Phase Field Models and Continuous Data Assimilation

Amanda E. Diegel

In Collaboration with
Leo G. Rebholz, Clemson University

Department of Mathematics and Statistics
Mississippi State University

March 15, 2024
Outline of Talk

1. Phase Field Models
2. Continuous Data Assimilation
3. Future Work and Thanks
PHASE FIELD MODELS
Ubiquitous in mathematical modeling of multiphase processes.

Two basic models:

- **Allen-Cahn Equation**
 - Models phase separation and evolution of a two component system that eventually becomes homogeneous.

- **Cahn-Hilliard Equation**
 - Models phase separation and evolution of a two component system that preserves volume fractions.

Each of these can be understood as a gradient flow of the following energy:

\[
E(\varphi) = \int_{\Omega} \left\{ F(\varphi) + \frac{\varepsilon^2}{2} |\nabla \varphi|^2 \right\} d\mathbf{x},
\]

- \(\varphi \) represents an order parameter or concentration,
- \(\varepsilon > 0 \) is known as the interfacial width parameter, and
- \(F(\varphi) \) is a double-well potential (here we will consider \(F(\varphi) = \frac{1}{4} (\varphi^2 - 1)^2 \)).
The Allen-Cahn and Cahn-Hilliard Equations

Recall:

\[E(\varphi) = \int_{\Omega} \left\{ \frac{1}{4} (\varphi^2 - 1)^2 + \frac{\varepsilon^2}{2} |\nabla \varphi|^2 \right\} dx, \]

- The Allen-Cahn equation can be considered as an \(L^2 \) gradient flow of \(E \) [(Allen and Cahn, 1979)]:
 \[\partial_t \varphi = \varepsilon^2 \Delta \varphi - (\varphi^3 - \varphi), \]
 where we assume homogeneous Neumann boundary conditions.

- The Cahn-Hilliard equation can be considered as an \(H^{-1} \) gradient flow of \(E \) [(Cahn and Hilliard, 1958)]:
 \[\partial_t \varphi = -\Delta \left(\varepsilon^2 \Delta \varphi - (\varphi^3 - \varphi) \right), \]
 where we once again assume homogeneous Neumann boundary conditions.
Key Properties

- Energy Dissipation
 - Allen-Cahn Equation
 - Weak solutions dissipate the energy at the rate
 \[
 E(\varphi(s)) + \int_0^s \|\mu\|_{L^2}^2 \, dt = E(\varphi(0)), \quad \left(d_t E(\varphi) = -\|\mu\|_{L^2}^2 \right),
 \]
 - where \(\mu := \delta E / \delta \varphi \).
 - Cahn-Hilliard Equation
 - Weak solutions dissipate the energy at the rate
 \[
 E(\varphi(s)) + \int_0^s \|\nabla \mu\|_{L^2}^2 \, dt = E(\varphi(0)), \quad \left(d_t E(\varphi) = -\|\nabla \mu\|_{L^2}^2 \right).
 \]
- Volume ratio preservation for the Cahn-Hilliard Equation:
 \[
 \int_\Omega (\varphi(x, t) - \varphi(x, 0)) \, dx = 0, \text{ a.e. } t > 0, \quad \left(d_t \int_\Omega \varphi(x, t) \, dx = 0 \right).
 \]
CONTINUOUS DATA ASSIMILATION
Continuous Data Assimilation

Motivating Question: Could incorporating known solution values consistently throughout time but at only a few points in space into a numerical simulation allow for more stable and accurate numerical approximations?

Continuous Data Assimilation based on the AOT formulation [Azouani, Olson, and Titi, 2014]:

- Uses a spacial interpolation operator for ‘nudging’.
- Provides rigorous mathematical justification for:
 - exponentially fast in time convergence to ‘true’ solutions,
 - long time accuracy and stability of the numerical solutions.

- Most successful implementations have been focused on fluid flow models.
Set-up

Consider the following PDE:

\[\partial_t u = G(u), \]

- \(u(x, t) \) represents a state variable at spatial position \(x \) and time \(t \),
- the initial data \(u_0(x) := u(x, 0) \) is missing.

