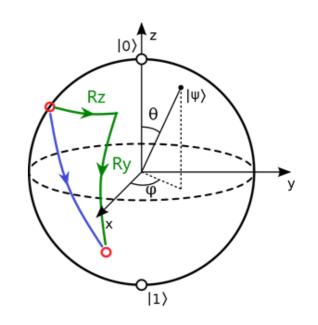
Product states $|a\rangle \otimes |b\rangle$

$$|\psi\rangle = \frac{1}{2} (|00\rangle - |01\rangle + |10\rangle - |11\rangle)$$
$$= \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

 $|\psi\rangle \in \mathcal{H}^{\otimes 2} \cong \mathbb{C}^{2^2}$ with $|\psi| = 1$ 2-Qubit

Unitary maps $U \in \mathscr{L}(\mathscr{H}^{\otimes 2})$ unitary $U = e^{iH}$ *H* Hermitian

Quantum gates



Bloch sphere

Entangled

states

Product states

$$\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

 $|a\rangle \otimes |b\rangle$

Bell state **50%** probability for $|00\rangle$ and $|11\rangle$ **0% for** $|01\rangle$ and $|10\rangle$

Spooky action at a distance

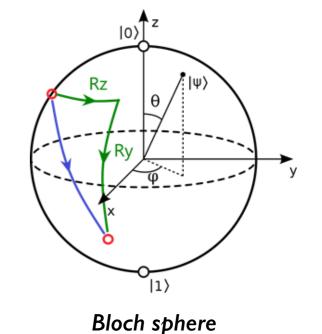
Albert Einstein (1879-1955, German-born theoretical physicist)

 $|\psi\rangle \in \mathscr{H}^{\otimes 2} \cong \mathbb{C}^{2^2}$ with $|\psi| = 1$ 2-Qubit

Product states

Unitary maps $U \in \mathscr{L}(\mathscr{H}^{\otimes 2})$ unitary $U = e^{iH}$ *H* Hermitian

Quantum gates



$$|a\rangle \otimes |b\rangle$$

Entangled states $|\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$

CNOT gate

 $U_{CNOT} = |00\rangle\langle00| + |01\rangle\langle01| + |11\rangle\langle10| + |10\rangle\langle11|$

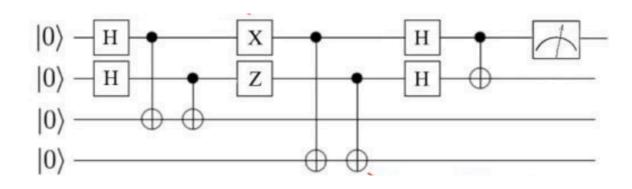
$$|0\rangle|0\rangle \xrightarrow{U_H \otimes I} \frac{|0\rangle + |1\rangle}{\sqrt{2}} \otimes |0\rangle \xrightarrow{U_{CNOT}} \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

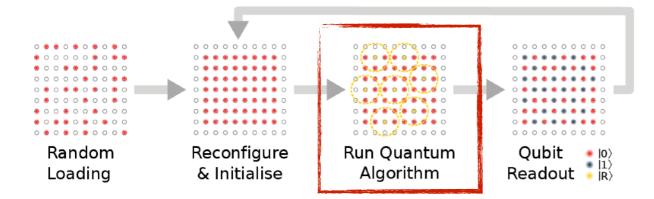
The Quantum Circuit

In an important benchmark for quantum computing, a record-breaking 51 qubits have been entangled together.

n-Qubit
$$|\psi\rangle \in \mathscr{H}^{\otimes n} \cong \mathbb{C}^{2^n}$$
 with $|\psi| = 1$

Unitary maps $U \in \mathscr{L}(\mathscr{H}^{\otimes n})$ unitary





Operator	Gate(s)		Matrix
Pauli-X (X)	- X -		$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Pauli-Y (Y)	- Y		$egin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}$
Pauli-Z (Z)	$-\mathbf{Z}$		$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
Hadamard (H)	$-\mathbf{H}$		$rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}$
Phase (S, P)	- S -		$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$
$\pi/8~(\mathrm{T})$	T		$egin{bmatrix} 1 & 0 \ 0 & e^{i\pi/4} \end{bmatrix}$
Controlled Not (CNOT, CX)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$
Controlled Z (CZ)			$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$
SWAP		-*- -*-	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
Toffoli (CCNOT, CCX, TOFF)			$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$

Realizing Qubits

Any two-level quantum-mechanical system can be used as a qubit

Superconducting (Google, IBM, Intel, China) Neutral atoms (Atom computing, Coldquanta, QuEra) Trapped ions (Ionq, Alpine QT) Optical (China, Xanadu) Quantum dots (QuTech) Topological (Microsoft, QuTech)

Issues: Gate fidelity ~ 90-99%

Faults from physical implementation (decoherence)

Realizing Qubits

Any two-level quantum-mechanical system can be used as a qubit

Superconducting (Google, IBM, Intel, China) Neutral atoms (Atom computing, Coldquanta, QuEra) Trapped ions (Ionq, Alpine QT) Optical (China, Xanadu) Quantum dots (QuTech) Topological (Microsoft, QuTech)

Issues: Gate fidelity ~ 90-99%

Faults from physical implementation (decoherence)

Noisy Intermediate-Scale Quantum (NISQ) Computers

- Variational Quantum Algorithms, approximate the lowest energy level of a Hamiltonian.
- Quantum Approximate Optimization Algorithm, for CO problems.
- Quantum Neural Networks, as quantum analogues of classical neural nets.
- The Variational Quantum Linear Solver, for solving linear systems of equations.
- Quantum simulator, for simulating low-temperature, many-body physics

Realizing Qubits

Any two-level quantum-mechanical system can be used as a qubit

Superconducting (Google, IBM, Intel, China) Neutral atoms (Atom computing, Coldquanta, QuEra) Trapped ions (Ionq, Alpine QT) Optical (China, Xanadu) Quantum dots (QuTech) Topological (Microsoft, QuTech)

Issues: Gate fidelity ~ 90-99%

Faults from physical implementation (decoherence)

Noisy Intermediate-Scale Quantum (NISQ) Computers

- Variational Quantum Algorithms, approximate the lowest energy level of a Hamiltonian.
- Quantum Approximate Optimization Algorithm, for CO problems.
- Quantum Neural Networks, as quantum analogues of classical neural nets.
- The Variational Quantum Linear Solver, for solving linear systems of equations.
- Quantum simulator, for simulating low-temperature, many-body physics

The Agenda

- I. Pulse-based Quantum Circuits and VQOC
- II. Learning Quantum Channels
- **III. Understanding Noisy Qubits**

The Agenda

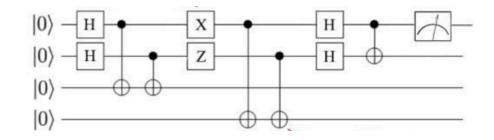
I. Pulse-based Quantum Circuits and VQOC

