

Scalable methods for nonlocal models

Christian Glusa

■ Fractional and nonlocal models allow for a more accurate description of phenomena in a wide range of applications [13, 8]:

- anomalous diffusion, $\Delta t \sim \Delta x^{2 s}, s \neq 1$ [6],
- material science, peridynamics, low regularity requirements allow fractures [17, 5],

■ image processing [10, 14],

- finance [18],
- electromagnetic fluids [15].

■ Space-fractional equations arise naturally as the limit of discrete diffusion governed by stochastic processes with long jumps [16].

- My interests in fractional order equations:
- subsurface transport,
- subsurface imaging,
- sea ice dynamics,
- fast linear solvers

Elliptic nonlocal operators

Let $\delta \in(0, \infty]$ be the horizon, $\Omega \subset \mathbb{R}^{d}$ a bounded open domain, define the interaction domain

$$
\Omega_{1}:=\left\{\boldsymbol{y} \in \mathbb{R}^{d} \backslash \Omega:|\boldsymbol{x}-\boldsymbol{y}| \leq \delta, \text { for } \boldsymbol{x} \in \Omega\right\} .
$$

We want to numerically solve equations involving the nonlocal operator

$$
\mathcal{L} u(x)=\text { p.v. } \int_{\Omega \cup \Omega_{1}}(u(\boldsymbol{y})-u(x)) \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y}, \quad x \in \Omega
$$

with

$$
\begin{array}{ll}
\gamma(\boldsymbol{x}, \boldsymbol{y})=\phi(\boldsymbol{x}, \boldsymbol{y})|\mathbf{x}-\boldsymbol{y}|^{-\beta(\boldsymbol{x}, \boldsymbol{y})} \mathcal{X}_{|\boldsymbol{x}-\boldsymbol{y}| \leq \delta}, & \boldsymbol{x}, \boldsymbol{y} \in \Omega \cup \Omega_{1}, \\
\phi(\boldsymbol{x}, \boldsymbol{y})>0 .
\end{array}
$$

- Examples:
- Integral fractional Laplacian:

$$
\beta=d+2 s, s \in(0,1), \delta=\infty, \phi \sim \text { const }
$$

- Tempered fractional Laplacian:
$\phi(\boldsymbol{x}, \boldsymbol{y}) \sim \exp (-\lambda|\boldsymbol{x}-\boldsymbol{y}|)$
- Truncated fractional Laplacian: δ finite
- Variable order fractional Laplacians with varying coefficient: $\beta(\boldsymbol{x}, \boldsymbol{y})=d+2 s(\boldsymbol{x}, \boldsymbol{y})$ and $\beta(\boldsymbol{x}, \boldsymbol{y})=d+2 s(\boldsymbol{x})$
■ Integrable kernels: constant kernel ($\beta=0$), inverse distance kernel $(\beta=1$)
■ Normalized such that
■ $\delta \rightarrow 0$ or $s \rightarrow 1$ recovers local Laplacian $-\Delta$
■ $s \rightarrow 0$ recovers identity
- Nonlocal Poisson equation:

$$
\begin{aligned}
-\mathcal{L} u=f & \text { in } \Omega \\
u=g & \text { in } \Omega_{l} .
\end{aligned}
$$

- Nonlocal heat equation:

$$
\begin{aligned}
& u_{t}-\mathcal{L} u=f \quad \text { in }(0, T) \times \Omega \\
& u=g \quad \text { in }(0, T) \times \Omega_{I} \\
& u=u_{0} \quad \text { on }\{0\} \times \Omega
\end{aligned}
$$

- Source control:

$$
\min _{f} \frac{1}{2}\left\|u-u_{d}\right\|_{L^{2}}^{2}+\mathcal{R}(f) \quad \text { subject to nonlocal equation }
$$

- Parameter learning:

$$
\min _{s, \delta, \ldots} \frac{1}{2}\left\|u-u_{d}\right\|_{L^{2}}^{2}+\mathcal{R}(s, \delta, \ldots) \quad \text { subject to nonlocal equation }
$$

Goal

Assemble and solve nonlocal equations in similar complexity \& memory as their local counterparts, i.e. $\mathcal{O}\left(n \log ^{\alpha} n\right)$.

$$
\gamma(\boldsymbol{x}, \boldsymbol{y})=\phi(\boldsymbol{x}, \boldsymbol{y})|\boldsymbol{x}-\boldsymbol{y}|^{-d+s(\boldsymbol{x}, \boldsymbol{y})} \mathcal{X}_{|\boldsymbol{x}-\boldsymbol{y}| \leq \delta}
$$

Theorem

Let

$$
\alpha(r):=\sup _{|\mathbf{x}-\boldsymbol{y}| \leq r}|\phi(\boldsymbol{x}, \boldsymbol{y})-\phi(\boldsymbol{y}, \boldsymbol{x})|, \quad \beta(r):=\sup _{|\mathbf{x}-\boldsymbol{y}| \leq r}|s(\boldsymbol{x}, \boldsymbol{y})-s(\boldsymbol{y}, \boldsymbol{x})| .
$$

Assume that

$$
\int_{0}^{1} d r \frac{\alpha(r)^{2}}{r^{1+2 \bar{s}}}<\infty, \quad \quad \int_{0}^{1} d r \frac{(\beta(r)|\log r|)^{2}}{r^{1+2 \bar{s}}}<\infty
$$

and that f has sufficient regularity. Then the variational formulation of

$$
-\mathcal{L} u(\boldsymbol{x})=f(\boldsymbol{x}), \quad u(\boldsymbol{x})=g(\boldsymbol{x})
$$

is well-posed.

Interpretation

- s and ϕ need to be symmetric in the limit $\boldsymbol{x} \rightarrow \boldsymbol{y}$.

■ Anti-symmetric part of coefficients has to decay fast enough.
■ Particular case $s(\boldsymbol{x}, \boldsymbol{y})=s(\boldsymbol{x})$: need $s(\boldsymbol{x})$ to be Hölder continuous.