Now let \(v \) represent an approximation of the state variable \(u \). A continuous data assimilation formulation for the problem above is:

\[\partial_t v = G(v) - \omega I_H(v) + \omega I_H(u), \]
\[v(x, 0) = v_0(x), \]

- \(v_0 \) is taken to be arbitrary,
- \(\omega > 0 \) is a relaxation (or nudging) parameter,
- \(H \) is the resolution of the coarse spatial grid representing the locations where measurements of observable data are taken,
- the operator \(I_H \) is an interpolation operator.
Interpolant Properties

For a given mesh \mathcal{T}_H with $H \leq 1$ and associated finite element space Y_H,

$$
\| I_H(w) - w \|_{L^2} \leq C_I H \| \nabla w \|_{L^2},
$$

$$
\| I_H(w) \|_{L^2} \leq C_I \| w \|_{L^2},
$$

where C_I is independent of w, for any $w \in H^1(\Omega)$.

Examples of such I_H are:

- the L^2 projection onto Y_H where Y_H consists of piecewise constants over \mathcal{T}_H, and
- the Scott-Zhang interpolant.
Coarse Grid H

An example of a triangulation of Ω where points \mathcal{T}_H are shown in red.

- Mesh size: $h = \frac{1}{8}$
- Coarse Grid Size: $H = \frac{2}{8}$
- Number of Known Data Points: 16
- Number of Fine Mesh Nodes: 8321
- Mesh produced using the FELICITY MATLAB/C++ Toolbox
A CDA Scheme for the Allen-Cahn Equation

Recall the Allen-Cahn Equation:

$$\partial_t \varphi = \varepsilon^2 \Delta \varphi - (\varphi^3 - \varphi).$$

Then a CDA scheme is simply stated as:

$$\partial_t \phi - \varepsilon^2 \Delta \phi + (\phi^3 - \phi) + \omega I_H(\phi) - \omega I_H(\varphi) = 0, \quad \text{in } \Omega,$$

$$\partial_n \phi = 0, \quad \text{on } \partial \Omega,$$

where

- φ is the true concentration,
- ϕ is an approximation to the true concentration,
- $\varepsilon > 0$ is known as the interfacial width parameter,
- $\omega > 0$ is known as a nudging parameter,
- H is the resolution of the coarse spatial grid which represents the locations where measurements are taken, and
- I_H is the interpolation operator.
A CDA FEM for the Allen-Cahn Equation

Let M be a positive integer and $0 = t_0 < t_1 < \cdots < t_M = T$ be a uniform partition of $[0, T]$, with $\tau = T/M$. Define

$$V_h := \{ v_h \in C(\Omega) \mid v_h|_K \in P_q(K), \ K \in \mathcal{T}_h \}.$$

Given $\phi_h^{m-1} \in V_h$ and true solution $\varphi \in L^\infty(0, T; H^1(\Omega))$, find $\phi_h^m \in V_h$ such that

$$
\left(\frac{\phi_h^m - \phi_h^{m-1}}{\tau}, \psi_h \right) + \varepsilon^2 (\nabla \phi_h^m, \nabla \psi_h) + \left(\left((\phi_h^m)^3 - \phi_h^{m-1} \right), \psi_h \right)
+ \omega \left(I_H (\phi_h^m - \varphi^m), I_H \psi_h \right) = 0, \quad \forall \psi_h \in V_h.
$$

Previous Works:

Lemma

Let $\phi_{h}^{m-1} \in V_{h}$ and $\varphi \in L^\infty(0, T; H^1(\Omega))$ be given. For all $\xi_{h} \in V_{h}$, define the nonlinear functional

$$G_{h}(\xi_{h}) := \frac{\tau}{2} \left\| \frac{\xi_{h} - \phi_{h}^{m-1}}{\tau} \right\|_{L^2}^2 + \frac{\varepsilon^2}{2} \left\| \nabla \xi_{h} \right\|_{L^2}^2 + \frac{1}{4} \left\| \xi_{h} \right\|_{L^4}^4 + \frac{\omega}{2} \left\| I_{H} \xi_{h} \right\|_{L^2}^2$$

$$- (\phi_{h}^{m-1}, \xi_{h}) - \frac{\omega}{2} (I_{H} \varphi^{m}, I_{H} \xi_{h}).$$

G_{h} is strictly convex and coercive on the linear subspace V_{h}. Consequently, G_{h} has a unique minimizer, call it $\phi_{h}^{m} \in V_{h}$. Moreover, $\phi_{h}^{m} \in V_{h}$ is the unique minimizer of G_{h} if and only if it is the unique solution to the CDA FEM for the Allen-Cahn equation above.