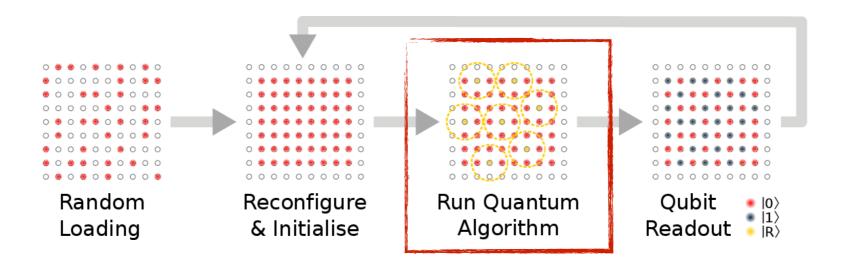
II. Learning Quantum Channels

III. Understanding Noisy Qubits

Given a molecular Hamiltonian H_{mol} , find $|\psi_g\rangle$:

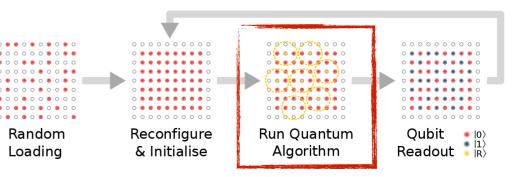
 $|\psi_g\rangle = \operatorname{argmin} \langle \psi | H_{mol} | \psi \rangle$ s.t. $|\psi| = 1$

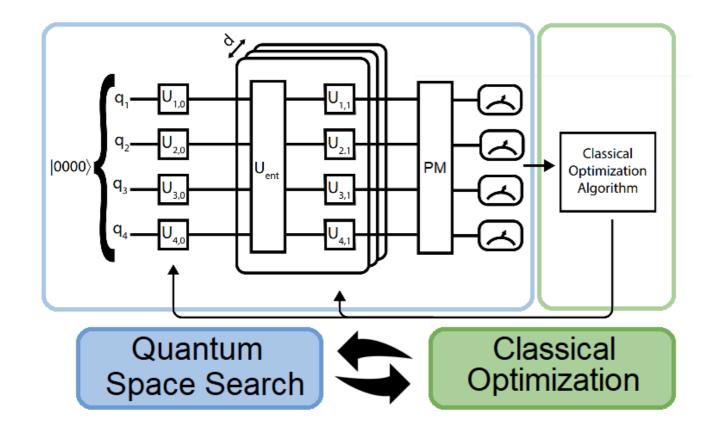


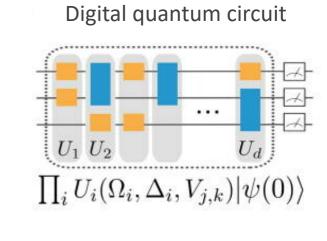


Given a molecular Hamiltonian H_{mol} , find $|\psi_g\rangle$:

$$|\psi_g\rangle = argmin \langle \psi | H_{mol} | \psi \rangle$$
 s.t. $|\psi| = 1$

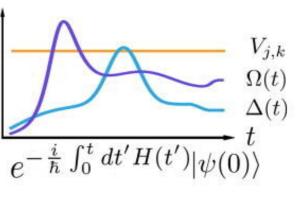






Analog quantum circuit

Gates

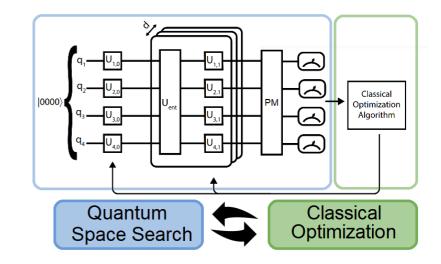


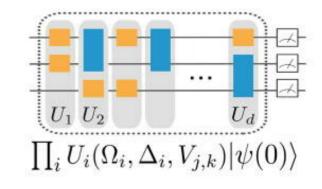
Given a molecular Hamiltonian H_{mol} , find $|\psi_g\rangle$:

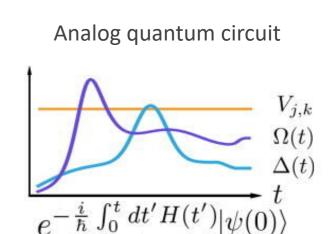
$$|\psi_g\rangle = \operatorname{argmin} \langle \psi_T | H_{mol} | \psi_T \rangle$$
 s.t.

Schrödinger equation: $i\hbar\partial_t |\psi_t\rangle = H_t |\psi_t\rangle$

Control Hamiltonian







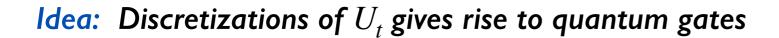
Pulses

Given a molecular Hamiltonian H_{mol} , find $|\psi_g\rangle$:

$$|\psi_g
angle = argmin \langle \psi_T | H_{mol} | \psi_T
angle$$
 s.t

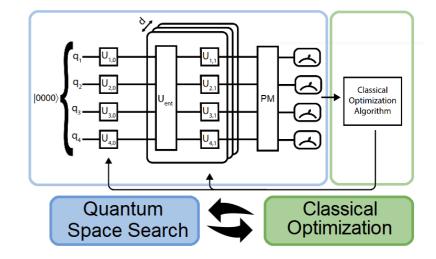
Schrödinger equation: $i\hbar\partial_t U_t = H_t U_t$ $U_t \stackrel{\circ}{=} Unitary \ propagator \in \mathscr{L}(\mathscr{H})$

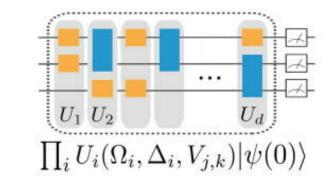
 $|\psi_t\rangle = U_t |\psi_0\rangle$

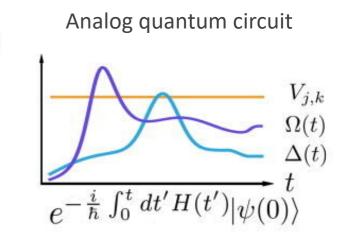


Challenge:

Find a unitary propagator that brings $|\psi_0\rangle$ to $|\psi_g\rangle$ fastest, and with least effort, on a quantum computer





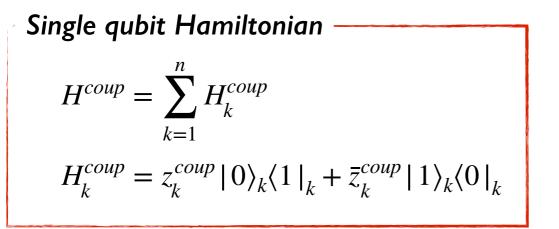


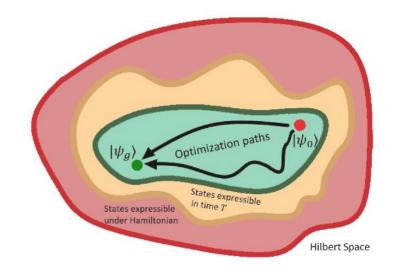
Pulses

Gates

Schrödinger equation: $i\hbar\partial_t U_t = H[z_t]U_t$

Physically realizable Hamiltonians





Entanglement Hamiltonian

$$H^{ent} = \sum_{k=1}^{n} \sum_{l \neq k} H^{ent}_{kl}$$

$$H^{ent}_{kl} = \mathbf{Re}[z^{ent}] | 11 \rangle_{kl} \langle 11 |_{kl}$$

Pulse-based Variational Quantum Eigensolver

Quantum evaluations ? Topology ?