Variational formulation

■ We consider

$$
\begin{aligned}
a(u, v)= & \frac{1}{2} \int_{\Omega} d \boldsymbol{x} \int_{\Omega} d \boldsymbol{y}[(u(\boldsymbol{x})-u(\boldsymbol{y}))(v(\boldsymbol{x})-v(\boldsymbol{y}))] \gamma(\boldsymbol{x}, \boldsymbol{y}) \\
& +\int_{\Omega} d \boldsymbol{x} \int_{\Omega_{I}} d \boldsymbol{y} u(\boldsymbol{x}) v(\boldsymbol{x}) \gamma(\boldsymbol{x}, \boldsymbol{y})
\end{aligned}
$$

posed

$$
V:=\left\{u \in L^{2}\left(\mathbb{R}^{d}\right) \mid\|u\|_{V}<\infty\right\}, \quad V_{0}:=\left\{u \in V \mid u=0 \text { in } \Omega_{l}\right\}
$$

and

$$
\|u\|_{V}^{2}=\iint_{\left(\Omega \cup \Omega_{l}\right)^{2}}(u(\boldsymbol{x})-u(\boldsymbol{y}))^{2} \gamma(\boldsymbol{x}, \boldsymbol{y})
$$

■ Reduces to $L^{2}\left(\Omega \cup \Omega_{I}\right)$ for integrable kernels and to $H^{s}\left(\Omega \cup \Omega_{I}\right)$ for constant order fractional kernels.
\square For $\delta=\infty$, if $\gamma(\boldsymbol{x}, \boldsymbol{y})=\nabla_{\boldsymbol{y}} \cdot \boldsymbol{\Gamma}(\boldsymbol{x}, \boldsymbol{y})$, can reduce integral from $\Omega \times \Omega_{1}$ to $\Omega \times \partial \Omega$, e.g. $\Gamma(\boldsymbol{x}, \boldsymbol{y}) \sim \frac{\boldsymbol{x}-\boldsymbol{y}}{|\boldsymbol{x}-\boldsymbol{y}|^{d+2 s}}$ for the fractional kernels.

Finite element approximation

- Partition domain Ω into shape-regular mesh $\mathcal{P}_{h}=\{K\}$ with mesh size h and with edges e on the boundary $\partial \Omega$.
\square Set $V_{h} \subset V$ the space of continuous, piecewise linear functions.

$$
\begin{aligned}
a(u, v)= & \frac{1}{2} \sum_{K} \sum_{\tilde{K}} \int_{K} d \boldsymbol{x} \int_{\tilde{K}} d \boldsymbol{y}(u(x)-u(\boldsymbol{y}))(v(\boldsymbol{x})-v(\boldsymbol{y})) \gamma(\boldsymbol{x}, \boldsymbol{y}) \\
& +\sum_{K} \sum_{e} \int_{K} d x u(x) v(\boldsymbol{x}) \int_{e} d \boldsymbol{y} \boldsymbol{n}_{e} \cdot \Gamma(\boldsymbol{x}, \boldsymbol{y}) .
\end{aligned}
$$

$\operatorname{dim} V_{h}=: n$
■ No closed form for local stiffness matrix \rightarrow need to use numerical quadrature
$■$ Finite horizon δ or jumps in kernels: approximate with sub-simplices, $\mathcal{O}\left(h_{K}^{2}\right)$ error ${ }^{1}$

[^0]
Quadrature

- In subassembly procedure, use quadrature to evaluate element pair contributions:

$$
a^{K \times \tilde{K}^{\prime}}\left(\phi_{i}, \phi_{j}\right)=\frac{1}{2} \int_{K} d \boldsymbol{x} \int_{\tilde{K}} d \boldsymbol{y}\left(\phi_{i}(\boldsymbol{x})-\phi_{i}(\boldsymbol{y})\right)\left(\phi_{j}(\boldsymbol{x})-\phi_{j}(\boldsymbol{y})\right) \gamma(\boldsymbol{x}, \boldsymbol{y})
$$

- Treatment for element pairs $K \cap \tilde{K} \neq \emptyset$, containing the singularity at $\boldsymbol{x}=\boldsymbol{y}$:

- split $K \times \tilde{K}$ into sub-simplices,
- Duffy transform onto a hypercube, with Jacobian canceling the singularity.
- Choose quadrature order so that quadrature error \leq discretization error ${ }^{2}$:
- $\left|\log h_{K}\right|$ if the elements coincide (red),
- $\left|\log h_{K}\right|^{2}$ if the elements share only an edge (yellow),
- $\left|\log h_{K}\right|^{3}$ if the elements share only a vertex (blue),
- $\left|\log h_{K}\right|^{4}$ if the elements are "near neighbours" (green), and
- C if the elements are well separated.

[^1]
Regularity for the fractional Poisson problem

Theorem (Grubb [11] and Acosta and Borthagaray [1])

Take $\delta=\infty$ and let $\partial \Omega \in C^{\infty}, f \in H^{r}(\Omega)$ for $r \geq-s$ and $u \in \widetilde{H}^{s}(\Omega)$ be the solution of the fractional Poisson problem. Then the following regularity estimate holds:

$$
u \in H^{s+\vartheta}(\Omega), \quad \vartheta=\min \{s+r, 1 / 2-\varepsilon\} \forall \varepsilon>0
$$

Figure: Solutions $u=C\left(1-|\mathbf{x}|^{2}\right)^{s} \sim \operatorname{dist}(\boldsymbol{x}, \partial \Omega)^{s}$ corresponding to the constant right-hand side $f=1$ for $s=0.25$ and for $s=0.75, \delta=\infty$.

