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Motivation

Fractional and nonlocal models allow for a more accurate description of phenomena in a
wide range of applications [13, 8]:

anomalous diffusion,∆t ∼ ∆x2s, s 6= 1 [6],
material science, peridynamics, low regularity requirements allow fractures [17, 5],

image processing [10, 14],

finance [18],

electromagnetic fluids [15].

Space-fractional equations arise naturally as the limit of discrete diffusion governed by

stochastic processes with long jumps [16].

My interests in fractional order equations:

subsurface transport,

subsurface imaging,

sea ice dynamics,

fast linear solvers
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Elliptic nonlocal operators
Let δ ∈ (0,∞] be the horizon,Ω ⊂ Rd a bounded open domain, define the interaction domain

ΩI := {y ∈ Rd \ Ω : |x − y| ≤ δ, for x ∈ Ω}.

We want to numerically solve equations involving the nonlocal operator

Lu(x) = p.v.

∫
Ω∪ΩI

(u(y)− u(x))γ(x, y)dy, x ∈ Ω,

with

γ(x, y) = φ(x, y) |x − y|−β(x,y) X|x−y|≤δ, x, y ∈ Ω ∪ ΩI,

φ(x, y) > 0.

Examples:

Integral fractional Laplacian:

β = d+ 2s, s ∈ (0, 1), δ = ∞, φ ∼ const

Tempered fractional Laplacian:

φ(x, y) ∼ exp(−λ|x − y|)
Truncated fractional Laplacian: δ finite
Variable order fractional Laplacians with varying coefficient:

β(x, y) = d+ 2s(x, y) and β(x, y) = d+ 2s(x)
Integrable kernels: constant kernel (β = 0), inverse distance kernel (β = 1)

Normalized such that

δ → 0 or s → 1 recovers local Laplacian−∆
s → 0 recovers identity
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Nonlocal Poisson equation:

−Lu = f inΩ,

u = g inΩI.

Nonlocal heat equation:

ut − Lu = f in (0, T)× Ω,

u = g in (0, T)× ΩI,

u = u0 on {0} × Ω.

Source control:

min
f

1

2
||u− ud||2L2 +R(f) subject to nonlocal equation

Parameter learning:

min
s,δ,...

1

2
||u− ud||2L2 +R(s, δ, . . . ) subject to nonlocal equation

Goal

Assemble and solve nonlocal equations in similar complexity & memory as their local

counterparts, i.e. O(n logα n).
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Well-posedness

γ(x, y) = φ(x, y) |x − y|−d+s(x,y) X|x−y|≤δ

Theorem

Let

α(r) := sup
|x−y|≤r

|φ(x, y)− φ(y, x)| , β(r) := sup
|x−y|≤r

|s(x, y)− s(y, x)| .

Assume that ∫ 1

0
dr

α(r)2

r1+2s
< ∞,

∫ 1

0
dr

(β(r) |log r|)2

r1+2s
< ∞

and that f has sufficient regularity. Then the variational formulation of

−Lu(x) = f(x), u(x) = g(x)

is well-posed.

Interpretation

s and φ need to be symmetric in the limit x → y.

Anti-symmetric part of coefficients has to decay fast enough.

Particular case s(x, y) = s(x): need s(x) to be Hölder continuous.
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Variational formulation

We consider

a(u, v) =
1

2

∫
Ω
dx

∫
Ω
dy [(u (x)− u (y)) (v (x)− v (y))] γ(x, y)

+

∫
Ω
dx

∫
ΩI

dy u (x) v (x) γ(x, y).

posed

V :=
{
u ∈ L2

(
Rd

)
| ||u||V < ∞

}
, V0 := {u ∈ V | u = 0 inΩI}

and

||u||2V =

∫∫
(Ω∪ΩI)2

(u(x)− u(y))2 γ(x, y).

Reduces to L2(Ω ∪ ΩI) for integrable kernels and to Hs(Ω ∪ ΩI) for constant order
fractional kernels.

For δ = ∞, if γ(x, y) = ∇y · Γ(x, y), can reduce integral fromΩ× ΩI toΩ× ∂Ω,
e.g. Γ(x, y) ∼ x−y

|x−y|d+2s for the fractional kernels.
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Finite element approximation

Partition domainΩ into shape-regular mesh Ph = {K} with mesh size h and with edges e
on the boundary ∂Ω.