Τ?

Given a molecular Hamiltonian H_{mol} , find z_g :

$$z_g = argmin \langle \psi_0 | U_T^{\dagger} H_{mol} U_T | \psi_0 \rangle + \lambda \Re(z)$$
 s.t. Schrödinger equation

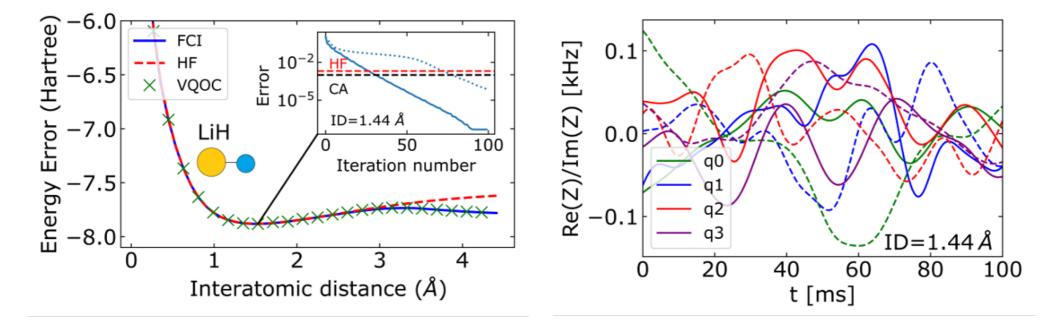
Adjoint-based method

Pulse-based variational quantum optimal control for hybrid quantum computing. Quantum, 2023 Recapture probability for anti-trapped Rydberg states in optical tweezers. APS Physical Review A, 2023

Simulation Results

LiH $\hat{=}$ Lithium hydride

 \sim 4 qubits, minimally entangled

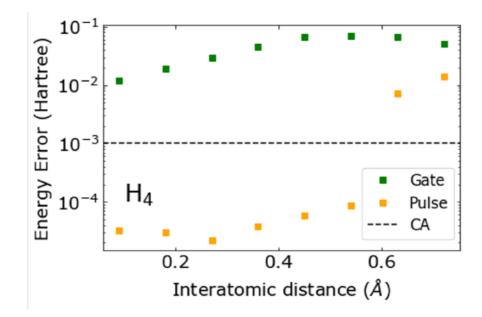


 $H_4 \stackrel{\circ}{=} Hydrogen-4$

 \sim 6 qubits, highly entangled

Li

Η



The Agenda

I. Pulse-based Quantum Circuits and VQOC

II. Learning Open Quantum Systems

III. Understanding Noisy Qubits

Open Quantum Processes

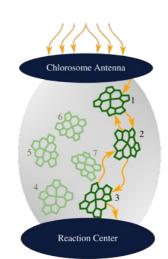
Schrödinger equation:

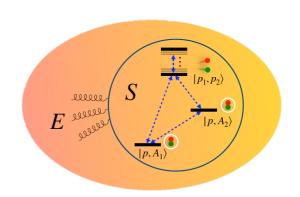
 $i\hbar\partial_t U_t = H_t U_t$

Quantum Liouville equation:

$$i\hbar\partial_t \rho_t = [H, \rho_t] := H\rho_t - \rho_t H$$

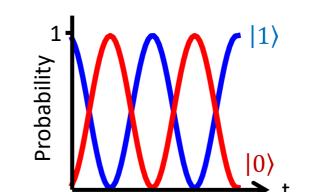
 $\rho_t = U_t \rho_0 U_t^{\dagger}$

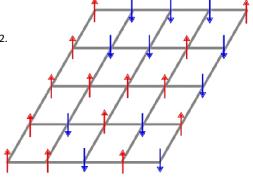




De Jong et al. *Quantum Simulation of open quantum systems in heavy-ion collisions*. Phys. Rev. D 2020.

Z. Hu et al. A general quantum algorithm for open quantum dynamics demonstrated with the Fenna-Matthews-Olson complex. Quantum 2022.





S. Wald. Thermalisation and Relaxation of Quantum Systems. 2017

Lindblad equation:

$$\begin{split} i\hbar\partial_{t}\rho_{t} &= [H,\rho_{t}] + L\rho_{t} \\ L\rho &= \sum \gamma_{n} \Big[A_{n}\rho A_{n}^{\dagger} - \frac{1}{2} \big\{ A_{n}^{\dagger}A_{n},\rho \big\} \Big] \\ \rho_{t} &= \Phi_{t}(\rho_{0}) \\ \end{split}$$

Lopability Probability (0) t

Challenge: Learn and construct quantum circuit to simulate quantum channels

Dilation of Quantum Channels

$$i\hbar\partial_t\rho_t = [H,\rho_t] + L\rho_t$$

Stinespring Dilation Theorem

For any quantum channel $\Phi: S(\mathcal{H}) \to S(\mathcal{H})$, there exists a Hilbert space \mathcal{K} and a unitary map $U: \mathcal{H} \otimes \mathcal{K} \to \mathcal{H} \otimes \mathcal{K}$ such that

$$\Phi(\rho) = \operatorname{Tr}_{\mathscr{K}} \left[U\rho \otimes |0\rangle \langle 0| U^{\dagger} \right], \qquad \rho \in S(\mathscr{H})$$

In particular, \mathscr{K} can be chosen such that $\dim \mathscr{K} \leq (\dim \mathscr{K})^2 \leq n+1$ qubits

General idea:

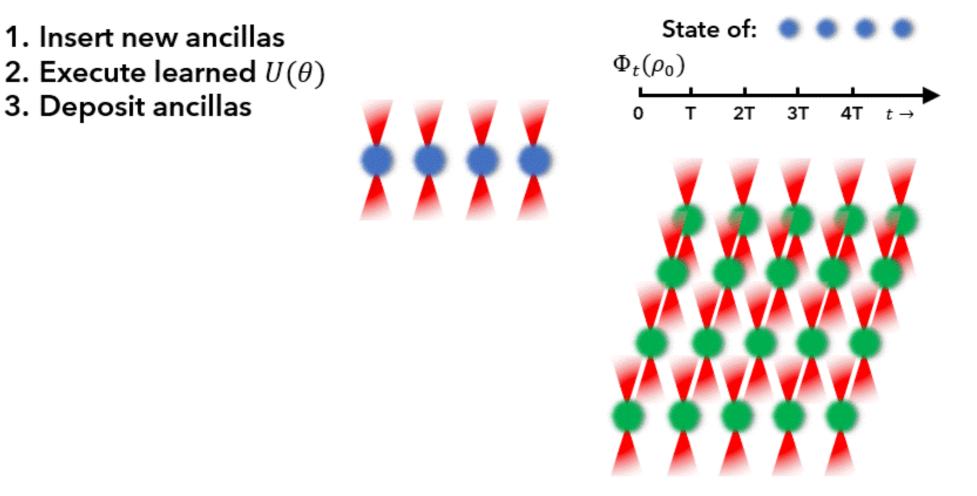
- Given a time step τ , learn Φ_{τ} by learning the unitary map U
- Predict ρ at time $n\tau$, $n \ge 1$, by repeated evaluation of Φ_{τ} , i.e.