Finite element approximation: a priori error estimates

Lemma (Quasi-uniform mesh (Acosta and Borthagaray [1]))

If $u \in H^{s+\vartheta}(\Omega)$, for $s+\vartheta \in(1 / 2,2]$ and $0<\vartheta$, then

$$
\left\|u-u_{h}\right\|_{\tilde{H}^{s}(\Omega)} \leq C h^{\vartheta}|u|_{H^{s}+\vartheta(\Omega)} .
$$

In practice, $\vartheta \leq 1 / 2-\varepsilon$, so $h^{1 / 2-\varepsilon}$ convergence in $\widetilde{H}^{s}(\Omega)$ at best.

Lemma (Non-uniform meshes)

If $u \in H^{s+\vartheta}(\Omega) \cap H_{\text {loc }}^{s+\ell}(\Omega)$, for $s+\vartheta, s+\ell \in(1 / 2,2]$ and $0<\vartheta \leq \ell$, i.e. if u has Sobolev regularity $s+\vartheta$ and interior regularity $s+\ell$, then

$$
\left\|u-u_{h}\right\|_{\tilde{H}^{s}(\Omega)} \leq C\left(h^{\ell}|u|_{H_{l o c}^{s+\ell}(\Omega)}+h_{\partial}^{\vartheta}|u|_{H^{s+\vartheta}(\Omega)}\right),
$$

where h_{∂} is the maximum size of all elements K whose patch touches the boundary.
Picking $h_{\partial} \sim h^{\ell / \vartheta}$, the optimal rate of convergence is $h^{2-s} \sim n^{(s-2) / d}$ due to better interior regularity. Unfortunately, shape regularity constrains us to $n^{-1 / d}$ in dimensions $d>1$.

FEM convergence rates

(Assuming maximum RHS regularity)

				$\Omega)$		(Ω)	
$\stackrel{r}{\\|}$...	quasi-uniform	$h^{1 / 2}$	$\frac{1}{n^{1 / 2}}$	$h^{(1 / 2+s) \wedge 1}$	$\frac{1}{n^{(1 / 2+s) \wedge 1}}$	
	+..........-	graded / adaptive		$\frac{1}{n^{2-s}}$		$\frac{1}{n^{2}}$	
$\begin{aligned} & \text { N } \\ & \underset{\sim}{N} \end{aligned}$		quasi-uniform	$h^{1 / 2}$	$\frac{1}{n^{1 /(2 d)}}$	$h^{(1 / 2+s) \wedge 1}$	$\frac{1}{n^{(1 / 2+s) / d) \wedge(1 / d)}}$	
		graded / adaptive		$\frac{1}{n^{1 / d}}$		$\frac{1}{n^{(1+s) / d}}$	

After FEM discretization:

$$
A \boldsymbol{u}=\boldsymbol{b}, \quad A \in \mathbb{R}^{n \times n}
$$

Depending on δ and h :

- Straightforward discretization can lead to a fully dense matrix.
- Assembly and solve would have complexity and memory
- $\mathcal{O}\left(n\left(\frac{\delta}{h}\right)^{d}\right)$ for $\delta<\infty$ and
- $\mathcal{O}\left(n^{2}\right)$ for $\delta=\infty$.

Better approach

Panel clustering / Fast Multipole Method / hierarchical matrix approximation

- Split operator into near and far interactions
- Directly assembly near interactions
- Low-rank approximation of far interactions

■ Keep approximation error below discretization error to preserve FE convergence.

Hierarchical matrices: Admissible sub-blocks

Tasks:

1. Choose sub-blocks to be compressed.
2. Construct low-rank approximations.

Build tree of clusters of DoFs.

- root contains all unknowns
- subdivision based on DoF coordinates

■ distributed computations: first level given by MPI distribution of unknowns
Admissibility criterion:
■ Cluster pairs (P, Q) that are sufficiently separated compared to their sizes are admissible for compression:

$$
\eta \operatorname{dist}(P, Q) \leq \max \{\operatorname{diam}(P), \operatorname{diam}(Q)\}, \quad \eta>0 \text { fixed parameter }
$$

- Matrix entries that are not admissible are assembled directly into a sparse near-field matrix $A_{\text {near }}$.

■ Splitting of operator into sub-blocks based on admissibility

$$
A=A_{\text {near }}+A_{\text {far }}=A_{\text {near }}+\sum_{\text {blocks }(P, Q)} A_{P, Q}
$$

- \mathcal{H}-matrix approximation

$$
A_{P, Q} \approx U_{P} \Gamma_{P, Q} U_{Q}^{T} \quad \text { (low-rank approximation) }
$$

I use Chebyshev interpolation, but other techniques are possible, e.g. Adaptive Cross Approximation (ACA).

- \mathcal{H}^{2}-matrices

Using hierarchical nestedness of clusters, can express

$$
U_{P}=\sum_{Q \text { child of } P} U_{Q} T_{Q, P}
$$

Matrix-vector product with an \mathcal{H}^{2}-matrix

Steps:
■ Matvec with sparse near-field matrix
■ Upward recursion

- Cluster-cluster interaction
- Downward recursion

\mathcal{H}^{2}-matrix approximation

Matrix-vector product (and FE assembly) in $\mathcal{O}\left(n \log ^{2 d} n\right)$ operations \& memory.
Approximation error same order as discretization error.

Recast hierarchical matrix in terms of sparse matrices

- No special purpose code
- Leverage well-optimized distributed sparse linear algebra

Reindexing of far-field leads to

$$
A \approx A_{\text {near }}+B\left[\left(I+T_{K}\right) \cdots\left(I+T_{1}\right)\right] \Gamma\left[\left(I+T_{1}\right)^{T} \cdots\left(I+T_{K}\right)^{T}\right] B^{T}
$$

$A_{\text {near }}$ and Γ involve MPI communication, all other matrices are block diagonal

Potential to leverage block structure, but requires support for variable block sizes.
\rightarrow I am using point CRS matrices at the moment.

