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Introduction

Mean Field Limit for Newton Dynamics

Consider the classical Newton dynamics for N indistinguishable point particles in
the mean filed scaling in the classical regime. Denote (g;, p;) the position and the
velocity of particle number i. Then

. . 1 .
qi = Pi; p’_N%:K(ql_qj)a I:172a"'7N7
JAi

where g;, p; € R3.
As N — oo, the conjectured PDE is the famous Vlasov(-Poisson) equation

Oef+ p- Vof+ Kxg pr- Vpf=0,

where pi(t,q) = s f(t,q. p) dp.
Gravitational or Coulomb force: K(q) = i#, i.e. the inverse-square law.

The case with repulsive electrostatic interactions with diffusion on I'Ifl X Rf, was
recently obtained by Bresch, Jabin & Soler ('22). Refer to P.-E. Jabin’s talk.
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Introduction

The viscous vortex model

Consider the weakly interacting particle system for N indistinguishable point
particles. Denote x; € R? the position of particle number i. The dynamics reads

X; = NZK x)dt+odW, i=1,2---,N, (IPS)
J#i

where x; € R?, and W' are N independent Brownian motions which may model
random collisions on particles with rate o. Let us assume that o > 0. The
interaction kernels K model 2—body interaction forces between particles. In the
point vortex model, one takes K(x) = %(Xﬂ){iﬁxl)

The (proved) limit PDE reads (as N — o0)

2
Bef+ divy (FK xx f) = %Axf. (MFD)

Goal: Establish and quantify the convergence: Any k—marginal Fy «(t) converges
weakly to 2, or the empirical measure ph = %,Zfil 0, converges in law to df,.
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How large is N?

@ Cosmology/astrophysics: N ranges from 10%° to 102° — 10°°; some models
of dark matter even predict up to 10%° particles.

@ In plasma physics, N is typically of order 102° — 102>, This is the typical
order of magnitude for physics settings.

@ When used for numerical purposes (particles’ method), the number is of
order 10° — 10'2.

@ In biology or life sciences, typical population of micro-organisms is typically
of order 10° to 10!

@ In other applications such as collective dynamics, social sciences or
economics, N can be much lower of order 103.

Whenever possible, it is critical to quantify how fast the convergence to the
continuous limit holds in terms of N and also in terms of time t.
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Introduction

Examples of Kernels

Classical Results: McKean ('67), Braun& Hepp ('77), Dobrusin ('79), Sznitmann
('91) ... K& WA= (K is Lipschitz!) (Coupling Method).

The classical methods fail for systems with some singular kernels. But they are
still very useful in many applications.

Examples of Singular Kernels:

L
@ Biot-Savart Law with K(x) = 27rx7|2 More general, conservative flows,

Hamiltonian systems.

@ The Poisson kernels K(x) = +Capp- (Repulsive or attractive.) Gradient
flows.

The limit behavior of 7V(t) = v/N(un(t) — f) for systems with singular kernels is

quite less understood. Fernandez and Méléard ('97): K € C2*%/?. W., Zhao and
Zhu ('23): K€ L™ or |x|K € L™ if K is anti-symmetric.
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Introduction

Recent Results (1st order systems)

@ 2D Euler: Goodman, Hou and Lowengrub ('90). Schochet ('96), Hauray
('09). Well-prepared initial data. Point vortex system.

@ 2D Navier-Stokes: Osada ( ) Fournier, Hauray and Mischer ('14). (The
Biot-Savart kernel K(x) = 5= 7z~ Compactness argument. )

@ Patlak-Keller-Segel: Haskovec and Schmeiser ('11), Fournier and Jourdain
('15) (very sub-critical regime, no rate...) Cattiaux-Pédéches ('16). Similar
setting: Liu & Yang ('16), Bolley, Chafai, & Fontbona ('18), Li, Liu & Yu
('19). Fournier and Tardy ('23).

@ 1st order systems with singular kernels: Jabin and W. ('18) (K € W1
(but also divK € W~1°°)). Bresch, Jabin and W. ('20) (general singular
kernels). Coulomb (like) flows or conservative flows, deterministic case:
Duerinckx('16), Serfaty ('20), Rosenzweig ('20-'21). Guillin, Le Bris &
Monmarché ('21).

@ Feng-Yu Wang's group on change-of-measure coupling, see Xing Huang
etc’s recent works.
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The Liouville Equation

Statistical approach: The coupled law of N—particle Fp(t,x1,- -, xy) is governed
by the Liouville equation

N N
1 o2
OpFy+ ) divy, (FN 3 > K(xi— xj)) =5 > AFw.
=1 i=1

J#i

The coupled law Fy is symmetric/exchangeable, i.e. Fy € Psm(R?V), since those
particles are indistinguishable.