$$\rho_{n\tau} = \Phi_{\tau}(\rho_{(n-1)\tau}) = \Phi_{\tau} \circ \Phi_{t} \circ \cdots \circ \Phi_{\tau}(\rho_{0})$$
 Semigroup property

Issue: Requires repeated initialization of ancilla state on \mathcal{K} **Tweezer magic!**

Tweezer Magic

 $i\hbar\partial_t\rho_t = [H,\rho_t] + L\rho_t$

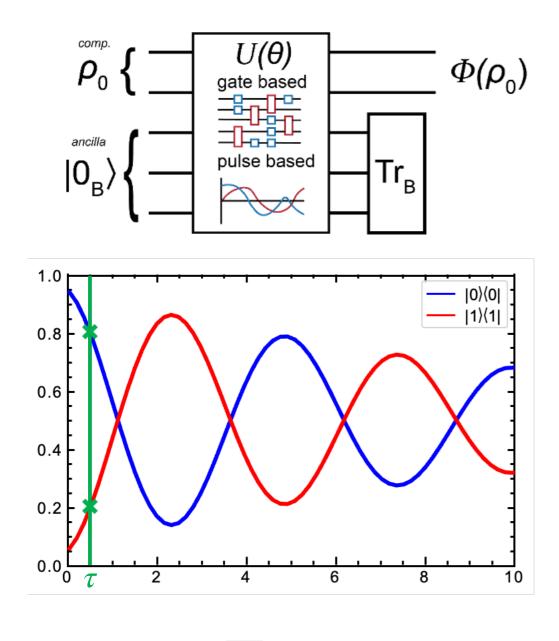


Movable qubits

Stable reservoir

Good scalability

Learning Phase

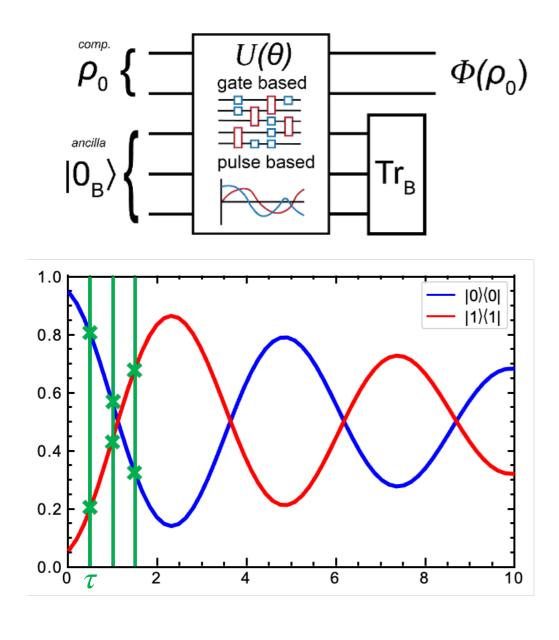


 $\mathsf{Loss}(\theta) = \sum \mathsf{Tr} \big[O_{\ell} \left(\rho_{\ell}(\theta) - \bar{\rho}_{\ell} \right) \big]$

$$i\hbar\partial_t\rho_t = [H,\rho_t] + L\rho_t$$

$$H = \omega \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \omega \sigma_{\mathbf{X}}$$
$$L = \gamma A, \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Learning Phase

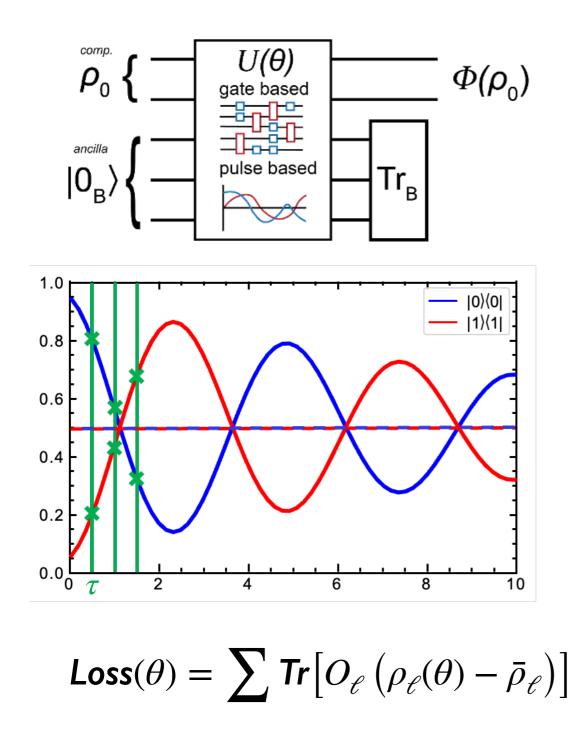


 $\mathsf{Loss}(\theta) = \sum \mathsf{Tr} \big[O_{\ell} \left(\rho_{\ell}(\theta) - \bar{\rho}_{\ell} \right) \big]$

$$i\hbar\partial_t\rho_t = [H,\rho_t] + L\rho_t$$

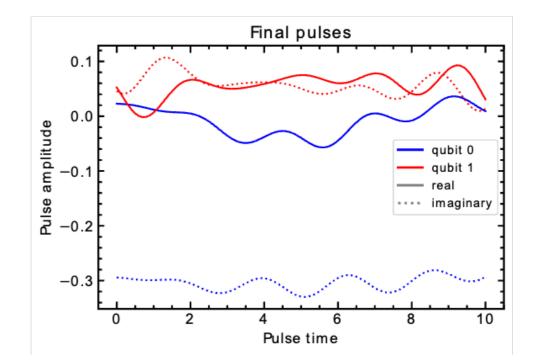
$$H = \omega \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \omega \sigma_{\mathbf{X}}$$
$$L = \gamma A, \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Learning Phase

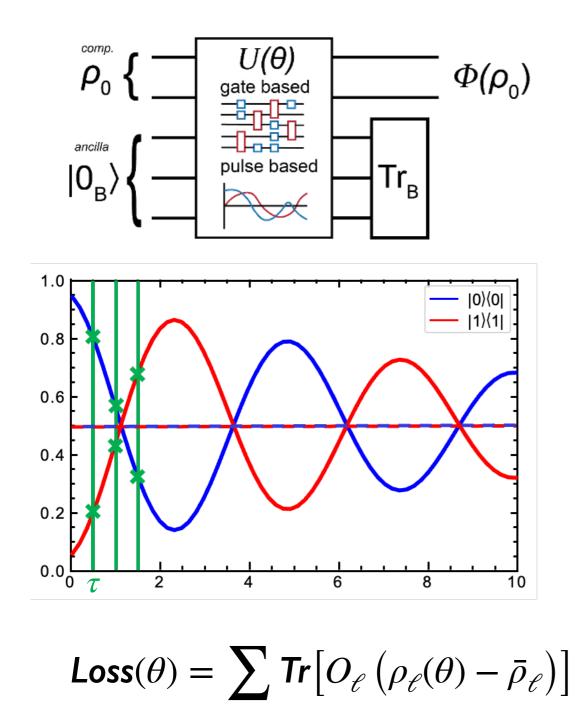


$$i\hbar\partial_t\rho_t = [H,\rho_t] + L\rho_t$$

$$H = \omega \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \omega \sigma_{\mathbf{X}}$$
$$L = \gamma A, \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