Conditioning and scalable solvers

■ $\mathcal{O}(n \log n)$ matrix-vector product in all cases \rightarrow can explore iterative solvers

- Steady-state:

■ Fractional kernel, $\delta=\infty^{3}: \kappa(\mathbf{A}) \sim h^{-2 s} \sim n^{2 s / d}$

- Fractional kernel, $\delta \leq \delta_{0}{ }^{4}: \kappa(\boldsymbol{A}) \sim \delta^{2 s-2} h^{-2 s} \sim \delta^{2 s-2} n^{2 s / d}$
- Integrable kernel, δ finite ${ }^{8}: \kappa(\boldsymbol{A}) \sim \delta^{-2}$
- Time-dependent:

■ $\kappa(\mathbf{M}+\Delta t \mathbf{A}) \sim 1+\Delta t \kappa(\mathbf{A})$
■ Depending on time-stepper and CFL condition, this is well-conditioned for small s, large δ.

- Scalable solver options:
- Multigrid
- Geometric (GMG)
- Algebraic (AMG)

■ Domain decomposition

- Substructuring
- Schwarz methods
- Krylov methods

The matrix is well-conditioned in the certain parameter regimes, e.g.

- integrable kernel, δ large, or
- or fractional kernel, s small, δ large.

[^2]
Geometric multigrid in a nutshell

User specifies:
■ Operators A_{ℓ}, assembled on hierarchy of nested meshes

- Transfer operators: prolongations $P_{\ell+1 \rightarrow \ell}$, restrictions $R_{\ell \rightarrow \ell+1}=P_{\ell+1 \rightarrow \ell}^{T}$,

■ Smoothers $\mathcal{S}_{\ell}^{\text {pre/post }}$ (e.g. Jacobi)
■ Coarse solver \mathcal{S}_{L}
How does multigrid work?
■ On each level: smoother reduces high frequency error, low frequency error is transferred to coarser levels

■ High/low frequency splitting depends on mesh
Drawbacks:
■ Need hierarchy of nested meshes, complications for locally refined meshes
■ Assembly on every level, tight coupling between assembly and solve

Geometric multigrid (GMG) for nonlocal equations

- Hierarchy of meshes from uniform or adaptive refinement

■ Restriction / prolongation given by nesting of FE spaces
■ Assembly into hierarchical or CSR matrix format on every level
■ Smoothers:
■ Jacob, Chebyshev for \mathcal{H}-matrices
■ no constraints for CSR matrices.
■ Coarse solve: convert to dense or CSR matrix

Test problems:

$$
\begin{aligned}
&-\mathcal{L} u=f \quad \text { in } \Omega=B_{1}(\mathbf{0}) \subset \mathbb{R}^{2} \\
& u=0 \quad \text { in } \Omega_{l}
\end{aligned}
$$

1. $s \equiv 0.25$,
2. $s \equiv 0.75$,
3. $s= \begin{cases}0.25 & x_{0} \leq 0.1, \\ \text { cubic transition } & 0.1 \leq x_{0} \leq 0.1, \\ 0.75 & 0.1 \leq x_{0}\end{cases}$

Numerical Examples - errors

Single core on Intel Broadwell (SNL/Solo)

Figure: Timings and memory usage for assembly of the stiffness matrix for fractional kernels, $\delta=\infty$ and solution of linear system using Geometric Multigrid for the two-dimensional problem.
$s=0.25$ on the left, $s=0.75$ in the middle, $s(\boldsymbol{x})$ on the right.

Numerical Examples - assembly and solve

Single core on Intel Broadwell (SNL/Solo)

Figure: Timings and memory usage for assembly of the stiffness matrix for fractional kernels, $\delta=\infty$ and solution of linear system using Geometric Multigrid for the two-dimensional problem.
$s=0.25$ on the left, $s=0.75$ in the middle, $s(\boldsymbol{x})$ on the right.

Numerical Examples - weak scaling

Intel Broadwell (SNL/Solo)

\square assembly time $\quad \rightarrow$ matrix memory
$\square{ }_{p}^{n} \log ^{4} n$

\square assembly time - matrix memory
-
${ }_{p}^{n} \log ^{4} n$

$$
\rightarrow \text { assembly time } \quad \rightarrow \text { matrix memory }
$$

$$
-\frac{n}{P} \log ^{4} n
$$

Figure: Timings and memory usage for assembly of the stiffness matrix for fractional kernels, $\delta=\infty$ for the two-dimensional problem.
$s=0.25$ on the left, $s=0.75$ in the middle, $s(\boldsymbol{x})$ on the right.

- Bad load balancing for $s(x)$

■ Regular CSR sparse matrices are efficient (complexity, memory) for small horizon $\delta \sim h$.

- \mathcal{H}^{2}-matrices are efficient for $\delta=\infty$.

■ Low-rank approximation relies on smoothness of the kernel
\rightarrow need to fully assemble entries near $\partial \mathrm{B}_{\delta}(\boldsymbol{x})$.

At what ratio δ / h do \mathcal{H}^{2}-matrices become more efficient than sparse matrices?

$\square \Omega \subset \mathbb{R}^{2}, \gamma(\boldsymbol{x}, \boldsymbol{y})=c_{d, \delta} \mathcal{X}_{|\mathbf{x}-\boldsymbol{y}| \leq \delta}$
■ Break-even:

- 1D: $\delta / h \sim 100-200$
- 2D: $\delta / h \sim 5-10$
- Break-even depends on:
- Cost of quadrature
- Lots of implementation details

Smoothed Aggregation Algebraic multigrid (SA-AMG)

Drawbacks of Geometric Multigrid
\square Good (nested) coarse meshes might be hard to come by for adaptively refined or graded meshes

- FE assembly of operators on all levels is not cheap

Algebraic multigrid mimics geometric multigrid while only using algebraic information.
Inputs:
$■ A_{0}$, DoF coordinates \boldsymbol{c}, near-nullspace (constant function, rigid body modes, ...)
AMG setup
■ construction of transfer operators $P_{\ell+1 \rightarrow \ell}$ using algebraic information (e.g. matrix graph, strength of connection)

■ Galerkin projection $A_{\ell+1}=P_{\ell+1 \rightarrow \ell}^{\top} A_{\ell} P_{\ell+1 \rightarrow \ell}$

Issues for nonlocal problems:

■ Many graph algorithms used in AMG cannot be applied to \mathcal{H}-matrices as they rely access to matrix entries.