The observable (statistical information: temperature, pressure for instance) is
contained in the marginals Fp , of Fy as

Frn(t, xa, -, Xk) :/ Fn(t, xa, -+ xn) dxigr - - - dxw,
R2AN—K)

for fixed k=1,2,---.
BBGKY hierarchy: The evolution of Fy x involves Fp jy1.
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Mean Field Limit/Propagation of Chaos: General Framework

Formal Derivation assuming Molecular Chaos

BBGKY hierarchy: The evolution of Fy  involves Fp 1. For example,
integrating the Liouville Eq. w.r.t. xa,---, xy and using the symmetry of Fp, one
obtains that

N—-1 . o2
8tFN71 + T lex(FN,2 K(X — y)) dy = TAXFNJ.
E

If we assume that Fyo(t, x,y) = Fn1(t,x)Fn1(t,y) (Molecular Chaos) for any
t > 0, then we recover the limit PDE (MFD) as N — oo.

But for fixed N, Fyo(t) # Fn,1(t)®?, even we start from i.i.d. initial data
Fn(0) = FN71(0)®N, since correlation does exist since particles do interact!

Relaxation: Kac’s chaos ('56). To derive the space homogeneous Boltzmann
equation.
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Propagation of Chaos

Definition 1 (Kac's chaos)

Let E =R or any Polish space. A sequence (Fn)n>2 of symmetric probability
measures, i.e. Fy € Psym(EN), is said to be f—chaotic for a probability measure f
on E, if for any fixed k=1,2,3,---, Fy, — @k as N = .

“Asymptotic independence” for a finite group.
Definition 2 (Propagation of (Kac's) chaos)
The diagram commutes.

FN,k(O) — @k(O)
lips ImrD
Fn (1) - k()

See recent work by D. Lacker ('21), Jabin, Poyato & Soler ('21) and Bresch,
Jabin & Soler ('22) based on BBGKY.
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From Relative Entropy to Propagation of Chaos

We use the (scaled) relative entropy to quantify chaos

0 < Hn(FnlPM) (1) =

1 Fn
/\//ENFN|OngX1”'dXN'

Thanks to the monotonicity of the (scaled) relative entropy

1 F
IHk(FN’k|f®k) = ; /N FN’k|Og fzgl}(k dX1 e ka S HN(FN|f®N)
E

and the classical Csiszar-Kullback-Pinsker inequality
| Frnk — FR| 0 < y/2KHk(Fivk £25),

one can obtain propagation of chaos given a vanishing sequence of Hy(Fy|foN).
See also Ben Arous & Zeitouni ('99).
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2D Vortex Model on [M?

Theorem (Jabin & W. ('18))

Assume that K € W-1°°(19) with divK € W-1°°. Assume further that

fe L°([0, T], WAP(N?)) for any p < oo solves (MFD) with inf f> 0 and
Jnaf=1. Then

Hu(Fiy| ) <eM IRl (HN(F‘M ") 1>,

N
where we denote ||K|| = ||K]| -1, + || divK]|| -1, and M is a universal constant.
v
This result applies to the Biot-Savart law, i.e. K(x) = %% since K = divV with

v 1 {— arctan% 0 ]

~ 5 X2
2 0 arctan 32

Uniform-in-time propagation of chaos by Guillin, Le Bris & Monmarché ('21).

Zhenfu Wang (BiCMR) Propagation of Chaos May 6, 2024 11/21



2D Vortex Model on R?

Theorem (Feng & W. ('23))

Assume that Fy is an entropy solution to the Liouville equation and that
fe L>=([0, T], L} N L>(R?)) solves (MFD) with f>0 and [5, f(t,x)dx= 1.
Assume that the initial data fy € W?°°(IR?) satisfies the growth condition

|V log fo(x)* < Gi(1 + [x?), (1)
V2 log fo(x)| < Go(1+ |x%), (2)
and the Gaussian-type bound from above that there exists some C3 > 0 such that
fo(x) < Gexp(—C5t[x%). (3)
Then we have

F(F ™) < M (™) + ).

where M is some universal constant that only depends on those initial bounds.

v
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|deas of the proof

Let us focus on the torus case first. We compute the time evolution of the
relative entropy

d o2 Fn 1 U
RN v \V/ SN2 .
ae IR = =5 /n [Vlog Zom " dFiv + /n (/\P > ¢>(x,,x,)) dFn,

ij=1

where
d(x,y) = Viog ix) - (K% f(x) — K(x — y)) + (divKx fix) — divK(x — y)).