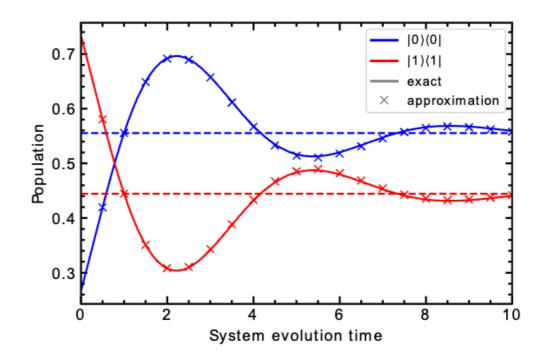


Prediction Phase



$$i\hbar\partial_t\rho_t = [H,\rho_t] + L\rho_t$$

$$H = \omega \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \omega \sigma_{\mathbf{X}}$$
$$L = \gamma A, \quad A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

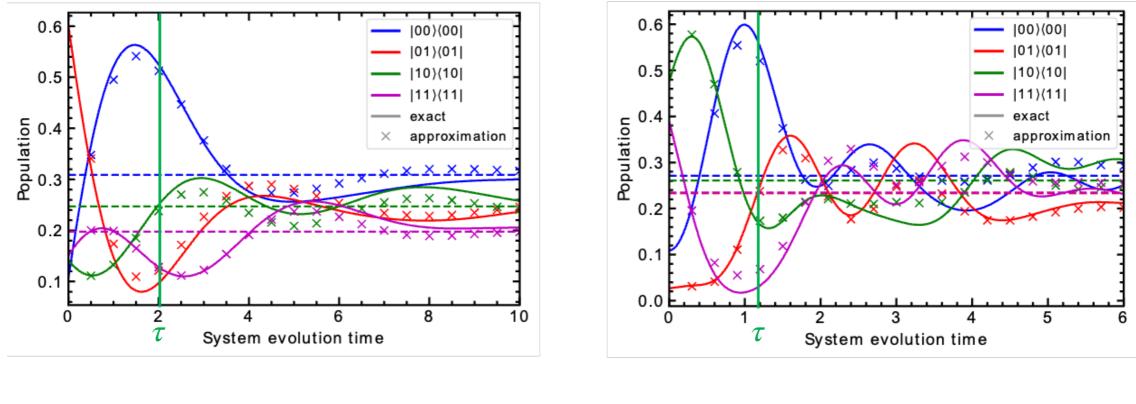


2-Qubit Lindbladians

 $i\hbar\partial_t\rho_t = [H,\rho_t] + L\rho_t$

Decaying Rabi oscillations

Transverse-field Ising model



$$H = H_{vdW} + \omega \left[\sigma_{\mathbf{X}}^1 + \sigma_{\mathbf{X}}^2 \right]$$

$$H = J \,\sigma_{\mathbf{Z}}^1 \,\sigma_{\mathbf{Z}}^2 + \omega \left[\sigma_{\mathbf{X}}^1 + \sigma_{\mathbf{X}}^2\right]$$

$$L = \gamma_1 A^1 + \gamma_2 A^2$$

Gate VS Pulse?

Learning quantum channels on a quantum computer. ArXiv

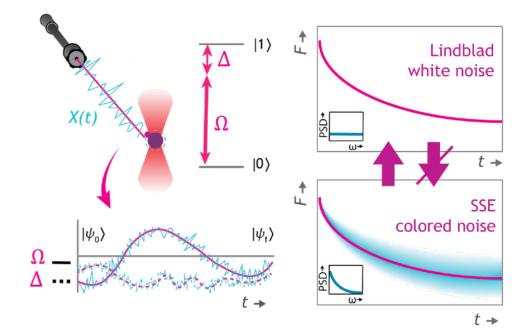
The Agenda

- I. Pulse-based Quantum Circuits and VQOC
- II. Learning Open Quantum Systems
- **III. Understanding Noisy Qubits**

A Model for Noisy Qubits

Stochastic Schrödinger equation

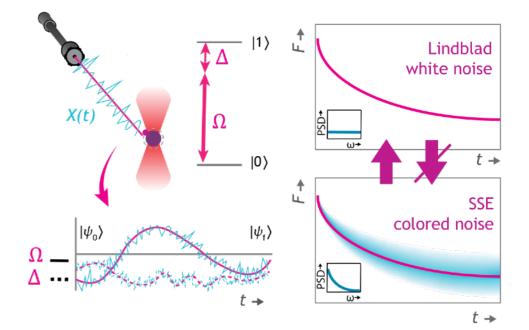
 $i\hbar \, \mathbf{d} \psi_t = H[\boldsymbol{\xi}_t] \psi_t \, \mathbf{d} t$



A Model for Noisy Qubits

Stochastic Schrödinger equation

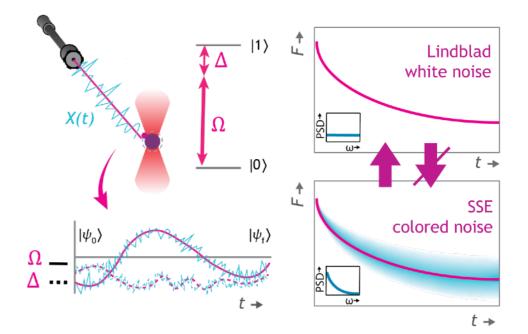
$$i\hbar \, \mathbf{d}\psi_t = H\psi_t \, \mathbf{d}t - \, i\gamma^2 S^\dagger S\psi_t \, \mathbf{d}t + \gamma S\psi_t \, \mathbf{d}X_t$$



A Model for Noisy Qubits

Stochastic Schrödinger equation

$$i\hbar \,\mathbf{d}\psi_t = H\psi_t \,\mathbf{d}t - i\gamma^2 S^{\dagger} S\psi_t \,\mathbf{d}t + \gamma S\psi_t \,\mathbf{d}X_t$$



White noise:

$$\mathbf{d}X_t = \sqrt{2} \, \mathbf{d}B_t$$

Ornstein-Uhlenbeck:

$$\mathbf{d}X_t = -kX_t \,\mathbf{d}t + \sqrt{2} \,\mathbf{d}B_t$$

Conjecture?

Connections with the Lindblad equation: Setting $P_t = |\psi_t\rangle\langle\psi_t|$,

$$i\hbar \, \mathbf{d}P_t = ([H, P_t] + LP_t) \mathbf{d}t + \gamma [S, P_t] \, \mathbf{d}X_t$$

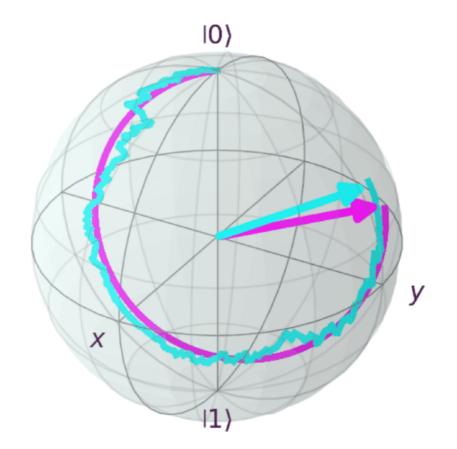
White noise: $i\hbar \mathbf{d} \mathbb{E}[P_t] = ([H, \mathbb{E}[P_t]] + L\mathbb{E}[P_t])\mathbf{d}t$