Set Vh ⊂ V the space of continuous, piecewise linear functions.

a(u, v) =
1

2

∑
K

∑
K̃

∫
K

dx

∫
K̃

dy (u (x)− u (y)) (v (x)− v (y)) γ(x, y)

+
∑
K

∑
e

∫
K

dx u (x) v (x)

∫
e

dy ne · Γ(x, y).

dim Vh =: n

No closed form for local stiffness matrix→ need to use numerical quadrature

Finite horizon δ or jumps in kernels: approximate with sub-simplices,O(h2K ) error
1

1Marta D’Elia, Max Gunzburger, and Christian Vollmann. “A cookbook for approximating Euclidean balls and for quadrature

rules in finite element methods for nonlocal problems”. In: Mathematical Models and Methods in Applied Sciences 31.08

(2021), pp. 1505–1567.
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Quadrature

In subassembly procedure, use quadrature to evaluate element pair contributions:

aK×K̃(φi, φj) =
1

2

∫
K

dx

∫
K̃

dy (φi(x)− φi(y)) (φj(x)− φj(y)) γ(x, y)

Treatment for element pairs K ∩ K̃ 6= ∅, containing the singularity at x = y:

split K × K̃ into sub-simplices,

Duffy transform onto a hypercube, with Jacobian canceling the singularity.

Choose quadrature order so that quadrature error≤ discretization error
2
:

|log hK | if the elements coincide (red),
|log hK |2 if the elements share only an edge (yellow),
|log hK |3 if the elements share only a vertex (blue),
|log hK |4 if the elements are “near neighbours” (green), and
C if the elements are well separated.

2Mark Ainsworth and Christian Glusa. “Aspects of an adaptive finite element method for the fractional Laplacian: A priori

and a posteriori error estimates, efficient implementation and multigrid solver”. In: Computer Methods in Applied Mechanics

and Engineering (2017).

8 / 37



Regularity for the fractional Poisson problem

Theorem (Grubb [11] and Acosta and Borthagaray [1])

Take δ = ∞ and let ∂Ω ∈ C∞, f ∈ Hr (Ω) for r ≥ −s and u ∈ H̃s (Ω) be the solution of the
fractional Poisson problem. Then the following regularity estimate holds:

u ∈ Hs+ϑ(Ω), ϑ = min{s+ r, 1/2− ε} ∀ε > 0
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Figure: Solutions u = C(1 − |x|2)s ∼ dist (x, ∂Ω)s corresponding to the constant right-hand side f = 1
for s = 0.25 and for s = 0.75, δ = ∞.
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Finite element approximation: a priori error estimates

Lemma (Quasi-uniform mesh (Acosta and Borthagaray [1]))

If u ∈ Hs+ϑ (Ω), for s+ ϑ ∈ (1/2, 2] and 0 < ϑ, then

||u− uh||H̃s(Ω) ≤ Chϑ |u|Hs+ϑ(Ω) .

In practice, ϑ ≤ 1/2− ε, so h1/2−ε convergence in H̃s (Ω) at best.

Lemma (Non-uniform meshes)

If u ∈ Hs+ϑ (Ω) ∩ Hs+`
loc

(Ω), for s+ ϑ, s+ ` ∈ (1/2, 2] and 0 < ϑ ≤ `,
i.e. if u has Sobolev regularity s+ ϑ and interior regularity s+ `, then

||u− uh||H̃s(Ω) ≤ C

(
h` |u|

H
s+`
loc

(Ω)
+ hϑ∂ |u|Hs+ϑ(Ω)

)
,

where h∂ is the maximum size of all elements K whose patch touches the boundary.

Picking h∂ ∼ h`/ϑ, the optimal rate of convergence is h2−s ∼ n(s−2)/d due to better interior

regularity. Unfortunately, shape regularity constrains us to n−1/d in dimensions d > 1.

Lower convergence rates than for the PDE Laplacian
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FEM convergence rates
(Assuming maximum RHS regularity)

H̃s (Ω) L2(Ω)

d
=

1 quasi-uniform h1/2 1
n1/2

h(1/2+s)∧1 1
n(1/2+s)∧1

graded / adaptive 1
n2−s

1
n2

d
≥

2 quasi-uniform h1/2 1
n1/(2d)

h(1/2+s)∧1 1
n(1/2+s)/d)∧(1/d)

graded / adaptive 1
n1/d

1
n(1+s)/d

11 / 37



After FEM discretization:

Au = b, A ∈ Rn×n

Depending on δ and h:

Straightforward discretization can lead to a fully dense matrix.