Remarks:

- Proof follows standard proof for convex-splitting schemes.
- But, only if ‘variational crime’, $(I_{H} (\phi_{h}^{m} - \varphi^{m}), I_{H} \psi_{h})$ is utilized.
Long-time Stability

Lemma

Let \(\varphi \in L^\infty(0, \infty; H^1(\Omega)) \) represent the true solution and \(H \) and \(\omega \) be chosen so that

\[
H^2 < \frac{2\varepsilon^2}{5C_i^2} \quad \text{and} \quad \omega > \max \left\{ 1, \frac{2\varepsilon^2}{C_i^2 H^2} - 2 \right\},
\]

(1)
i.e. \(H \) sufficiently small and \(\omega \) sufficiently large. Then, for any \(m, h, \Delta t > 0 \), solutions to the CDA-FEM for the Allen-Cahn equation satisfy

\[
\| \phi_h^m \|_{L^2}^2 \leq \| \phi_h^0 \|_{L^2}^2 \left(\frac{1}{1 + \Delta t \left(\frac{\lambda_0 - 2}{1 + 2\Delta t} \right)} \right)^m + \frac{\omega C_i^2}{\lambda_0 - 2} \Phi \leq C_{\text{data}},
\]

where \(\Phi := \| \varphi \|_{L^\infty(0, \infty; L^2(\Omega))} \) and \(\lambda_0 = \frac{\varepsilon^2}{C_i^2 H^2} - \frac{1}{2} > 2 \).

\(H = O(\varepsilon) \implies \omega = O(1) \)
Effectiveness of the CDA-FEM for Various Grid Sizes

- True solution grid points: 4,096, 1,024, 256, 64 and 16
- Fine mesh nodes: 8321 nodes
- Time step size: \(\tau = 0.002 \)
- Interfacial width parameter: \(\varepsilon = 0.05 \)
- Nudging parameter: \(\omega = \frac{1}{\varepsilon^2} = 400 \)
Effectiveness of the CDA-FEM for Various Nudging Parameters

- True solution grid points: 1,024
- Fine mesh nodes: 8321 nodes
- Time step size: $\tau = 0.002$
- Interfacial width parameter: $\varepsilon = 0.05$
A CDA Scheme for the Cahn-Hilliard Equation

Recall the Cahn-Hilliard Equation:

\[\partial_t \phi - \Delta (\phi^3 - \phi) + \varepsilon^2 \Delta^2 \phi = 0. \]

Then a CDA scheme is simply stated as:

\[\partial_t \phi - \Delta (\phi^3 - \phi) + \varepsilon^2 \Delta^2 \phi + \omega I_H(\phi - \varphi) = 0, \quad \text{in } \Omega, \]
\[\partial_n \phi = \partial_n \Delta \phi = 0, \quad \text{on } \partial \Omega. \]

Previous Work:

Ours:

A C⁰ Interior Penalty Method - Preliminaries

- C⁰ interior penalty methods were originally developed as an innovative method for solving the fourth-order plate bending problem. [Brenner, et.al.]
- We take a locally quasi-uniform conforming triangulation \(\mathcal{T}_h \equiv \mathcal{T}_h(\Omega) \) of the computational domain.
- Define the space:
 \[
 Z_h := \{ v_h \in C(\Omega) \mid v_h|_K \in P_2(K), \ K \in \mathcal{T}_h \}.
 \]
- Define the average and jump terms:
 \[
 \left\{ \frac{\partial^2 w}{\partial n_e^2} \right\} = \frac{1}{2} \left(\frac{\partial^2 w_-}{\partial n_e^2} + \frac{\partial^2 w_+}{\partial n_e^2} \right), \quad \left[\frac{\partial v}{\partial n_e} \right] = n_e \cdot (\nabla v_+ - \nabla v_-),
 \]
 where \(e \) denotes the edge of a triangle.
A C0 Interior Penalty Method

