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PHASE FIELD MODELS



@ Ubiquitous in mathematical modeling of multiphase processes.

@ Two basic models:
o Allen-Cahn Equation

@ Models phase separation and evolution of a two component system that
eventually becomes homogeneous.

e Cahn-Hilliard Equation

@ Models phase separation and evolution of a two component system that
preserves volume fractions.

@ Each of these can be understood as a gradient flow of the following energy:

E(e) - [ {Flo)+ 5 9o o

@ ( represents an order parameter or concentration,
e ¢ > 0 is known as the interfacial width parameter, and
e F(yp) is a double-well potential (here we will consider F(¢) =

(¢* - 1)),
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The Allen-Cahn and Cahn-Hilliard Equations

Recall:
L5 2 ¢ 2
E(@) = [ 7@ =1 +5 IVl pdx,
Q
@ The Allen-Cahn equation can be considered as an L? gradient flow of E
[(Allen and Cahn, 1979)]:

Orp =2 Dp — (p* — ),

where we assume homogeneous Neumann boundary conditions.

@ The Cahn-Hilliard equation can be considered as an H~! gradient flow of E
[(Cahn and Hilliard, 1958)]:

dep=—A (Do — (©* — ),

where we once again assume homogeneous Neumann boundary conditions.
e
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Key Properties

@ Energy Dissipation
o Allen-Cahn Equation
o Weak solutions dissipate the energy at the rate

E(e(e) + [ Ml de = E(2(0). (ko) =~ ).
SE

dp "

o Cahn-Hilliard Equation

o Weak solutions dissipate the energy at the rate

where p :=

E(ele) + [ 190l de = E(o(0). (deECo) == IVala)

@ Volume ratio preservation for the Cahn-Hilliard Equation:

/Q(cp(x, t) —p(x,0))dx =0, a.e. t >0, (dt/Qcp(x, t) dx:O).
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CONTINUOUS DATA ASSIMILATION



Continuous Data Assimilation

Motivating Question: Could incorporating known solution values consistently
throughout time but at only a few points in space into a numerical simulation
allow for more stable and accurate numerical approximations?

Continuous Data Assimilation based on the AOT formulation [Azouani, Olson,
and Titi, 2014]:

@ Uses a spacial interpolation operator for ‘nudging’.

@ Provides rigorous mathematical justification for:

e exponentially fast in time convergence to ‘true’ solutions,

e long time accuracy and stability of the numerical solutions.

@ Most successful implementations have been focused on fluid flow models.
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Set-up
Consider the following PDE:
Oru = G(u),

@ u(x,t) represents a state variable at spatial position x and time t,

e the initial data up(x) := u(x, 0) is missing.
Now let v represent an approximation of the state variable u. A continuous data
assimilation formulation for the problem above is:

Orv = G(v) — wly(v) + wly(u),

v(x,0) = v(x),

@ vy is taken to be arbitrary,
@ w > 0 is a relaxation (or nudging) parameter,

@ H is the resolution of the coarse spatial grid representing the locations where
measurements of observable data are taken,

@ the operator Iy is an interpolation operator. .. -
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Interpolant Properties

For a given mesh 9 with H < 1 and associated finite element space Yy,

[T(w) = wlle < GH[[Vw|2,
Hh(W)l[2 < Grliwllz
where C; is independent of w, for any w € H1(Q).

Examples of such Iy are:

o the 2 projection onto Yy where Yy consists of piecewise constants over Jy,
and

@ the Scott-Zhang interpolant.




Coarse Grid H

An example of a triangulation of Q where points .7 are shown in red.
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® Mesh size: h=}

e Coarse Grid Size: H =2

@ Number of Known Data Points: 16

@ Number of Fine Mesh Nodes: 8321

@ Mesh produced using the FELICITY MATLAB/C++ Toolbox
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A CDA Scheme for the Allen-Cahn Equation

Recall the Allen-Cahn Equation:

dep =Dy — (¢ — ).
Then a CDA scheme is simply stated as:

06— 280 + (° — 6) + win(9) — wlk(p) = 0, in Q,
dh¢ =0, on 09,

where

@ is the true concentration,

¢ is an approximation to the true concentration,
€ > 0 is known as the interfacial width parameter,
w > 0 is known as a nudging parameter,

H is the resolution of the coarse spatial grid which represents the locations
where measurements are taken, and

@ Iy is the interpolation operator.
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A CDA FEM for the Allen-Cahn Equation

Let M be a positive integer and 0 = tg < t; < --- < tyy = T be a uniform
partition of [0, T], with 7 = T/m. Define

Vi = {vi € C(Q) | ik € Py(K), K € T4} Given ¢! € V}, and true solution
@ € L°°(0, T; HY(Q)), find ¢[" € V}, such that

(P2 ) 2o vy + (60 - o8") o)
+w (In (95 — ™) Iupn) =0, Viby € Vh.