Fidelity Estimation

$$i\hbar \, \mathbf{d}\phi_t = H\phi_t \, \mathbf{d}t$$
$$i\hbar \, \mathbf{d}\psi_t = H\psi_t \, \mathbf{d}t - i\gamma^2 S^{\dagger} S\psi_t \, \mathbf{d}t + \gamma S\psi_t \, \mathbf{d}X_t$$

Goal: Study statistical properties of the fidelity $F_t := |\langle \phi_t | \psi_t \rangle|^2$

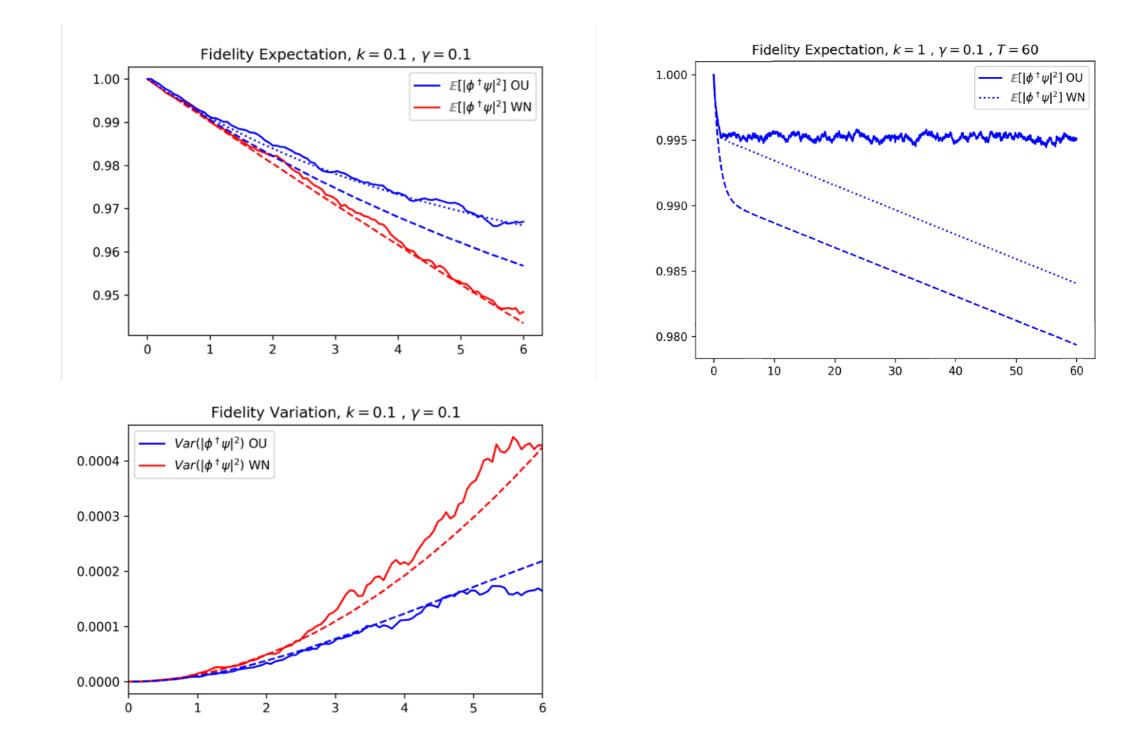
Laser intensity noise: $S_{\sigma} = S_{\sigma}^{\dagger}$, $S_{\sigma}^{\dagger}S_{\sigma} = I$ Pauli operatorsLaser detuning noise: $S_p = S_p^{\dagger} = S_p^{\dagger}S_p$ Projection operators



Simulation Results

 $i\hbar \, \mathbf{d}\phi_t = H\phi_t \, \mathbf{d}t$ $i\hbar \, \mathbf{d}\psi_t = H\psi_t \, \mathbf{d}t - i\gamma^2 S^{\dagger} S\psi_t \, \mathbf{d}t + \gamma S\psi_t \, \mathbf{d}X_t$

Laser intensity noise: $S_{\sigma} = S_{\sigma}^{\dagger}$, $S_{\sigma}^{\dagger}S_{\sigma} = I$

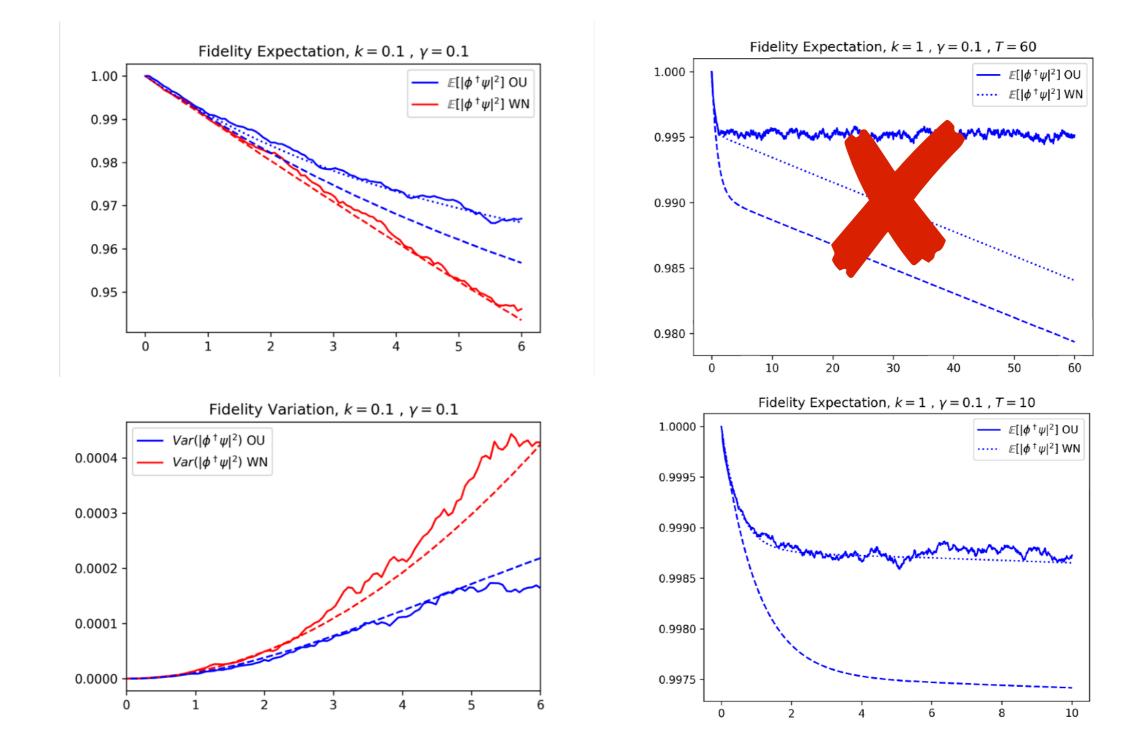


Simulation Results

 $i\hbar \, \mathbf{d}\phi_t = H\phi_t \, \mathbf{d}t$ $i\hbar \, \mathbf{d}\psi_t = H\psi_t \, \mathbf{d}t - i\gamma^2 S^{\dagger} S\psi_t \, \mathbf{d}t + \gamma S\psi_t \, \mathbf{d}X_t$