■ Inefficient for operators that are too dense.
■ Hierarchical information contained in \mathcal{H}-matrix does not translate directly to a multigrid hierarchy.

Auxiliary operator multigrid

Idea

- Construct multigrid transfer operators $\left\{P_{\ell+1, \ell}\right\}$ wrt an auxiliary matrix \widetilde{A}_{0}.
- Then construct preconditioner via Galerkin projections $A_{\ell+1}=P_{\ell+1 \rightarrow \ell}^{\top} A_{\ell} P_{\ell+1 \rightarrow \ell}$.

Requirements for auxiliary operator \widetilde{A}_{0} :

- sparse
- contains sufficient information about nonlocal problem (mesh, coefficients, kernel, ...)

Possible auxiliary operators:

- PDE Laplacian on the same mesh
- distance Laplacian on graph G of filtered near-field matrix

$$
L_{i j}=\left\{\begin{array}{ll}
-1 /\left|\boldsymbol{c}_{i}-\boldsymbol{c}_{j}\right| & \text { if }(i, j) \in G, i \neq j, \\
-\sum_{k \neq i} L_{i k} & \text { if } i=j,
\end{array} \quad\left(c_{i} \text { are DoF coordinates }\right)\right.
$$

- lumped and re-scaled near-field matrix

Galerkin projection:
If

$$
A=A_{\text {near }}+B\left[\left(I+T_{K}\right) \cdots\left(I+T_{1}\right)\right] \Gamma\left[\left(I+T_{1}\right)^{T} \cdots\left(I+T_{K}\right)^{T}\right] B^{T}
$$

then

$$
P^{\top} A P=\underbrace{P^{\top} A_{\text {near }} P}_{\text {multiplied out }}+\underbrace{\left(P^{T} B\right)}_{\text {multiplied out }}\left[\left(I+T_{K}\right) \cdots\left(I+T_{1}\right)\right] \Gamma\left[\left(I+T_{1}\right)^{T} \cdots\left(I+T_{K}\right)^{T}\right]\left(P^{T} B\right)^{T}
$$

- Galerkin projection of \mathcal{H}^{2}-matrix is an \mathcal{H}^{2}-matrix.

■ Uses the same compression of the off-rank matrix blocks.
\rightarrow Will become inefficient, especially after several multigrid coarsenings.
\rightarrow Need to recompress coarse operators

Recompression: What would geometric MG do?

1D example, mesh sizes h and $2 h$

■ red = near field cluster pairs
■ blue = far field cluster pairs, rank of approximation in white

- cluster pairs that are admissible on coarse mesh are admissible on fine mesh, but approximation rank differs
■ some cluster pairs on fine mesh are not admissible on coarse mesh, since represented block becomes to small to be represented by low-rank matrices

Recompression strategy

■ Keep ranks of approximations.
■ Multiply out small low-rank clusters and add to near field.

Recompression in terms of matrix operations

In order to drop the last level K of the operator

$$
A=A_{\text {near }}+B\left[\left(I+T_{K}\right) \cdots\left(I+T_{1}\right)\right] \Gamma\left[\left(I+T_{1}\right)^{T} \cdots\left(I+T_{K}\right)^{T}\right] B^{T},
$$

we split off the last level of cluster interactions

$$
\Gamma=\tilde{\Gamma}+\Gamma_{K}
$$

and reorder terms

$$
\begin{aligned}
A= & {\left[A_{\text {near }}+B\left(I+T_{K}\right) \Gamma_{K}\left(I+T_{K}\right)^{T} B^{T}\right] } \\
& +\left[B\left(I+T_{K}\right)\right]\left[\left(I+T_{K-1}\right) \cdots\left(I+T_{1}\right)\right] \tilde{\Gamma}\left[\left(I+T_{1}\right)^{T} \cdots\left(I+T_{K-1}\right)^{T}\right]\left[B\left(I+T_{K}\right)\right]^{T}
\end{aligned}
$$

leading to

$$
A=\tilde{A}_{\text {near }}+\tilde{B}\left[\left(I+T_{K-1}\right) \cdots\left(I+T_{1}\right)\right] \tilde{\Gamma}\left[\left(I+T_{1}\right)^{T} \cdots\left(I+T_{K-1}\right)^{T}\right] \tilde{B}^{\top}
$$

where

$$
\tilde{B}=B\left(I+T_{K}\right), \quad \tilde{A}_{\text {near }}=A_{\text {near }}+\tilde{B} \Gamma_{K} \tilde{B}^{T}
$$

are explicitly formed.

- All operations required for Galerkin projection and recompression use sparse matrix-matrix addition \& multiplication.
- Since the ranks for low-rank blocks and transfers do not change, only $\tilde{A}_{\text {near }}$ and \tilde{B} need to be explicitly saved on coarse levels.

Implementation details

TiNGNTS

Components:

- PyNucleus ${ }^{5}$ for assembly of nonlocal operators

■ Trilinos/Tpetra ${ }^{6}$ for distributed sparse linear algebra
■ Trilinos/Belos ${ }^{7}$ for Krylov solvers
■ Trilinos/MueLu ${ }^{7}$ for Algebraic Multigrid
■ Kokkos ${ }^{7}$ programming model for performance portability

Features:

■ \mathcal{H} - and \mathcal{H}^{2}-matrices, reader for hierarchical operators

- Krylov solvers, AMG preconditioner

■ MPI distributed
■ Compute architectures supported by Kokkos: CPU (Serial, OpenMP), GPU (Cuda, HIP, ...), ...

