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PHASE FIELD MODELS



Ubiquitous in mathematical modeling of multiphase processes.

Two basic models:
Allen-Cahn Equation

Models phase separation and evolution of a two component system that
eventually becomes homogeneous.

Cahn-Hilliard Equation

Models phase separation and evolution of a two component system that
preserves volume fractions.

Each of these can be understood as a gradient flow of the following energy:

E (ϕ) =

∫
Ω

{
F (ϕ) +

ε2

2
|∇ϕ|2

}
dx,

ϕ represents an order parameter or concentration,
ε > 0 is known as the interfacial width parameter, and
F (ϕ) is a double-well potential (here we will consider F (ϕ) = 1

4

(
ϕ2 − 1

)2
).
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The Allen-Cahn and Cahn-Hilliard Equations

Recall:

E (ϕ) =

∫
Ω

{
1

4

(
ϕ2 − 1

)2
+
ε2

2
|∇ϕ|2

}
dx,

The Allen-Cahn equation can be considered as an L2 gradient flow of E
[(Allen and Cahn, 1979)]:

∂tϕ = ε2∆ϕ−
(
ϕ3 − ϕ

)
,

where we assume homogeneous Neumann boundary conditions.

The Cahn-Hilliard equation can be considered as an H−1 gradient flow of E
[(Cahn and Hilliard, 1958)]:

∂tϕ = −∆
(
ε2∆ϕ−

(
ϕ3 − ϕ

))
,

where we once again assume homogeneous Neumann boundary conditions.
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Key Properties

Energy Dissipation
Allen-Cahn Equation

Weak solutions dissipate the energy at the rate

E
(
ϕ(s)

)
+

∫ s

0
‖µ‖2

L2 dt = E
(
ϕ(0)

)
,
(
dtE(ϕ) = −‖µ‖2

L2

)
,

where µ := δE
δϕ

.

Cahn-Hilliard Equation

Weak solutions dissipate the energy at the rate

E
(
ϕ(s)

)
+

∫ s

0
‖∇µ‖2

L2 dt = E
(
ϕ(0)

)
,
(
dtE(ϕ) = −‖∇µ‖2

L2

)
.

Volume ratio preservation for the Cahn-Hilliard Equation:∫
Ω

(ϕ(x, t)− ϕ(x, 0)) dx = 0, a.e. t > 0,

(
dt

∫
Ω

ϕ(x, t) dx = 0

)
.
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CONTINUOUS DATA ASSIMILATION



Continuous Data Assimilation

Motivating Question: Could incorporating known solution values consistently
throughout time but at only a few points in space into a numerical simulation
allow for more stable and accurate numerical approximations?

Continuous Data Assimilation based on the AOT formulation [Azouani, Olson,
and Titi, 2014]:

Uses a spacial interpolation operator for ‘nudging’.

Provides rigorous mathematical justification for:

exponentially fast in time convergence to ‘true’ solutions,

long time accuracy and stability of the numerical solutions.

Most successful implementations have been focused on fluid flow models.
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Set-up

Consider the following PDE:

∂tu = G (u),

u(x , t) represents a state variable at spatial position x and time t,

the initial data u0(x) := u(x , 0) is missing.

Now let v represent an approximation of the state variable u. A continuous data
assimilation formulation for the problem above is:

∂tv = G (v)− ωIH(v) + ωIH(u),

v(x , 0) = v0(x),

v0 is taken to be arbitrary,

ω > 0 is a relaxation (or nudging) parameter,

H is the resolution of the coarse spatial grid representing the locations where
measurements of observable data are taken,

the operator IH is an interpolation operator.
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Interpolant Properties

For a given mesh TH with H ≤ 1 and associated finite element space YH ,

‖IH(w)− w‖L2 ≤ CIH ‖∇w‖L2 ,

‖IH(w)‖L2 ≤ CI ‖w‖L2 ,

where CI is independent of w , for any w ∈ H1(Ω).