Assembly and solve would have complexity and memory

O
(
n( δ

h
)d
)
for δ < ∞ and

O(n2) for δ = ∞.

Better approach

Panel clustering / Fast Multipole Method / hierarchical matrix approximation

Split operator into near and far interactions

Directly assembly near interactions

Low-rank approximation of far interactions

Keep approximation error below discretization error to preserve FE convergence.
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Hierarchical matrices: Admissible sub-blocks

Tasks:

1. Choose sub-blocks to be compressed.

2. Construct low-rank approximations.

Build tree of clusters of DoFs.

root contains all unknowns

subdivision based on DoF coordinates

distributed computations: first level given by MPI distribution of unknowns

Admissibility criterion:

Cluster pairs (P,Q) that are sufficiently separated compared to their sizes are admissible
for compression:

η dist(P,Q) ≤ max{diam(P), diam(Q)}, η > 0 fixed parameter

Matrix entries that are not admissible are assembled directly into a sparse near-field

matrix Anear.
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Hierarchical matrices: low-rank approximation

Splitting of operator into sub-blocks based on admissibility

A = Anear + Afar = Anear +
∑

blocks(P,Q)

AP,Q

H-matrix approximation

AP,Q ≈ UPΓP,QU
T
Q (low-rank approximation)

I use Chebyshev interpolation, but other techniques are possible, e.g. Adaptive Cross

Approximation (ACA).

H2-matrices

Using hierarchical nestedness of clusters, can express

UP =
∑

Q child of P

UQTQ,P
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Matrix-vector product with anH2-matrix

A = +

Steps:

Matvec with sparse near-field matrix

Upward recursion

Cluster-cluster interaction

Downward recursion

H2-matrix approximation

Matrix-vector product (and FE assembly) inO
(
n log2d n

)
operations & memory.

Approximation error same order as discretization error.
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Implementation detail: representation using sparse matrices

Recast hierarchical matrix in terms of sparse matrices

No special purpose code

Leverage well-optimized distributed sparse linear algebra

Reindexing of far-field leads to

A ≈ Anear + B [(I+ TK) · · · (I+ T1)] Γ
[
(I+ T1)

T · · · (I+ TK)
T
]
BT ,

Anear and Γ involve MPI communication, all other matrices are block diagonal

Potential to leverage block structure, but requires support for variable block sizes.

→ I am using point CRS matrices at the moment.
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Conditioning and scalable solvers

O(n log n)matrix-vector product in all cases→ can explore iterative solvers

Steady-state:

Fractional kernel, δ = ∞3
: κ(A) ∼ h

−2s ∼ n
2s/d

Fractional kernel, δ ≤ δ0
4
: κ(A) ∼ δ2s−2

h
−2s ∼ δ2s−2

n
2s/d

Integrable kernel, δ finite8: κ(A) ∼ δ−2

Time-dependent:

κ(M+ ∆tA) ∼ 1 + ∆t κ(A)
Depending on time-stepper and CFL condition, this is well-conditioned for small s, large δ.

Scalable solver options:

Multigrid

Geometric (GMG)

Algebraic (AMG)

Domain decomposition

Substructuring

Schwarz methods

Krylov methods
The matrix is well-conditioned in the certain parameter regimes, e.g.

integrable kernel, δ large, or
or fractional kernel, s small, δ large.

3Mark Ainsworth, William McLean, and Thanh Tran. “The conditioning of boundary element equations on locally refined

meshes and preconditioning by diagonal scaling”. In: SIAM Journal on Numerical Analysis 36.6 (1999), pp. 1901–1932.
4Burak Aksoylu and Zuhal Unlu. “Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces”. In: SIAM

Journal on Numerical Analysis 52.2 (2014), pp. 653–677.
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Geometric multigrid in a nutshell

P2→1R1→2

P1→0R0→1

Spost1

Spost0

Spre1

Spre0

S2

A0

A1

A2

User specifies:

Operators A`, assembled on hierarchy of nested meshes

Transfer operators: prolongations P`+1→`, restrictions R`→`+1 = PT`+1→`,

Smoothers Spre/post` (e.g. Jacobi)

Coarse solver SL
How does multigrid work?