[^3]Solo, SNL, Broadwell CPUs

■ Quasi-uniform mesh, P1 elements
■ 2 Jacobi sweeps of pre-/post-smoothing
■ LAPACK coarse solve

		memory (finest level)		iterations (time)	
DoFs	ranks	dense	\mathcal{H}^{2}	PDE Δ	distance Δ
12,173	4	1.1 GB	0.1 GB	$8(0.15 \mathrm{~s})$	$8(0.14 \mathrm{~s})$
49,139	18	18 GB	0.55 GB	$8(0.47 \mathrm{~s})$	$9(0.54 \mathrm{~s})$
197,565	72	291 GB	3 GB	$9(0.73 \mathrm{~s})$	$10(0.84 \mathrm{~s})$
792,548	288	$4,680 \mathrm{~GB}$	19.7 GB	$9(1.43 \mathrm{~s})$	$10(1.56 \mathrm{~s})$
n	n	n^{2}	$n \log ^{4} n$	constant $\left(\log ^{4} n\right)$	

Table: 2D fractional Poisson problem on unit disk, $s=0.75, \delta=\infty$

- Dense matrices only for comparison.
- Only the first two dense problems would actually fit in memory on their respective job allocations.

Numerical results - Comparison with unpreconditioned CG

■ Both solvers use a \mathcal{H}^{2}-matrix.
■ AMG preconditioned solve is scalable, Krylov by itself is not.

Numerical results - graded meshes

- Motivation: resolution of low regularity near domain boundary improves convergence of discretization error
■ Weak scaling of solve time needs work (load balancing).

			memory (finest level)		iterations (time)
DoFs	$h_{\max } / h_{\min }$	ranks	dense	\mathcal{H}^{2}	CG+SA-AMG
15,852	105	4	1.87 GB	0.33 GB	$7(0.37 \mathrm{~s})$
78,674	218	18	46.1 GB	2.4 GB	$7(1.74 \mathrm{~s})$
363,472	439	72	984.3 GB	16.6 GB	$8(3.73 \mathrm{~s})$

Table: 2D fractional Poisson problem on graded unit disk, $s=0.75, \delta=\infty$

Lassen, LLNL, V100 GPUs

		memory (finest level)		iterations (time)
DoFs	ranks	dense	\mathcal{H}^{2}	CG+SA-AMG
49,139	4	18 GB	0.6 GB	$9(0.12 \mathrm{~s})$
197,565	16	291 GB	2.9 GB	$11(0.29 \mathrm{~s})$
792,548	64	$4,680 \mathrm{~GB}$	14.7 GB	$12(0.62 \mathrm{~s})$
$3,175,042$	256	$75,109 \mathrm{~GB}$	61.9 GB	$12(1.79 \mathrm{~s})$

Table: 2D fractional Poisson problem on unit disk, $s=0.75, \delta=\infty$

- 1000x reduction in memory

■ Weak scaling behavior can be improved (no AMG parameter tuning for GPU so far)

Domain decomposition: Schwarz methods (WIP, with Pierre Marchand (INRIA))

■ Schwarz method

- overlapping subdomain restrictions $\left\{\boldsymbol{R}_{p}\right\}$, local matrices $\mathrm{A}_{p}=\boldsymbol{R}_{p} \boldsymbol{A R} \boldsymbol{R}_{p}^{\top}$
- partition of unity $\sum_{p=1}^{p} \boldsymbol{R}_{p}^{\top} \boldsymbol{D}_{p} \boldsymbol{R}_{p}=\mathbf{I}$, with $\left\{\boldsymbol{D}_{p}\right\}$ diagonal
- additive Schwarz preconditioner: $\mathbf{Q}_{1}:=\sum_{p=1}^{p} \boldsymbol{R}_{p}^{\top} \boldsymbol{A}_{p}^{-1} \boldsymbol{R}_{p}$, or restricted additive Schwarz

■ No global information exchange \rightarrow need a coarse grid

- GenEO approach:

Span coarse space using solutions of subdomain eigenvalue problems
$\boldsymbol{D}_{p} \boldsymbol{A}_{p} \boldsymbol{D}_{p} \boldsymbol{v}_{p, k}=\lambda_{p, k} \boldsymbol{B}_{p} \boldsymbol{v}_{p, k}$, where \boldsymbol{B}_{p} is similar to \boldsymbol{A}_{p}, but assembled over a modified local mesh.

■ Distributed \mathcal{H}-matrix is built using Pierre Marchand's Htool library https://github.com/htool-ddm/htool

■ HPDDM library for Schwarz DD and GenEO https://github.com/hpddm/hpddm

- 2D fractional Poisson problem, $s=0.75, \delta=\infty$ on Sandia's Solo machine

		memory (finest level)		iterations (time)
unknowns	\# MPI ranks	dense	\mathcal{H}	GMRES+DD
65,025	72	31.5 GB	5.4 GB	$21(1.34 \mathrm{~s})$
261,121	288	508 GB	12.6 GB	$23(0.96 \mathrm{~s})$
$1,046,529$	1152	$8,160 \mathrm{~GB}$	86 GB	$24(2.4 \mathrm{~s})$

- Caveats:

■ solver setup needs improvement, working on alternative low-rank approximations

- direct solves (subdomain, coarse) and eigenvalue problems in dense format

Advertisement: PyNucleus, a FEM code for nonlocal problems

■ Interface in Python, computational kernels via Cython, C, C++.