Examples of such IH are:

the L2 projection onto YH where YH consists of piecewise constants over TH ,
and

the Scott-Zhang interpolant.
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Coarse Grid H

An example of a triangulation of Ω where points TH are shown in red.
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Mesh size: h = 1
8

Coarse Grid Size: H = 2
8

Number of Known Data Points: 16

Number of Fine Mesh Nodes: 8321

Mesh produced using the FELICITY MATLAB/C++ Toolbox
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A CDA Scheme for the Allen-Cahn Equation

Recall the Allen-Cahn Equation:

∂tϕ = ε2∆ϕ−
(
ϕ3 − ϕ

)
.

Then a CDA scheme is simply stated as:

∂tφ− ε2∆φ+
(
φ3 − φ

)
+ ωIH(φ)− ωIH(ϕ) = 0, in Ω,

∂nφ = 0, on ∂Ω,

where

ϕ is the true concentration,

φ is an approximation to the true concentration,

ε > 0 is known as the interfacial width parameter,

ω > 0 is known as a nudging parameter,

H is the resolution of the coarse spatial grid which represents the locations
where measurements are taken, and

IH is the interpolation operator.
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A CDA FEM for the Allen-Cahn Equation

Let M be a positive integer and 0 = t0 < t1 < · · · < tM = T be a uniform
partition of [0,T ], with τ = T/M. Define
Vh := {vh ∈ C (Ω) | vh|K ∈ Pq(K ), K ∈ Th}. Given φm−1

h ∈ Vh and true solution
ϕ ∈ L∞(0,T ;H1(Ω)), find φmh ∈ Vh such that(
φmh − φ

m−1
h

τ
, ψh

)
+ ε2(∇φmh ,∇ψh) +

((
(φmh )3 − φm−1

h

)
, ψh

)
+ω (IH (φmh − ϕm) , IHψh) = 0, ∀ψh ∈ Vh.

Previous Works:

A. Azouani, E.S. Titi. Feedback control of nonlinear dissipative systems by
finite determining parameters - A reaction-diffusion paradigm. Evolution
Equations and Control Theory, 2014, 3(4): 579-594.

A. Larios, C. Victor. Continuous Data Assimilation with a Moving Cluster of
Data Points for a Reaction Diffusion Equation: A Computational Study.
Communications in Computational Physics, 2021, 29 (4): 1273-1298.
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Existence and Uniqueness

Lemma

Let φm−1
h ∈ Vh and ϕ ∈ L∞(0,T ;H1(Ω)) be given. For all ξh ∈ Vh, define the

nonlinear functional

Gh(ξh) :=
τ

2

∥∥∥∥ξh − φm−1
h

τ

∥∥∥∥2

L2

+
ε2

2
‖∇ξh‖2

L2 +
1

4
‖ξh‖4

L4 +
ω

2
‖IHξh‖2

L2

−
(
φm−1
h , ξh

)
− ω

2
(IHϕ

m, IHξh) .

Gh is strictly convex and coercive on the linear subspace Vh. Consequently, Gh has
a unique minimizer, call it φmh ∈ Vh. Moreover, φmh ∈ Vh is the unique minimizer
of Gh if and only if it is the unique solution to the CDA FEM for the Allen-Cahn
equation above.

Remarks:

Proof follows standard proof for convex-splitting schemes.

But, only if ‘variational crime’, (IH (φmh − ϕm) , IHψh) is utilized.
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Long-time Stability

Lemma

Let ϕ ∈ L∞(0,∞;H1(Ω)) represent the true solution and H and ω be chosen so
that

H2 <
2ε2

5C 2
I

and ω > max

{
1,

2ε2

C 2
I H

2
− 2

}
, (1)

i.e. H sufficiently small and ω sufficiently large. Then, for any m, h,∆t > 0,
solutions to the CDA-FEM for the Allen-Cahn equation satisfy

‖φmh ‖
2
L2 ≤

∥∥φ0
h

∥∥2

L2

 1

1 + ∆t
(
λ0−2

1+2∆t

)
m

+
ω C 2

I

λ0 − 2
Φ ≤ Cdata,

where Φ := ‖ϕ‖2
L∞(0,∞;L2(Ω)) and λ0 = ε2

C 2
I H

2 − 1
2 > 2.