On each level: smoother reduces high frequency error, low frequency error is transferred

to coarser levels

High/low frequency splitting depends on mesh

Drawbacks:

Need hierarchy of nested meshes, complications for locally refined meshes

Assembly on every level, tight coupling between assembly and solve
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Geometric multigrid (GMG) for nonlocal equations

Hierarchy of meshes from uniform or adaptive refinement

Restriction / prolongation given by nesting of FE spaces

Assembly into hierarchical or CSR matrix format on every level

Smoothers:

Jacob, Chebyshev forH-matrices

no constraints for CSR matrices.

Coarse solve: convert to dense or CSR matrix

Test problems:

−Lu = f inΩ = B1(0) ⊂ R2,

u = 0 inΩI.

1. s ≡ 0.25,

2. s ≡ 0.75,

3. s =


0.25 x0 ≤ 0.1,

cubic transition 0.1 ≤ x0 ≤ 0.1,

0.75 0.1 ≤ x0
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Numerical Examples – errors

Single core on Intel Broadwell (SNL/Solo)

103 104 105

number of unknowns n

10 2
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H s error
n−0.25

L 2 error
n−0.38
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number of unknowns n
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L 2 error
n−0.5

103 104

number of unknowns n

10 3

10 2

L 2 error n−0.47

Figure: Timings and memory usage for assembly of the stiffness matrix for fractional kernels, δ = ∞ and

solution of linear system using Geometric Multigrid for the two-dimensional problem.

s = 0.25 on the left, s = 0.75 in the middle, s(x) on the right.
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Numerical Examples – assembly and solve

Single core on Intel Broadwell (SNL/Solo)
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Figure: Timings and memory usage for assembly of the stiffness matrix for fractional kernels, δ = ∞ and

solution of linear system using Geometric Multigrid for the two-dimensional problem.

s = 0.25 on the left, s = 0.75 in the middle, s(x) on the right.
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Numerical Examples – weak scaling

Intel Broadwell (SNL/Solo)
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Figure: Timings and memory usage for assembly of the stiffness matrix for fractional kernels, δ = ∞ for the

two-dimensional problem.

s = 0.25 on the left, s = 0.75 in the middle, s(x) on the right.

Bad load balancing for s(x)
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Hierarchical matrices for finite horizon kernels

Regular CSR sparse matrices are efficient (complexity, memory) for small horizon δ ∼ h.

H2-matrices are efficient for δ = ∞.

Low-rank approximation relies on smoothness of the kernel

→ need to fully assemble entries near ∂Bδ(x).

At what ratio δ/h doH2-matrices become more efficient than sparse matrices?

1014 × 100 6 × 100

horizon/meshsize

25

50

75

100

125

150

175

se
co

nd
s

sparse
H2

N(δ/h)2

Nlog4N

Ω ⊂ R2, γ(x, y) = cd,δX|x−y|≤δ

Break-even:

1D: δ/h ∼ 100 − 200
2D: δ/h ∼ 5 − 10

Break-even depends on:

Cost of quadrature

Lots of implementation details
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Smoothed Aggregation Algebraic multigrid (SA-AMG)

Drawbacks of Geometric Multigrid

Good (nested) coarse meshes might be hard to come by for adaptively refined or graded

meshes

FE assembly of operators on all levels is not cheap

Algebraic multigrid mimics geometric multigrid while only using algebraic information.

Inputs:

A0, DoF coordinates c, near-nullspace (constant function, rigid body modes, …)

AMG setup

construction of transfer operators P`+1→` using algebraic information

(e.g. matrix graph, strength of connection)

Galerkin projection A`+1 = PT`+1→`A`P`+1→`

Issues for nonlocal problems:

Many graph algorithms used in AMG cannot be applied toH-matrices as they rely access
to matrix entries.

Inefficient for operators that are too dense.

Hierarchical information contained inH-matrix does not translate directly to a multigrid
hierarchy.
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Auxiliary operator multigrid

Idea

Construct multigrid transfer operators
{
P`+1,`

}
wrt an auxiliary matrix Ã0.

Then construct preconditioner via Galerkin projections A`+1 = PT`+1→`A`P`+1→`.