Previous Works:

@ A. Azouani, E.S. Titi. Feedback control of nonlinear dissipative systems by
finite determining parameters - A reaction-diffusion paradigm. Evolution
Equations and Control Theory, 2014, 3(4): 579-594.

@ A. Larios, C. Victor. Continuous Data Assimilation with a Moving Cluster of
Data Points for a Reaction Diffusion Equation: A Computational Study.
Communications in Computational Physics, 2021, 29 (4): 1273-1298.
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Existence and Uniqueness

Lemma
Let ¢""' € Vi, and ¢ € L>°(0, T; H*(Q)) be given. For all &, € Vi, define the
nonlinear functional

2
T

Gh(&n) == 3

— (o771 &n) — (/Hso Hn) -

1
&h— o~

+ 5 ||V£h||Lz + 7 ||€h||L4 +5 ||IH§h||L2

Gy, is strictly convex and coercive on the linear subspace V. Consequently, Gy, has
a unique minimizer, call it ¢}' € Vi,. Moreover, ¢’ € V), is the unique minimizer
of Gy, if and only if it is the unique solution to the CDA FEM for the Allen-Cahn
equation above.

Remarks:
@ Proof follows standard proof for convex-splitting schemes.

e But, only if ‘variational crime’, (I (¢7) — ¢™), Intn) is utilized.
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Long-time Stability

Lemma

Let ¢ € L°°(0, 00; HY(2)) represent the true solution and H and w be chosen so
that

2¢2 2¢?

2

H <5C,23ndw>max{1,C12H22}, (1)
i.e. H sufficiently small and w sufficiently large. Then, for any m, h, At > 0,
solutions to the CDA-FEM for the Allen-Cahn equation satisfy

m

1 w C?

2
H(bhm”i? < ||¢?1||L2 + ! b < Cdata,
Ca(a)) e
2
where © := [][[o 0,00,12()) 3 Yo = G = 3 > 2.

e H=0() = w=0(1)




Effectiveness of the CDA-FEM for Various Grid Sizes

e— = o= .. 120 === H=0.015625
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@ True solution grid points: 4,096, 1,024, 256, 64 and 16
@ Fine mesh nodes: 8321 nodes
@ Time step size: 7 = 0.002
o Interfacial width parameter: £ = 0.05
e Nudging parameter: w = 1/¢> = 400
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Effectiveness of the CDA-FEM for Various Nudging
Parameters
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@ True solution grid points: 1,024
@ Fine mesh nodes: 8321 nodes
@ Time step size: 7 = 0.002
@ Interfacial width parameter: £ = 0.05
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A CDA Scheme for the Cahn-Hilliard Equation

Recall the Cahn-Hilliard Equation:
0ep — D (¢° — ¢) + 0% = 0.
Then a CDA scheme is simply stated as:

e — A (¢ — @) + A%+ wly(p— ) =0, inQ,
Ond = 0,0 =0, on OQ.

Previous Work:

@ B. You and Q. Xia. Continuous data assimilation algorithm for the two
dimensional Cahn—Hilliard—Navier-Stokes system. Applied Mathematics &
Optimization, 2002, 85(2), 5.

Ours:

@ “Continuous data assimilation and long-time accuracy in a CO interior
penalty method for the Cahn-Hilliard equation.” Applied Mathematics and
Computation, 2002, 424: 127042.
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A CO Interior Penalty Method - Preliminaries

e CO interior penalty methods were originally developed as an innovative
method for solving the fourth-order plate bending problem. [Brenner, et.al.]

@ We take a locally quasi-uniform conforming triangulation .9, = 7,(Q) of the
computational domain.

@ Define the space:
Zp = {vy € C(Q) | vk € P2(K), K € T}

@ Define the average and jump terms:

OPw 1(Pw.  Pwy ov
{{8}}_2(6+ an2 ) Haﬂ =ne- (Vg =Vvo),

where e denotes the edge of a triangle.




A CO Interior Penalty Method

Let M be a positive integer and 0 =ty < t; < --- < tyy = T be a uniform
partition of [0, T]. Given ¢]"~! € Z, and true solution ¢ € L°(0, T; H3(Q)), find
o) € Zp such that

(6,07, 0) + (V (670 = 07 71) V) + 228l (677, 0) + w0 (I (97 — 9™) ) = 0

m_ m—1
for all ¢ € Z, where §.¢p" = i/ with 7 = T /M,
T

(w,v) T;%/ V2w : V2v) dx+2/{{an2}}|[ ﬂds

ecéy

) A
+o 3 ][]

ecé),

e
and where o > 0 is a penalty parameter. s sure
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Solvability and Stability