Let M be a positive integer and $0 = t_0 < t_1 < \cdots < t_M = T$ be a uniform partition of $[0, T]$. Given $\phi_{h}^{m-1} \in Z_h$ and true solution $\varphi \in L^\infty (0, T; H^2_N(\Omega))$, find $\phi_{h}^{m} \in Z_h$ such that

$$(\delta_{\tau} \phi_{h}^{m}, \psi) + \left(\nabla \left((\phi_{h}^{m})^3 - \phi_{h}^{m-1} \right), \nabla \psi \right) + \varepsilon^2 a^{IP} (\phi_{h}^{m}, \psi) + \omega (l_H (\phi_{h}^{m} - \varphi^{m}), \psi) = 0$$

for all $\psi \in Z_h$, where $\delta_{\tau} \phi_{h}^{m} := \frac{\phi_{h}^{m} - \phi_{h}^{m-1}}{\tau}$ with $\tau = T/M$,

$$a^{IP} (w, v) = \sum_{T \in \mathcal{T}_h} \int_{T} \left(\nabla^2 w : \nabla^2 v \right) \, dx + \sum_{e \in \mathcal{E}_h} \int_{e} \left\{ \frac{\partial^2 w}{\partial n_e^2} \right\} \begin{bmatrix} \frac{\partial v}{\partial n_e} \end{bmatrix} \, ds$$

$$+ \sum_{e \in \mathcal{E}_h} \int_{e} \left\{ \frac{\partial^2 v}{\partial n_e^2} \right\} \begin{bmatrix} \frac{\partial w}{\partial n_e} \end{bmatrix} \, ds + \sum_{e \in \mathcal{E}_h} \int_{e} \left\{ \frac{\partial^2 w}{\partial n_e^2} \right\} \begin{bmatrix} \frac{\partial v}{\partial n_e} \end{bmatrix} \, ds$$

$$+ \sigma \sum_{e \in \mathcal{E}_h} \frac{1}{|e|} \int_{e} \left\{ \frac{\partial w}{\partial n_e} \right\} \begin{bmatrix} \frac{\partial v}{\partial n_e} \end{bmatrix} \, ds,$$

and where $\sigma > 0$ is a penalty parameter.
Solvability and Stability

- **Regarding Solvability**
 - Unconditionally solvable
 - Conditionally unique solutions: \(\frac{1}{\tau} + \omega > \left(\frac{C_l^2 C_p H^2 \omega^2 + 18 (C_{inf})^4}{C_{coer} \varepsilon^2} \right) \)

- **Unconditionally long-time stable**
 - Let \(\phi \in L^\infty(0, \infty; H_N^2(\Omega)) \) represent the true solution and \(H \) and \(\omega \) be chosen so that

\[
\lambda_0 := \frac{\omega C_{coer} \varepsilon^2 - 2 \omega^2 C_l^2 C_p^2 H^2 - 4}{C_{coer} \varepsilon^2 + 4 \tau} > 0,
\]

i.e. \(H \) sufficiently small and \(\omega \) sufficiently large, then

\[
\| \phi_h^m \|_{L^2}^2 \leq \| \phi_h^0 \|_{L^2}^2 \left(\frac{1}{1 + \lambda_0 \tau} \right)^m + \frac{\omega \varepsilon^2 C_l^2}{\omega \varepsilon^2 - 2 \omega^2 C_l^2 C_p^2 H^2 - 4} \Phi \leq C_{data},
\]

where \(\Phi := \| \phi \|_{L^\infty(0, \infty; L^2(\Omega))}^2 \).
The following geometric series bound was pivotal to the proofs for stability and convergence. Suppose the constants r and B satisfy $r > 1$ and $B \geq 0$. Then if the sequence of real numbers $\{a_m\}$ satisfies

$$r a_{m+1} \leq a_m + B,$$

we have that

$$a_{m+1} \leq a_0 \left(\frac{1}{r} \right)^{m+1} + \frac{B}{r - 1}.$$

Stability is satisfied if the nudging parameter ω is $O(\varepsilon^{-2})$ which would then require H to be $O(\varepsilon^2)$. However, our numerical experiments suggest that H can be taken much larger than that.