Requirements for auxiliary operator Ã0:

sparse

contains sufficient information about nonlocal problem (mesh, coefficients, kernel, …)

Possible auxiliary operators:

PDE Laplacian on the same mesh

distance Laplacian on graph G of filtered near-field matrix

Lij =

{
−1/ |ci − cj| if (i, j) ∈ G, i 6= j,

−
∑

k 6=i Lik if i = j,
, (ci are DoF coordinates)

lumped and re-scaled near-field matrix
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Galerkin projection withH2-matrices

Galerkin projection:

If

A = Anear + B [(I+ TK) · · · (I+ T1)] Γ
[
(I+ T1)

T · · · (I+ TK)
T
]
BT ,

then

PTAP = PTAnearP︸ ︷︷ ︸
multiplied out

+ (PTB)︸ ︷︷ ︸
multiplied out

[(I+ TK) · · · (I+ T1)] Γ
[
(I+ T1)

T · · · (I+ TK)
T
]
(PTB)T .

Galerkin projection ofH2-matrix is anH2-matrix.

Uses the same compression of the off-rank matrix blocks.

→Will become inefficient, especially after several multigrid coarsenings.

→ Need to recompress coarse operators
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Recompression: What would geometric MG do?
1D example, mesh sizes h and 2h
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red = near field cluster pairs

blue = far field cluster pairs, rank of approximation in white

cluster pairs that are admissible on coarse mesh are admissible on fine mesh, but

approximation rank differs

some cluster pairs on fine mesh are not admissible on coarse mesh, since represented

block becomes to small to be represented by low-rank matrices

Recompression strategy

Keep ranks of approximations.

Multiply out small low-rank clusters and add to near field.
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Recompression in terms of matrix operations
In order to drop the last level K of the operator

A = Anear + B [(I+ TK) · · · (I+ T1)] Γ
[
(I+ T1)

T · · · (I+ TK)
T
]
BT ,

we split off the last level of cluster interactions

Γ = Γ̃ + ΓK

and reorder terms

A =
[
Anear + B(I+ TK)ΓK(I+ TK)

TBT
]

+ [B(I+ TK)] [(I+ TK−1) · · · (I+ T1)] Γ̃
[
(I+ T1)

T · · · (I+ TK−1)
T
]
[B(I+ TK)]

T

leading to

A = Ãnear + B̃ [(I+ TK−1) · · · (I+ T1)] Γ̃
[
(I+ T1)

T · · · (I+ TK−1)
T
]
B̃T

where

B̃ = B(I+ TK), Ãnear = Anear + B̃ΓK B̃
T

are explicitly formed.

All operations required for Galerkin projection and recompression use sparse

matrix-matrix addition & multiplication.

Since the ranks for low-rank blocks and transfers do not change, only Ãnear and B̃ need to

be explicitly saved on coarse levels.
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Implementation details

Components:

PyNucleus5 for assembly of nonlocal operators

Trilinos/Tpetra6 for distributed sparse linear algebra

Trilinos/Belos7 for Krylov solvers

Trilinos/MueLu7 for Algebraic Multigrid

Kokkos7 programming model for performance portability

Features:

H- andH2-matrices, reader for hierarchical operators

Krylov solvers, AMG preconditioner

MPI distributed

Compute architectures supported by Kokkos:

CPU (Serial, OpenMP), GPU (Cuda, HIP, …), …

5https://github.com/sandialabs/PyNucleus
6https://github.com/trilinos/Trilinos
7https://github.com/kokkos/kokkos
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Numerical results - CPU
Solo, SNL, Broadwell CPUs

Quasi-uniform mesh, P1 elements

2 Jacobi sweeps of pre-/post-smoothing

LAPACK coarse solve

memory (finest level) iterations (time)

DoFs ranks dense H2 PDE∆ distance∆
12,173 4 1.1 GB 0.1 GB 8 (0.15s) 8 (0.14s)

49,139 18 18 GB 0.55 GB 8 (0.47s) 9 (0.54s)

197,565 72 291 GB 3 GB 9 (0.73s) 10 (0.84s)

792,548 288 4,680 GB 19.7 GB 9 (1.43s) 10 (1.56s)

n n n2 n log4 n constant (log4 n)

Table: 2D fractional Poisson problem on unit disk, s = 0.75, δ = ∞

Dense matrices only for comparison.

Only the first two dense problems would actually fit in memory on their respective job

allocations.
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Numerical results - Comparison with unpreconditioned CG
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Both solvers use aH2-matrix.