H = O(ε) =⇒ ω = O(1)
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Effectiveness of the CDA-FEM for Various Grid Sizes

True solution grid points: 4,096, 1,024, 256, 64 and 16

Fine mesh nodes: 8321 nodes

Time step size: τ = 0.002

Interfacial width parameter: ε = 0.05

Nudging parameter: ω = 1/ε2 = 400
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Effectiveness of the CDA-FEM for Various Nudging
Parameters

True solution grid points: 1,024

Fine mesh nodes: 8321 nodes

Time step size: τ = 0.002

Interfacial width parameter: ε = 0.05
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A CDA Scheme for the Cahn-Hilliard Equation

Recall the Cahn-Hilliard Equation:

∂tφ−∆
(
φ3 − φ

)
+ ε2∆2φ = 0.

Then a CDA scheme is simply stated as:

∂tφ−∆
(
φ3 − φ

)
+ ε2∆2φ+ ωIH(φ− ϕ) = 0, in Ω,

∂nφ = ∂n∆φ = 0, on ∂Ω.

Previous Work:

B. You and Q. Xia. Continuous data assimilation algorithm for the two
dimensional Cahn–Hilliard–Navier–Stokes system. Applied Mathematics &
Optimization, 2002, 85(2), 5.

Ours:

“Continuous data assimilation and long-time accuracy in a C0 interior
penalty method for the Cahn-Hilliard equation.” Applied Mathematics and
Computation, 2002, 424: 127042.
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A C0 Interior Penalty Method - Preliminaries

C0 interior penalty methods were originally developed as an innovative
method for solving the fourth-order plate bending problem. [Brenner, et.al.]

We take a locally quasi-uniform conforming triangulation Th ≡ Th(Ω) of the
computational domain.

Define the space:

Zh := {vh ∈ C (Ω) | vh|K ∈ P2(K ), K ∈ Th}.

Define the average and jump terms:{{
∂2w

∂n2
e

}}
=

1

2

(
∂2w−
∂n2

e

+
∂2w+

∂n2
e

)
,

s
∂v

∂ne

{
= ne · (∇v+ −∇v−) ,

where e denotes the edge of a triangle.
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A C0 Interior Penalty Method

Let M be a positive integer and 0 = t0 < t1 < · · · < tM = T be a uniform
partition of [0,T ]. Given φm−1

h ∈ Zh and true solution ϕ ∈ L∞(0,T ;H2
N(Ω)), find

φmh ∈ Zh such that

(δτφ
m
h , ψ) +

(
∇
(

(φmh )3 − φm−1
h

)
,∇ψ

)
+ ε2aIPh (φmh , ψ) + ω (IH (φmh − ϕm) , ψ) = 0

for all ψ ∈ Zh, where δτφ
m
h :=

φmh − φ
m−1
h

τ
with τ = T/M,

aIPh (w , v) =
∑
T∈Th

∫
T

(
∇2w : ∇2v

)
dx +

∑
e∈Eh

∫
e

{{
∂2w

∂n2
e

}}s
∂v

∂ne

{
ds

+
∑
e∈Eh

∫
e

{{
∂2w

∂n2
e

}}s
∂v

∂ne

{
ds +

∑
e∈Eh

∫
e

{{
∂2v

∂n2
e

}}s
∂w

∂ne

{
ds

+ σ
∑
e∈Eh

1

|e|

∫
e

s
∂w

∂ne

{ s
∂v

∂ne

{
ds,

and where σ > 0 is a penalty parameter.
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Solvability and Stability

Regarding Solvability

Unconditionally solvable

Conditionally unique solutions: 1
τ

+ ω >
(

C2
I C

2
PH

2ω2+18(Cinf )4

Ccoerε2

)
Unconditionally long-time stable

Let ϕ ∈ L∞(0,∞;H2
N(Ω)) represent the true solution and H and ω be chosen

so that

λ0 :=
ωCcoerε

2 − 2ω2C 2
I C

2
PH

2 − 4

Ccoerε2 + 4τ
> 0,

i.e. H sufficiently small and ω sufficiently large, then

‖φm
h ‖2

L2 ≤
∥∥∥φ0

h

∥∥∥2

L2

(
1

1 + λ0τ

)m

+
ω ε2C 2

I

ωε2 − 2ω2C 2
I C

2
PH

2 − 4
Φ ≤ Cdata,

where Φ := ‖ϕ‖2
L∞(0,∞;L2(Ω)).
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Important Remarks

The following geometric series bound was pivotal to the proofs for stability
and convergence.
Suppose the constants r and B satisfy r > 1 and B ≥ 0. Then if the
sequence of real numbers {am} satisfies

r am+1 ≤ am + B, we have that am+1 ≤ a0

(
1

r

)m+1

+
B

r − 1
.