@ Regarding Solvability
e Unconditionally solvable

C? CEH?w24+18(Cinr)*
Ceoer€

o Conditionally unique solutions: 1 +w > (

@ Unconditionally long-time stable
o Let ¢ € L™(0,00; H3(f)) represent the true solution and H and w be chosen
so that
WCcoer52 - 2w2C,2C;23H2 —4
Ceoere? + 41

Ao = > 0,

i.e. H sufficiently small and w sufficiently large, then

2 1 m weC?
& < Cuatas
12 (1+)\0T> Jrwa2—20.12C,2C,%H2—4 = e

1671 < |[¢h

2
where @ := [|¢[|{x (0 00 12(0))-
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Important Remarks

@ The following geometric series bound was pivotal to the proofs for stability
and convergence.
Suppose the constants r and B satisfy r > 1 and B > 0. Then if the
sequence of real numbers {a,} satisfies

B
r—1

m+1
rams1 < am+ B, we have that a1 < ag () +
P

e Stability is satisfied if the nudging parameter w is O(¢~2) which would then
require H to be O(s?). However, our numerical experiments suggest that H
can be taken much larger than that.

@ Since CH solutions generally converge quickly to a steady state solution, we
expect the condition required in the proof for uniqueness is not necessary in
practice.
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Error Estimates

Theorem

Let o™ represent the true solution to the CH equation at time t,, and suppose
that o satisfies the appropriate regularities and that H and w are chosen so that

Ccoerfzw — 4C[2 C[%HQ(Uz - 72 ((Cinf)2 + (C{liata)2)2 —16
. >0,
Ceoere® + 167

i.e. H sufficiently small and w sufficiently large. Then we have

14+ M7
Ceoere? (M + h° + (7)?) §
)22)? — 16

1 m
o7~ op1 < 1~ Al (s

+ ata
(choers2 — 4C?C2H2w? — 72 ((Cinf )2 + (C; dat

data

for any m, h, 7 > 0.




Effectiveness of the CDA-FEM for Various Grid Sizes
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@ True solution grid points: 8,100, 4,096, 1,024, 256 and 64
@ Fine mesh nodes: 33,025

@ Time step size: 7 = 0.002

o Interfacial width parameter: ¢ = 0.05

o

Nudging parameter: w = 1/ = 400
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Effectiveness of the CDA-FEM for Various Grid Sizes

L2 Error

@ True solution grid points: 256 and 64
@ Fine mesh nodes: 33,025

@ Time step size: 7 = 0.002

o Interfacial width parameter: £ = 0.05
o Nudging parameter: w = 1/e> = 400
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Effectiveness of the CDA-FEM for Various Nudging
Parameters
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True solution grid points: 1,024

Fine mesh nodes: 33,025

Time step size: 7 = 0.002

Interfacial width parameter: £ = 0.05
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Effectiveness of the CDA-FEM for Various Nudging
Parameters

7x1071

0.0 02 0.4 0.6 0.8 10 0.0 02 0.4 0.6 0.8 10
Time Time

@ True solution grid points: 1,024
@ Fine mesh nodes: 33,025
@ Time step size: 7 = 0.002
@ Interfacial width parameter: £ = 0.05
o Left: w=1, Right: w =20
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Cross Shape Test

V. "

a i

Figure: True solution (left), CDA CH (middle), CH (right) at 5 and 25 Time Steps g,
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Effectiveness of the CDA-FEM - Dumbbell Test
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Fine mesh nodes: 33,025

Time step size: 7 =0.002/32
Interfacial width parameter: ¢ = 0.02
Left: w = 1/e2 = 2500

MISSISSIPPI STATE

_Phase Field Models and Continuous Data Assimilation|



Dumbbell Test

() () (h)
t=0.000625 t=0.015625 t = 0.015625

() t=0.001 (j)t=0016 (k) t=0.016
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Dumbbell Test

(1) t =0.0035 (m) (n
t=0.018125 t=0.018125

(q) t=0.1
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FUTURE WORK AND THANKS



Future Work

@ Current and Future Work on Data Assimilation:
o Develop a CDA FEM for the mixed formulation of the Cahn-Hilliard equation.
e Extend to two-phase flow equations such as the Navier-Stokes Cahn-Hilliard
system of equations.
o Extend to other gradient flows, such as the phase field crystal equation.

@ Open Questions:
e What if the data involves an element of stochasticity?
e Could CDA help correct for too large of an interfacial width parameter?
o How does CDA effect efficient solvers?

@ Thanks to:
o Natasha S. Sharma, UTEP
o Leo G. Rebholz, Clemson
e Susanne C. Brenner, LSU
o Li-yeng Sung, LSU
e Master's Students: Jacob White, Prince Sakyi
o Firedrake
e This material is based upon work supported in part by the National Science
Foundation under Grant DMS-2110768. wisgggi sTaTe
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