AMG preconditioned solve is scalable, Krylov by itself is not.
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Numerical results - graded meshes

Motivation: resolution of low regularity near domain

boundary improves convergence of discretization error

Weak scaling of solve time needs work (load balancing).

memory (finest level) iterations (time)

DoFs hmax/hmin ranks dense H2 CG+SA-AMG

15,852 105 4 1.87 GB 0.33 GB 7 (0.37s)

78,674 218 18 46.1 GB 2.4 GB 7 (1.74s)

363,472 439 72 984.3 GB 16.6 GB 8 (3.73s)

Table: 2D fractional Poisson problem on graded unit disk, s = 0.75, δ = ∞
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Numerical results - GPU

Lassen, LLNL, V100 GPUs

memory (finest level) iterations (time)

DoFs ranks dense H2 CG+SA-AMG

49,139 4 18 GB 0.6 GB 9 (0.12s)

197,565 16 291 GB 2.9 GB 11 (0.29s)

792,548 64 4,680 GB 14.7 GB 12 (0.62s)

3,175,042 256 75,109 GB 61.9 GB 12 (1.79s)

Table: 2D fractional Poisson problem on unit disk, s = 0.75, δ = ∞

1000x reduction in memory

Weak scaling behavior can be improved

(no AMG parameter tuning for GPU so far)

33 / 37



Domain decomposition: Schwarz methods (WIP, with Pierre Marchand

(INRIA))

Schwarz method

overlapping subdomain restrictions {Rp}, local matrices Ap = RpAR
T
p

partition of unity
∑

P
p=1 R

T
pDpRp = I, with {Dp} diagonal

additive Schwarz preconditioner: Q1 :=
∑

P
p=1 R

T
pA

−1
p Rp, or restricted additive Schwarz

No global information exchange→ need a coarse grid

GenEO approach:

Span coarse space using solutions of subdomain eigenvalue problems

DpApDpvp,k = λp,kBpvp,k , where Bp is similar to Ap, but assembled over a modified local
mesh.

DistributedH-matrix is built using Pierre Marchand’s Htool library
https://github.com/htool-ddm/htool

HPDDM library for Schwarz DD and GenEO https://github.com/hpddm/hpddm

2D fractional Poisson problem, s = 0.75, δ = ∞ on Sandia’s Solo machine

memory (finest level) iterations (time)

unknowns # MPI ranks dense H GMRES+DD

65,025 72 31.5 GB 5.4 GB 21 (1.34s)

261,121 288 508 GB 12.6 GB 23 (0.96s)

1,046,529 1152 8,160 GB 86 GB 24 (2.4s)

Caveats:

solver setup needs improvement, working on alternative low-rank approximations

direct solves (subdomain, coarse) and eigenvalue problems in dense format

34 / 37

https://github.com/htool-ddm/htool
https://github.com/hpddm/hpddm


Advertisement: PyNucleus, a FEM code for nonlocal problems

Interface in Python, computational kernels via Cython, C, C++.

Compatible with NumPy/SciPy

Simplical meshes in 1D, 2D, 3D; refinement with boundary snapping options

MPI distributed computations via mpi4py

Partitioning using (Par)METIS

Finite Element discretizations: discontinuous P0, continuous P1, P2, P3

Assembly of local differential operators

Lots of solvers (direct, Krylov, simple preconditioners),

and in particular geometric multigrid

WIP: AMG (Trilinos/MueLu), DD (Htool&HPDDM)

Assembly of the nonlocal operators in weak form into

CSR sparse matrix (δ ∼ h),

dense matrix (δ � h),

H2
hierarchical matrix (δ � h)

Code: github.com/sandialabs/PyNucleus

Documentation and examples: sandialabs.github.io/PyNucleus

Available via cloud-hosted Jupyter notebook, container image, Spack package

py-pynucleus
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Code example

1 from PyNucleus import (kernelFactory, nonlocalMeshFactory, dofmapFactory,
2 functionFactory, HOMOGENEOUS_DIRICHLET, solverFactory)
3

4 # Infinite horizon fractional kernel
5 kernel = kernelFactory('fractional', dim=2, s=0.75, horizon=inf)
6

7 # Mesh for unit disc, no interaction domain for homogeneous Dirichlet
8 mesh, _ = nonlocalMeshFactory('disc', kernel=kernel,
9 boundaryCondition=HOMOGENEOUS_DIRICHLET,
10 hTarget=0.15)
11