Stability is satisfied if the nudging parameter ω is O(ε−2) which would then
require H to be O(ε2). However, our numerical experiments suggest that H
can be taken much larger than that.

Since CH solutions generally converge quickly to a steady state solution, we
expect the condition required in the proof for uniqueness is not necessary in
practice.
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Error Estimates

Theorem

Let ϕm represent the true solution to the CH equation at time tm and suppose
that ϕ satisfies the appropriate regularities and that H and ω are chosen so that

λ1 :=
Ccoerε

2ω − 4C 2
I C

2
PH

2ω2 − 72
(
(Cinf )2 + (C ′data)2

)2 − 16

Ccoerε2 + 16τ
> 0,

i.e. H sufficiently small and ω sufficiently large. Then we have

‖ϕm − φmh ‖
2
L2 ≤

∥∥ϕ0 − φ0
h

∥∥2

L2

(
1

1 + λ1τ

)m

+

(
Ccoerε

2
(
h2 + h5 + (τ)2

)
ωCcoerε2 − 4C 2

I C
2
PH

2ω2 − 72 ((Cinf )2 + (C ′data)2)2 − 16

)
C∗data

for any m, h, τ > 0.
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Effectiveness of the CDA-FEM for Various Grid Sizes

True solution grid points: 8,100, 4,096, 1,024, 256 and 64

Fine mesh nodes: 33,025

Time step size: τ = 0.002

Interfacial width parameter: ε = 0.05

Nudging parameter: ω = 1/ε2 = 400
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Effectiveness of the CDA-FEM for Various Grid Sizes

True solution grid points: 256 and 64

Fine mesh nodes: 33,025

Time step size: τ = 0.002

Interfacial width parameter: ε = 0.05

Nudging parameter: ω = 1/ε2 = 400
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Effectiveness of the CDA-FEM for Various Nudging
Parameters

True solution grid points: 1,024

Fine mesh nodes: 33,025

Time step size: τ = 0.002

Interfacial width parameter: ε = 0.05
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Effectiveness of the CDA-FEM for Various Nudging
Parameters

True solution grid points: 1,024

Fine mesh nodes: 33,025

Time step size: τ = 0.002

Interfacial width parameter: ε = 0.05

Left: ω = 1, Right: ω = 20
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Cross Shape Test

Figure: True solution (left), CDA CH (middle), CH (right) at 5 and 25 Time Steps
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Effectiveness of the CDA-FEM - Dumbbell Test

Fine mesh nodes: 33,025

Time step size: τ = 0.002/32

Interfacial width parameter: ε = 0.02

Left: ω = 1/ε2 = 2500
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Dumbbell Test

(c) t = 0.0 (d) t = 0.0 (e) t = 0.0

(f)
t = 0.000625

(g)
t = 0.015625

(h)
t = 0.015625

(i) t = 0.001 (j) t = 0.016 (k) t = 0.016
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Dumbbell Test

(l) t = 0.0035 (m)
t = 0.018125

(n)
t = 0.018125

(o) t = 0.1 (p) t = 0.1 (q) t = 0.1
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FUTURE WORK AND THANKS



Future Work

Current and Future Work on Data Assimilation:

Develop a CDA FEM for the mixed formulation of the Cahn-Hilliard equation.
Extend to two-phase flow equations such as the Navier-Stokes Cahn-Hilliard
system of equations.
Extend to other gradient flows, such as the phase field crystal equation.

Open Questions:

What if the data involves an element of stochasticity?
Could CDA help correct for too large of an interfacial width parameter?
How does CDA effect efficient solvers?

Thanks to:

Natasha S. Sharma, UTEP
Leo G. Rebholz, Clemson
Susanne C. Brenner, LSU
Li-yeng Sung, LSU
Master’s Students: Jacob White, Prince Sakyi
Firedrake
This material is based upon work supported in part by the National Science
Foundation under Grant DMS-2110768.
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