- Compatible with NumPy/SciPy

■ Simplical meshes in 1D, 2D, 3D; refinement with boundary snapping options

- MPI distributed computations via mpi4py
- Partitioning using (Par)METIS
- Finite Element discretizations: discontinuous P_{0}, continuous P_{1}, P_{2}, P_{3}
- Assembly of local differential operators

■ Lots of solvers (direct, Krylov, simple preconditioners), and in particular geometric multigrid
WIP: AMG (Trilinos/MueLu), DD (Htool\&HPDDM)

- Assembly of the nonlocal operators in weak form into

■ CSR sparse matrix ($\delta \sim h$),

- dense matrix ($\delta \gg h$),
- \mathcal{H}^{2} hierarchical matrix $(\delta \gg h)$

■ Code: github.com/sandialabs/PyNucleus
■ Documentation and examples: sandialabs.github.io/PyNucleus
■ Available via cloud-hosted Jupyter notebook, container image, Spack package py-pynucleus

Code example

```
from PyNucleus import (kernelFactory, nonlocalMeshFactory, dofmapFactory,
                        functionFactory, HOMOGENEOUS_DIRICHLET, solverFactory)
# Infinite horizon fractional kernel
kernel = kernelFactory('fractional', dim=2, s=0.75, horizon=inf)
# Mesh for unit disc, no interaction domain for homogeneous Dirichlet
mesh, _ = nonlocalMeshFactory('disc', kernel=kernel,
                                    boundaryCondition=HOMOGENEOUS_DIRICHLET,
                                    hTarget=0.15)
dm = dofmapFactory('P1', mesh) # P1 finite elements
f = functionFactory('constant', 1.) # constant forcing
b = dm.assembleRHS(f) # { fr f &i
A = dm.assembleNonlocal(kernel, matrixFormat='h2') #a(㿟, 的), \mathcal{H}}\mp@subsup{}{2}{\prime}\mathrm{ -matrix
u = dm.zeros() # solution vector
# solve with diagonally preconditioned CG
solver = solverFactory('cg-jacobi', A=A, setup=True)
solver(b, u)
u.plot()
```

■ Discretized nonlocal equations are often dense, but not structurally dense.
\rightarrow Assembly and matrix-vector product in $\mathcal{O}\left(n \log ^{2 d} n\right)$ operations and memory
■ Multigrid (and domain decomposition) are also optimal for elliptic nonlocal problems.

- Auxiliary operator approach allows to apply algebraic multigrid to hierarchical matrices.
- Sparse matrix representation of hierarchical matrices allows to leverage a lot of existing code.

Outlook:
■ Coefficients variations (AMG should be good for that!)
■ AMG for nonlocal operators in sparse format (δ / h small but denser than PDEs)

- AMG for boundary integral equations

■ Inverse problems with variable order fractional Laplacians, Bayesian inference

Thanks for listening!

Funded by LDRD projects at Sandia:
■ MATNIP: MAThematical foundations for Nonlocal Interface Problems: multiscale simulations for heterogeneous materials (FY20-22)

- FOMSI: Fractional-Order Models for Sea Ice (FY23-25)

References I

[1] Gabriel Acosta and Juan Pablo Borthagaray. "A fractional Laplace equation: regularity of solutions and Finite Element approximations". In: SIAM Journal on Numerical Analysis 55.2 (2017).
[2] Mark Ainsworth and Christian Glusa. "Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver". In: Computer Methods in Applied Mechanics and Engineering (2017).
[3] Mark Ainsworth, William McLean, and Thanh Tran. "The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling". In: SIAM Journal on Numerical Analysis 36.6 (1999).
[4] Burak Aksoylu and Zuhal Unlu. "Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces". In: SIAM Journal on Numerical Analysis 52.2 (2014).
[5] Peter W. Bates. "On some nonlocal evolution equations arising in materials science". In: Nonlinear dynamics and evolution equations 48 (2006).
[6] David A. Benson, Stephen W. Wheatcraft, and Mark M. Meerschaert. "Application of a fractional advection-dispersion equation". In: Water Resources Research 36.6 (2000).
[7] Giacomo Capodaglio et al. "An energy-based coupling approach to nonlocal interface problems". In: Computers \& Fluids 207 (2020).
[8] Marta D'Elia et al. "Numerical methods for nonlocal and fractional models". In: Acta Numerica 29 (2020).
[9] Marta D'Elia, Max Gunzburger, and Christian Vollmann. "A cookbook for approximating Euclidean balls and for quadrature rules in finite element methods for nonlocal problems". In: Mathematical Models and Methods in Applied Sciences 31.08 (2021).
[10] Paolo Gatto and Jan S Hesthaven. "Numerical approximation of the fractional laplacian via hp-finite elements, with an application to image denoising". In: Journal of Scientific Computing 65.1 (2015).
[11] Gerd Grubb. "Fractional Laplacians on domains, a development of Hörmander's theory of μ-transmission pseudodifferential operators". In: Advances in Mathematics 268 (2015).
[12] Manuel Klar et al. "A scalable domain decomposition method for FEM discretizations of nonlocal equations of integrable and fractional type". In: arXiv preprint arXiv:2306.00094 (2023).
[13] Anna Lischke et al. "What is the fractional Laplacian? A comparative review with new results". In: Journal of Computational Physics 404 (2020).
[14] Yifei Lou et al. "Image recovery via nonlocal operators". In: Journal of Scientific Computing 42.2 (2010).
[15] B. M. McCay and M. N. L. Narasimhan. "Theory of nonlocal electromagnetic fluids". In: Archives of Mechanics 33.3 (1981).
[16] Mark M. Meerschaert and Alla Sikorskii. Stochastic models for fractional calculus. Vol. 43. de Gruyter Studies in Mathematics. Walter de Gruyter \& Co., Berlin, 2012.

References III

[17] Stewart A. Silling. "Reformulation of elasticity theory for discontinuities and long-range forces". In: Journal of the Mechanics and Physics of Solids 48.1 (2000).
[18] Peter Tankov. Financial modelling with jump processes. Vol. 2. CRC press, 2003.
[19] Xiao Xu et al. "A FETI approach to domain decomposition for meshfree discretizations of nonlocal problems". In: Computer Methods in Applied Mechanics and Engineering 387 (2021).

Substructuring - FETI

- Break up global system into subdomains.
- Couple via Lagrange multipliers on interfaces.