12 dm = dofmapFactory('P1', mesh) # P1 finite elements
13 f = functionFactory('constant', 1.) # constant forcing
14 b = dm.assembleRHS(f) #

∫
Ω fφi

15 A = dm.assembleNonlocal(kernel, matrixFormat='h2') # a(φi, φj), H2-matrix
16 u = dm.zeros() # solution vector
17

18 # solve with diagonally preconditioned CG
19 solver = solverFactory('cg-jacobi', A=A, setup=True)
20 solver(b, u)
21 u.plot()
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Conclusion:

Discretized nonlocal equations are often dense, but not structurally dense.

→ Assembly and matrix-vector product inO(n log2d n) operations and memory

Multigrid (and domain decomposition) are also optimal for elliptic nonlocal problems.

Auxiliary operator approach allows to apply algebraic multigrid to hierarchical matrices.

Sparse matrix representation of hierarchical matrices allows to leverage a lot of existing

code.

Outlook:

Coefficients variations (AMG should be good for that!)

AMG for nonlocal operators in sparse format (δ/h small but denser than PDEs)

AMG for boundary integral equations

Inverse problems with variable order fractional Laplacians, Bayesian inference

Thanks for listening!

Funded by LDRD projects at Sandia:

MATNIP: MAThematical foundations for Nonlocal Interface Problems: multiscale

simulations for heterogeneous materials (FY20-22)

FOMSI: Fractional-Order Models for Sea Ice (FY23-25)
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Domain decomposition: FETI8,9,10

Substructuring - FETI

Break up global system into subdomains.

Couple via Lagrange multipliers on interfaces.

ΩI

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Ω7 Ω8 Ω9

For nonlocal operators with horizon δ = O(h):

Cover with overlapping subdomainsΩ ∪ ΩI =
⋃

Ωi,

diam (Ωi ∩ Ωj) ∼ δ for adjacent subdomains.

Duplicate unknowns in overlaps:

Au = f ⇔
(

Aεε MT

M 0

)(
uε
λ

)
=

(
fε
0

)
Aεε is block diagonal.

For floating subdomains, local matrix Ap is singular.

Binary matrixM encodes constraints on the overlaps.

Use projected CG solver, “Dirichlet” preconditioner.

8Giacomo Capodaglio, Marta D’Elia, Pavel Bochev, and Max Gunzburger. “An energy-based coupling approach to nonlocal

interface problems”. In: Computers & Fluids 207 (2020), p. 104593.
9Xiao Xu, Christian Glusa, Marta D’Elia, and John T. Foster. “A FETI approach to domain decomposition for meshfree

discretizations of nonlocal problems”. In: Computer Methods in Applied Mechanics and Engineering 387 (2021), p. 114148.
10Manuel Klar, Giacomo Capodaglio, Marta D’Elia, Christian Glusa, Max Gunzburger, and Christian Vollmann. “A scalable

domain decomposition method for FEM discretizations of nonlocal equations of integrable and fractional type”. In: arXiv

preprint arXiv:2306.00094 (2023).
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Weak scaling – 2D, constant kernel
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Figure: δ = 8e− 3→ κ ∼ const
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Weak scaling – 2D, fractional kernel, s = 0.4
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Strong scaling, 2D
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Figure: constant kernel, δ = 8h.
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Substructuring: Reduced system and Dirichlet preconditioner

Let nullspace of Aεε be given by Z.

Eliminate primal variables from(
Aεε MT

M 0

)(
uε
λ

)
=

(
fε
0

)
and obtain

P0Kλ = P0(MA
†
εεfε)

GTλ = ZT fε,

where K = MA
†
εεM

T , G = MZ, P0 = I− G(GTG)†GT .

Use projected CG to solve system.

P0 acts as a “coarse grid”.

Preconditioner for K:

Let Ap,Mp be local parts of Aεε andM.

Write K =
∑

P
p=1 MpA

†
pM

T
p =

∑
P
p=1 M̃pS

†
p M̃

T

p .

Dirichlet preconditioner: Q =
∑

P
p=1 M̃pSpM̃

T

p .

Results shown use Manuel Klar’s (U of Trier) assembly code

https://gitlab.uni-trier.de/klar/nonlocal-assembly
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