Laser intensity noise: $S_{\sigma} = S_{\sigma}^{\dagger}$, S_{σ}

$$S_{\sigma} = S_{\sigma}^{\dagger}, S_{\sigma}^{\dagger}S_{\sigma} = I$$



Fidelity Estimation

$$i\hbar \, \mathbf{d}\phi_t = H\phi_t \, \mathbf{d}t$$
$$i\hbar \, \mathbf{d}\psi_t = H\psi_t \, \mathbf{d}t - i\gamma^2 S^{\dagger} S\psi_t \, \mathbf{d}t + \gamma S\psi_t \, \mathbf{d}X_t$$

Goal: Study statistical properties of the fidelity $F_t := |\langle \phi_t | \psi_t \rangle|^2$

Laser intensity noise: $S_{\sigma} = S_{\sigma}^{\dagger}$, $S_{\sigma}^{\dagger}S_{\sigma} = I$ Pauli operatorsLaser detuning noise: $S_p = S_p^{\dagger} = S_p^{\dagger}S_p$ Projection operators

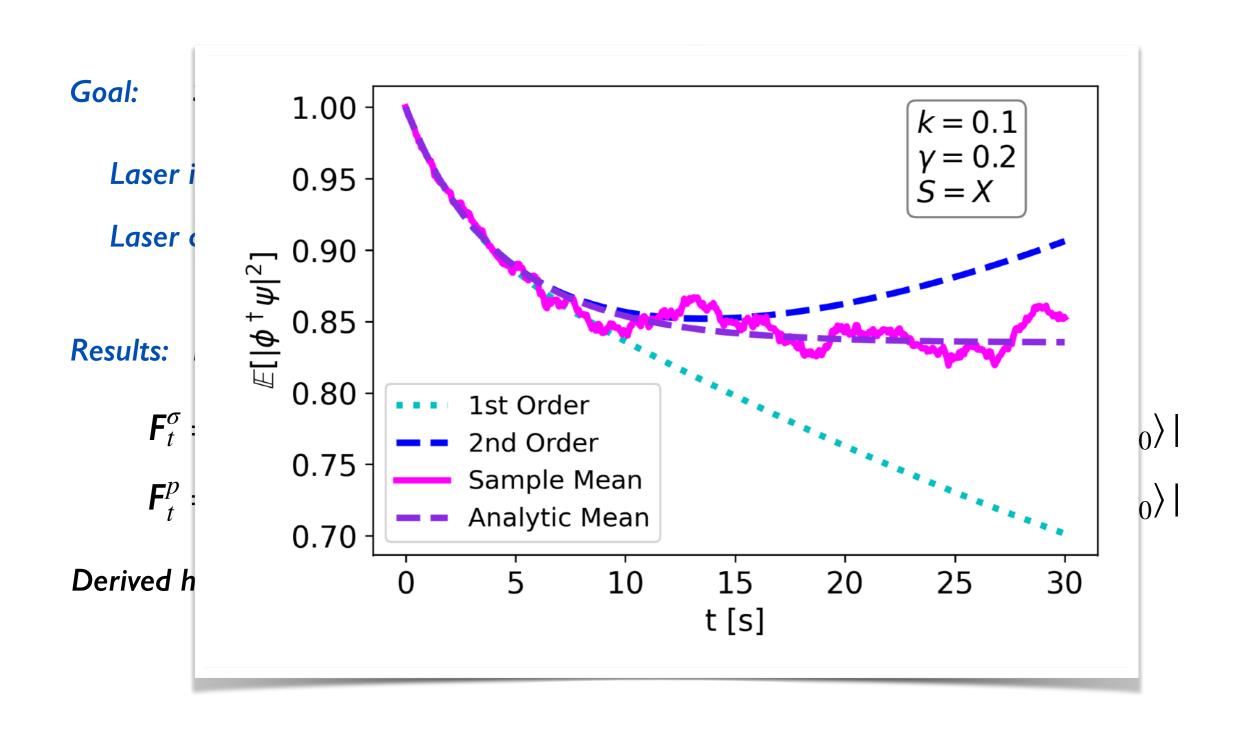
Results: Derived exact solutions for Itô processes when [H, S] = 0

$$F_{t}^{\sigma} = \frac{1}{2} (1 + F^{S_{\sigma}}) + \frac{1}{2} (1 - F^{S_{\sigma}}) \cos(2(X_{t} - X_{0})), \qquad F^{S_{\sigma}} = |\langle \phi_{0} | S_{\sigma} | \phi_{0} \rangle|$$

$$F_{t}^{p} = 1 - 2(1 - F^{S_{p}}) F^{S_{p}} (1 - \cos(X_{t} - X_{0})), \qquad F^{S_{p}} = |\langle \phi_{0} | S_{p} | \phi_{0} \rangle|$$

Derived hierarchical approximations when $[H, S] \neq 0$

Fidelity Estimation $i\hbar \, d\phi_t = H\phi_t \, dt$ $i\hbar \, d\psi_t = H\psi_t \, dt - i\gamma^2 S^{\dagger} S\psi_t \, dt + \gamma S\psi_t \, dX_t$



Fidelity Estimation

$$i\hbar \, \mathbf{d}\phi_t = H\phi_t \, \mathbf{d}t$$
$$i\hbar \, \mathbf{d}\psi_t = H\psi_t \, \mathbf{d}t - i\gamma^2 S^{\dagger} S\psi_t \, \mathbf{d}t + \gamma S\psi_t \, \mathbf{d}X_t$$

Goal: Study statistical properties of the fidelity $F_t := |\langle \phi_t | \psi_t \rangle|^2$

Laser intensity noise: $S_{\sigma} = S_{\sigma}^{\dagger}$, $S_{\sigma}^{\dagger}S_{\sigma} = I$ Pauli operatorsLaser detuning noise: $S_p = S_p^{\dagger} = S_p^{\dagger}S_p$ Projection operators

Results: Derived exact solutions for Itô processes when [H, S] = 0

$$F_{t}^{\sigma} = \frac{1}{2} (1 + F^{S_{\sigma}}) + \frac{1}{2} (1 - F^{S_{\sigma}}) \cos(2(X_{t} - X_{0})), \qquad F^{S_{\sigma}} = |\langle \phi_{0} | S_{\sigma} | \phi_{0} \rangle|$$

$$F_{t}^{p} = 1 - 2(1 - F^{S_{p}}) F^{S_{p}} (1 - \cos(X_{t} - X_{0})), \qquad F^{S_{p}} = |\langle \phi_{0} | S_{p} | \phi_{0} \rangle|$$

Derived hierarchical approximations when $[H, S] \neq 0$

Extensions: 2-qubit, multiple noise frequencies ~ Power spectral density

Qubit fidelity under stochastic Schrödinger equations driven by colored noise. In preparation

Towards controlled gates

 $i\hbar \, \mathbf{d}\phi_t = H\phi_t \, \mathbf{d}t$ $i\hbar \, \mathbf{d}\psi_t = H\psi_t \, \mathbf{d}t - i\gamma^2 S^{\dagger} S\psi_t \, \mathbf{d}t + \gamma S\psi_t \, \mathbf{d}X_t$