For nonlocal operators with horizon $\delta=\mathcal{O}(h)$:
■ Cover with overlapping subdomains $\Omega \cup \Omega_{l}=\bigcup \Omega_{\mathrm{i}}$, $\operatorname{diam}\left(\Omega_{i} \cap \Omega_{j}\right) \sim \delta$ for adjacent subdomains.
■ Duplicate unknowns in overlaps:

$$
\mathbf{A} \mathbf{u}=\mathbf{f} \Leftrightarrow\left(\begin{array}{cc}
\mathbf{A}_{\epsilon \epsilon} & \mathbf{M}^{\top} \\
\mathbf{M} & 0
\end{array}\right)\binom{\mathbf{u}_{\epsilon}}{\boldsymbol{\lambda}}=\binom{\mathbf{f}_{\epsilon}}{0}
$$

■ $\boldsymbol{A}_{\epsilon \epsilon}$ is block diagonal.

- For floating subdomains, local matrix A_{p} is singular.
- Binary matrix \mathbf{M} encodes constraints on the overlaps.

■ Use projected CG solver, "Dirichlet" preconditioner.

[^4]
Weak scaling - 2D, constant kernel

Figure: $\delta=8 e-3 \rightarrow \kappa \sim$ const

Figure: $\delta=4 h \rightarrow \kappa \sim n$

Weak scaling - 2D, fractional kernel, $s=0.4$

Figure: $\delta=8 e-3 \rightarrow \kappa \sim n^{5}$

Figure: $\delta=4 h \rightarrow \kappa \sim n$

Figure: constant kernel, $\delta=8$ h.

Figure: fractional kernel, $s=0.4, \delta=8 h$.

Substructuring: Reduced system and Dirichlet preconditioner

■ Let nullspace of $\boldsymbol{A}_{\epsilon \epsilon}$ be given by \mathbf{Z}.

- Eliminate primal variables from

$$
\left(\begin{array}{cc}
\mathbf{A}_{\epsilon \epsilon} & \mathbf{M}^{\top} \\
\mathbf{M} & 0
\end{array}\right)\binom{\mathbf{u}_{\epsilon}}{\boldsymbol{\lambda}}=\binom{\mathbf{f}_{\epsilon}}{0}
$$

and obtain

$$
\begin{aligned}
\boldsymbol{P}_{0} K \lambda & =\boldsymbol{P}_{0}\left(\mathbf{M A}_{\epsilon \epsilon}^{\dagger} \boldsymbol{f}_{\epsilon}\right) \\
\boldsymbol{G}^{\top} \boldsymbol{\lambda} & =\boldsymbol{Z}^{\top} \boldsymbol{f}_{\epsilon},
\end{aligned}
$$

where $\boldsymbol{K}=\mathbf{M A}_{\epsilon \epsilon}^{\dagger} \mathbf{M}^{\boldsymbol{\top}}, \mathbf{G}=\mathbf{M Z}, \mathbf{P}_{0}=\mathbf{I}-\mathbf{G}\left(\mathbf{G}^{\boldsymbol{T}} \mathbf{G}\right)^{\dagger} \mathbf{G}^{\boldsymbol{\top}}$.
■ Use projected CG to solve system.

- P_{0} acts as a "coarse grid".
- Preconditioner for \boldsymbol{K} :

■ Let $\boldsymbol{A}_{p}, \mathbf{M}_{p}$ be local parts of $\boldsymbol{A}_{\epsilon \epsilon}$ and \mathbf{M}.

- Write $\boldsymbol{K}=\sum_{p=1}^{P} \mathbf{M}_{p} \boldsymbol{A}_{p}^{\dagger} \mathbf{M}_{p}^{\top}=\sum_{p=1}^{P} \widetilde{\mathbf{M}}_{p} \boldsymbol{S}_{p}^{\dagger} \widetilde{\mathbf{M}}_{p}^{\top}$.

■ Dirichlet preconditioner: $\mathbf{Q}=\sum_{p=1}^{P} \widetilde{\mathbf{M}}_{p} \boldsymbol{S}_{p} \widetilde{\mathbf{M}}_{p}^{\top}$.

- Results shown use Manuel Klar's (U of Trier) assembly code https://gitlab.uni-trier.de/klar/nonlocal-assembly

[^0]: ${ }^{1}$ Marta D'Elia, Max Gunzburger, and Christian Vollmann. "A cookbook for approximating Euclidean balls and for quadrature rules in finite element methods for nonlocal problems". In: Mathematical Models and Methods in Applied Sciences 31.08 (2021), pp. 1505-1567.

[^1]: ${ }^{2}$ Mark Ainsworth and Christian Glusa. "Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver". In: Computer Methods in Applied Mechanics and Engineering (2017).

[^2]: ${ }^{3}$ Mark Ainsworth, William McLean, and Thanh Tran. "The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling". In: SIAM Journal on Numerical Analysis 36.6 (1999), pp. 1901-1932.
 ${ }^{4}$ Burak Aksoylu and Zuhal Unlu. "Conditioning analysis of nonlocal integral operators in fractional Sobolev spaces". In: SIAM Journal on Numerical Analysis 52.2 (2014), pp. 653-677.

[^3]: ${ }^{5}$ https://github.com/sandialabs/PyNucleus
 ${ }^{6}$ https://github.com/trilinos/Trilinos
 ${ }^{7}$ https://github.com/kokkos/kokkos

[^4]: ${ }^{8}$ Giacomo Capodaglio, Marta D'Elia, Pavel Bochev, and Max Gunzburger. "An energy-based coupling approach to nonlocal interface problems". In: Computers \& Fluids 207 (2020), p. 104593.
 ${ }^{9}$ Xiao Xu, Christian Glusa, Marta D'Elia, and John T. Foster. "A FETI approach to domain decomposition for meshfree discretizations of nonlocal problems". In: Computer Methods in Applied Mechanics and Engineering 387 (2021), p. 114148.
 ${ }^{10}$ Manuel Klar, Giacomo Capodaglio, Marta D'Elia, Christian Glusa, Max Gunzburger, and Christian Vollmann. "A scalable domain decomposition method for FEM discretizations of nonlocal equations of integrable and fractional type". In: arXiv preprint arXiv:2306.00094 (2023).