Since CH solutions generally converge quickly to a steady state solution, we expect the condition required in the proof for uniqueness is not necessary in practice.
Error Estimates

Theorem

Let φ^m represent the true solution to the CH equation at time t_m and suppose that φ satisfies the appropriate regularities and that H and ω are chosen so that

$$
\lambda_1 := \frac{C_{\text{coer}} \varepsilon^2 \omega - 4 C_i^2 C_P^2 H^2 \omega^2 - 72 ((C_{\text{inf}})^2 + (C'_{\text{data}})^2)^2 - 16}{C_{\text{coer}} \varepsilon^2 + 16 \tau} > 0,
$$

i.e. H sufficiently small and ω sufficiently large. Then we have

$$
\| \varphi^m - \phi^m_h \|_{L^2}^2 \leq \| \varphi^0 - \phi^0_h \|_{L^2}^2 \left(\frac{1}{1 + \lambda_1 \tau} \right)^m
$$

$$
+ \left(\frac{C_{\text{coer}} \varepsilon^2 \left(h^2 + h^5 + (\tau)^2 \right)}{\omega C_{\text{coer}} \varepsilon^2 - 4 C_i^2 C_P^2 H^2 \omega^2 - 72 ((C_{\text{inf}})^2 + (C'_{\text{data}})^2)^2 - 16} \right) C^*_\text{data}
$$

for any $m, h, \tau > 0$.
Effectiveness of the CDA-FEM for Various Grid Sizes

- True solution grid points: 8,100, 4,096, 1,024, 256 and 64
- Fine mesh nodes: 33,025
- Time step size: $\tau = 0.002$
- Interfacial width parameter: $\varepsilon = 0.05$
- Nudging parameter: $\omega = \frac{1}{\varepsilon^2} = 400$
Effectiveness of the CDA-FEM for Various Grid Sizes

- True solution grid points: 256 and 64
- Fine mesh nodes: 33,025
- Time step size: $\tau = 0.002$
- Interfacial width parameter: $\varepsilon = 0.05$
- Nudging parameter: $\omega = \frac{1}{\varepsilon^2} = 400$
Effectiveness of the CDA-FEM for Various Nudging Parameters

- True solution grid points: 1,024
- Fine mesh nodes: 33,025
- Time step size: $\tau = 0.002$
- Interfacial width parameter: $\varepsilon = 0.05$
Effectiveness of the CDA-FEM for Various Nudging Parameters

- True solution grid points: 1,024
- Fine mesh nodes: 33,025
- Time step size: $\tau = 0.002$
- Interfacial width parameter: $\varepsilon = 0.05$
- Left: $\omega = 1$, Right: $\omega = 20$
Cross Shape Test

Figure: True solution (left), CDA CH (middle), CH (right) at 5 and 25 Time Steps
Effectiveness of the CDA-FEM - Dumbbell Test

- Fine mesh nodes: 33,025
- Time step size: $\tau = 0.002/32$
- Interfacial width parameter: $\varepsilon = 0.02$
- Left: $\omega = 1/\varepsilon^2 = 2500$
Dumbbell Test

(c) \(t = 0.0 \)

(d) \(t = 0.0 \)

(e) \(t = 0.0 \)

(f) \(t = 0.000625 \)

(g) \(t = 0.015625 \)

(h) \(t = 0.015625 \)

(i) \(t = 0.001 \)

(j) \(t = 0.016 \)

(k) \(t = 0.016 \)
Dumbbell Test

(l) $t = 0.0035$

(m) $t = 0.018125$

(n) $t = 0.018125$

(o) $t = 0.1$

(p) $t = 0.1$

(q) $t = 0.1$
FUTURE WORK AND THANKS
Future Work

Current and Future Work on Data Assimilation:
- Develop a CDA FEM for the mixed formulation of the Cahn-Hilliard equation.
- Extend to two-phase flow equations such as the Navier-Stokes Cahn-Hilliard system of equations.
- Extend to other gradient flows, such as the phase field crystal equation.

Open Questions:
- What if the data involves an element of stochasticity?
- Could CDA help correct for too large of an interfacial width parameter?
- How does CDA effect efficient solvers?

Thanks to:
- Natasha S. Sharma, UTEP
- Leo G. Rebholz, Clemson
- Susanne C. Brenner, LSU
- Li-yeng Sung, LSU
- Master’s Students: Jacob White, Prince Sakyi
- Firedrake
- This material is based upon work supported in part by the National Science Foundation under Grant DMS-2110768.