Using symmetrization, i.e. taking (#(x,y) + ¢(y, x)) as the new ¢(x, y), one
writes

B(x.y) = ~3K(x— y) - (V log f1x) — V log 1)) ~ divK(x )
+ Bounded Terms.
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Sketch of the proof of the 2D Navier-Stokes case

Consider the 2D Navier-Stokes and the 2D Euler case. Then the kernel K is the
Biot-Savart kernel, which is divergence free, i.e. div,K = 0. Dropping the Fisher
information term (which could be useful),

N
d 1 .
EHN(FN|@N) < /ndN (W é:l o(xi, XJ)) dFy  (~ O(1) a prior!)
where after symmetrization, ¢ € L°° and more importantly

[t tay=0.vx [ o6 )fix) dx= 0.
JE JE

Recall a Jensen-type inequality, i.e. for any parameter n > 0,
11 Fn
/FN¢N§ 5N/FN| 0g —+ f@N Iog/f® exp (nNdy) .

GOAL: Show the 2nd term is o(1) as N — oc.
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Sketch of the proof of the 2D Navier-Stokes case

Theorem (Uniform in N large deviation type estimate)
We have

N
1

su PN exp | — xi, x;) | dXV

Nzg nan p</\/,jz_:1¢( J)>

—sup [ Ve (N[ olx)(dw - 47%(x)) dXY < C< o,
N>2 J v 24

provided that ||¢|| 1~ < ¢p and

/ 6(x Y)Ty) dy = 0,x, / 6 y)f(x) dx = 0, %y,
E E

Ben Arous and Brunaud ('90): with ¢ continuous.

We need the estimate directly for discontinuous ¢.

Carefully use two cancellation rules. Law of Large Numbers but for “Double
Indices". A recent proof using martingales by Lim, Lu and Nolen ('19).
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Sketch of the proof of the 2D Navier-Stokes case

Now we turn to the whole space case. Using symmetrization, i.e. taking
2(6(x, y) + #(y, x)) as the new ¢(x, y), one writes

8(x,3) =~ Kx— ) - (VIog fx) — Vlog 1)) ~ divK(x~ )
+ %Vlogf(x) K f(x) + %Vlog fly) - K fly).

One can propagate the initial assumptions on fy to get similar bounds on f;, for
t € [0, T]. For simplicity, V log f;(x) is linearly growing in x, and V?log f(x) is
quadraticlly growing in x. Hence

® Viogf()  Kxf(:) € L*;
@ sup, [K(x—y) (Vlogfix) — Vlog fly))] < C(1+ |x?);

Using the upper Gaussian tail estimate for f;, one can still recover the Large
Deviation type bounds as in the torus case.
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Relative Entropy and Modulated (Potential) Energy

Now we focus on gradient flows, i.e. K= —-VV.

@ Relative entropy (Jabin and W., ('18)) : Less structure and less singularity.

Recall that there is a term

N Z divK(x; — x;) dFn

ndn

in the time evolution of the relative entropy.

@ Modulated Energy (Duerinckx ('16) and Serfaty (with an appendix with
Duerinckx) ('20)): More structure and also more singular (Riesz potentials+
possible perturbation!). Deterministic flows (now also compatible with some
multiplicative/additive noises as in Rosenzweig and Serfaty ('21) )

Recall the modulated (potential) energy is defined as

FX0 = [ Ve ) din) ~ A9)( () ~ 1)
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Modulated Free Energy

Idea: introducing weights Gy and Ggmw in the relative entropy to cancel the term
divK in its time evolution

En(Fn|fPN) = %/

dn

Fn/G
Fnlog (M) dxq - -+ dxp,

where Gy is the Gibbs measure, Gww is a tilted Gibbs measure by the limit £.
In an equivalent way

En(FnIFEN) = Ha(Ful 2N + Kn(Fal V),
with

Ka(FalF) = 8, | Vo 0(dnato) — 4R9)(dn) — 40)

Note that 02 Ey = o?Hp + Eg, (F(XN, f)), where o2 is the temperature.
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Further Discussion

Further Discussion

1 Propagation of Chaos: Uniform-in-time estimates in particular for kinetic
Vlasov equations; Derivation of Vlasov-Poisson/Landau. The underlying
space for the velocity variable is on the whole space.

2 Central limit theory/Gaussian fluctuation for interacting particle systems
with singular interactions. Can we quantify the convergence rate as well?

3 (Path/dynamical) Large deviation principles for kinetic theories (Boltzmann,
Landau, Vlasov-Poisson, 2D Euler equation...).

4 Non-exchangeable particle system.
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Further Discussion

Thank youl!
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