Example: Feedback process

$$Y_t = \begin{cases} X_t & \text{for } t < \tau \\ X_t - X_{t-\tau} & \text{for } t \ge \tau \end{cases}$$

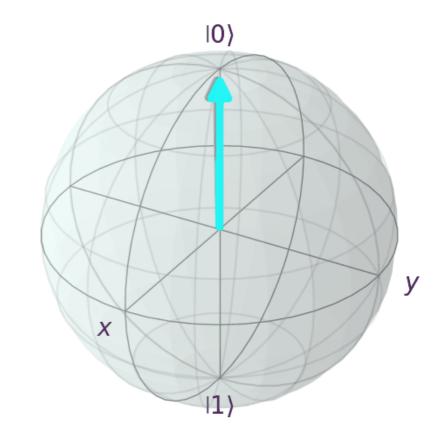
Towards controlled gates

 $i\hbar \, \mathbf{d}\phi_t = H\phi_t \, \mathbf{d}t$ $i\hbar \, \mathbf{d}\psi_t = H\psi_t \, \mathbf{d}t - i\gamma^2 S^{\dagger} S\psi_t \, \mathbf{d}t + \gamma S\psi_t \, \mathbf{d}X_t$

Example: Feedback process

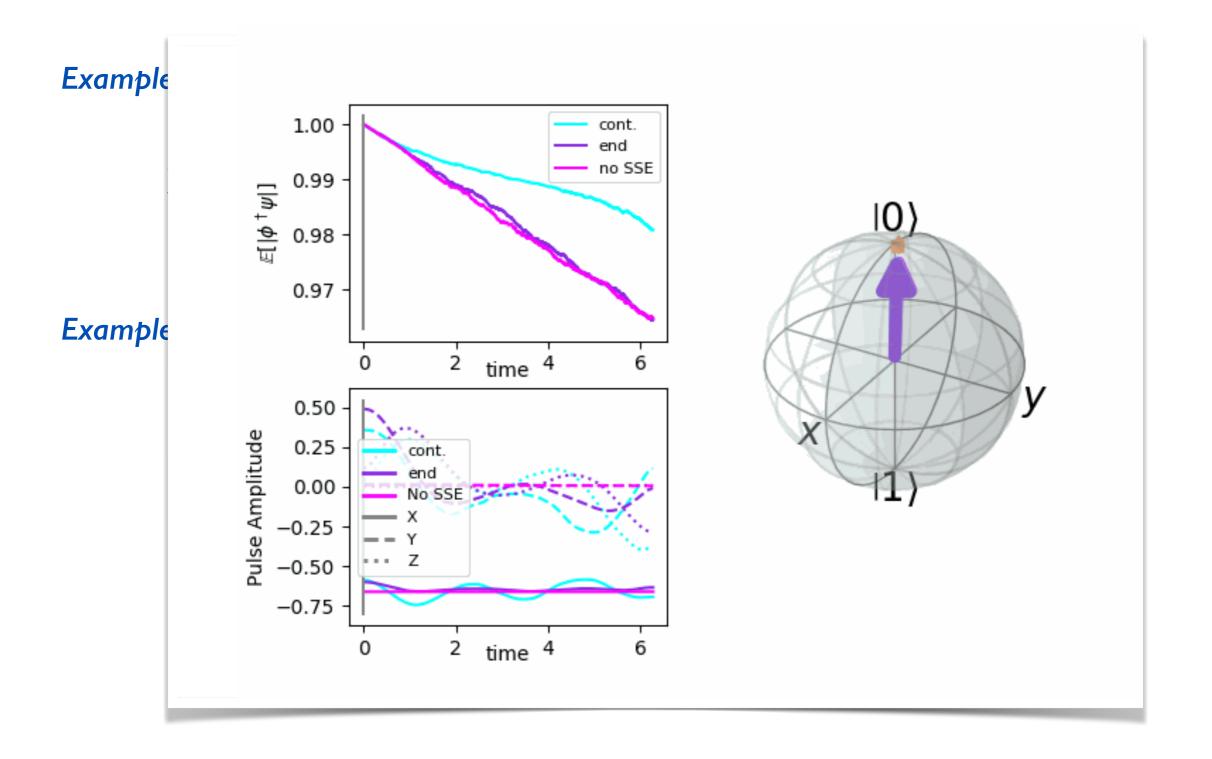
$$Y_t = \begin{cases} X_t & \text{for } t < \tau \\ X_t - X_{t-\tau} & \text{for } t \ge \tau \end{cases}$$

Example: Stochastic control



Towards controlled gates

 $i\hbar \, \mathbf{d}\phi_t = H\phi_t \, \mathbf{d}t$ $i\hbar \, \mathbf{d}\psi_t = H\psi_t \, \mathbf{d}t - i\gamma^2 S^{\dagger} S\psi_t \, \mathbf{d}t + \gamma S\psi_t \, \mathbf{d}X_t$

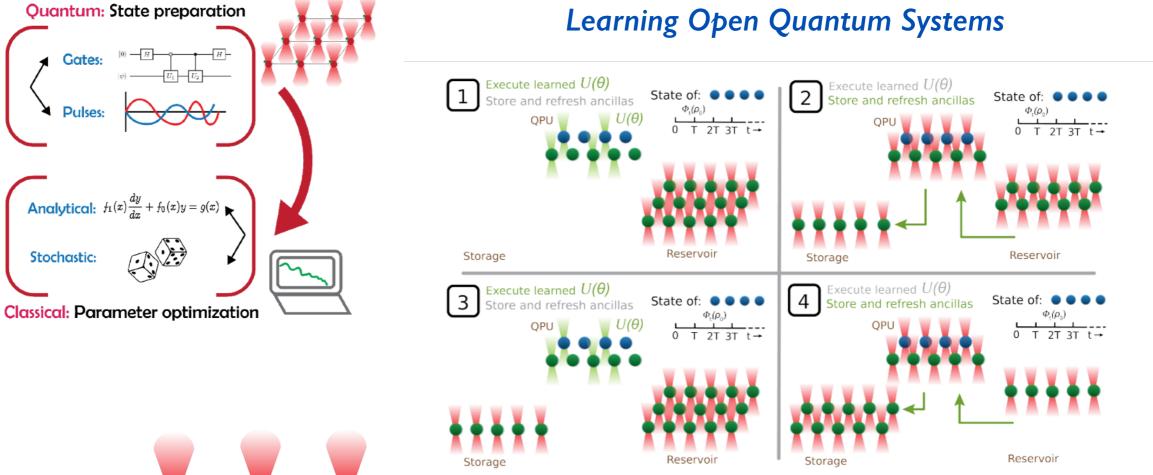


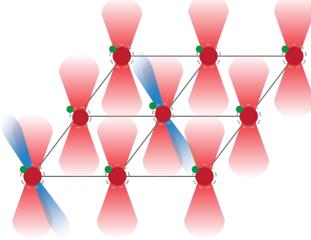
Summary

Pulse-based Quantum Circuits and VQOC

What's next?

- VQOC with noisy qubits
- Quantum optimal transport
- Integrating HPC





Understanding Noisy Qubits

Towards controlled qubits

Summary

Pulse-based Quantum Circuits and VQOC

What's next?

- VQOC with noisy qubits
- Quantum optimal transport
- Integrating HPC

