New optimized Robin-Robin domain decomposition methods using Krylov solvers for the Stokes-Darcy system

Xiaoming He Department of Mathematics & Statistics Missouri University of Science & Technology, Rolla, MO

Joint work with Yassine Boubendir, New Jersey Institute of Technology Yingzhi Liu, University of Macau Yinnian He, Xi'an Jiaotong University

Partially supported by NSF grants DMS-1722647, DMS-1720014, and DMS-2011843

Introduction: Stokes-Darcy model and multi-physics DDM

Modal analysis for the Robin-Robin DDM

Optimized parameters for the Robin-Robin DDM

Orthodir algorithm for the Robin-Robin DDM

Numerical examples

### Introduction: Stokes-Darcy model and multi-physics DDM

Modal analysis for the Robin-Robin DDM

Optimized parameters for the Robin-Robin DDM

Orthodir algorithm for the Robin-Robin DDM

Numerical examples

# Introduction: applications of Stokes-Darcy model

- Subsurface flow in Karst aquifers
- Interaction between surface water flows and subsurfaces flows
- Oil reservoir in vuggy porous medium
- Industrial filtrations, field-flow fractionation
- Blood motion in lungs, solid tumors and vessels
- Meshy zone in alloy solidification
- Remediation of soils by means of bacterial colonies
- Topology optimization
- Heat transfer in walls with fibrous insulation
- Spontaneous combustion of coal stockpiles

We consider a coupled Stokes-Darcy system on a bounded domain  $\Omega = \Omega_D \bigcup \Omega_S \subset \mathbb{R}^{\mathbf{d}}, \ (\mathbf{d} = 2, 3).$ 



Figure: A sketch of the porous medium domain  $\Omega_D$ , fluid domain  $\Omega_S$ , and the interface  $\Gamma$ .

In  $\Omega_D$ , the porous media flow is assumed to satisfy the following saturated flow model and Darcy's law.

$$\nabla \cdot \overrightarrow{u}_D = f_D, \overrightarrow{u}_D = -\mathbb{K}\nabla\phi_D,$$

where

- $\overrightarrow{u}_D$ : fluid discharge rate in the porous medium
- $\phi_D$ : hydraulic head
- ▶ K: hydraulic conductivity tensor
- ► *f*<sub>D</sub>: sink/source term

We consider the second-order form of the Darcy system

$$-\nabla\cdot (\mathbb{K}\nabla\phi_D) = f_D.$$

In  $\Omega_S$ , the fluid flow is assumed to satisfy the Stokes equations

$$\begin{aligned} -\nabla \cdot \mathbb{T}(\overrightarrow{u}_{S},p_{S}) &= \overrightarrow{f}_{S}, \\ \nabla \cdot \overrightarrow{u}_{S} &= 0. \end{aligned}$$

where

- $\vec{u}_{S}$ : fluid velocity
- *p<sub>S</sub>*: kinematic pressure
- $\overrightarrow{f}_{S}$ : external body force
- μ: kinematic viscosity of the fluid
- $\mathbb{T}(\overrightarrow{u}_{S}, p_{S}) = 2\mu \mathbb{D}(\overrightarrow{u}_{S}) p_{S}\mathbb{I}$ : stress tensor
- $\mathbb{D}(\overrightarrow{u}_{S}) = 1/2(\nabla \overrightarrow{u}_{S} + \nabla^{T} \overrightarrow{u}_{S})$ : rate of deformation tensor

Two interface conditions in the normal direction:

Continuity of the normal velocity across the interface (conservation of mass):

$$\overrightarrow{u}_{S}\cdot\overrightarrow{n}_{S} = -\overrightarrow{u}_{D}\cdot\overrightarrow{n}_{D}.$$

Balance of force normal to the interface:

$$-\overrightarrow{n}_{S}\cdot(\mathbb{T}(\overrightarrow{u}_{S},p_{S})\cdot\overrightarrow{n}_{S}) = g(\phi_{D}-z).$$

where z is the height and g is the gravity constant.

One interface condition in the tangential direction:

Beavers-Joseph-Saffman-Jones (BJSJ):

$$-\boldsymbol{\tau}_j\cdot \left(\mathbb{T}(\overrightarrow{u}_S,p_S)\cdot\overrightarrow{n}_S\right) = \alpha\boldsymbol{\tau}_j\cdot\overrightarrow{u}_S.$$

where  $\tau_j$   $(j = 1, \dots, d-1)$  denote mutually orthogonal unit tangential vectors to the interface  $\Gamma$ .

# Introduction: Survey on DDM for Stokes-Darcy

- M. Discacciati, E. Miglio and A. Quarteroni. Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43(1-2):57-74, 2002.
- M. Discacciati and A. Quarteroni. Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci., 6: 93-103, 2004.
- R. Hoppe, P. Porta and Y. Vassilevski. Computational issues related to iterative coupling of subsurface and channel flows, CALCOLO, 44(1); 1-20, 2007.
- M. Discacciati, A. Quarteroni and A. Valli. Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45(3):1246-1268, 2007.
- B. Jiang. A parallel domain decomposition method for coupling of surface and groundwater flows, Comput. Methods Appl. Mech. Engrg., 198(9-12): 947-957, 2009.
- W. Chen, M. Gunzburger, F. Hua and X. Wang. A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system, SIAM. J. Numer. Anal., 49: 1064-1084, 2011.

# Introduction: Survey on DDM for Stokes-Darcy

- Y. Cao, M. Gunzburger, X.-M. He, and X. Wang. Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beaver-Joseph interface condition, Numer. Math., 117: 601-629, 2011.
- Y. Boubendir and S. Tlupova. Domain decomposition methods for solving Stokes-Darcy problems with boundary integrals, SIAM J. Sci. Comput., 35: B82-B106, 2013.
- D. Vassilev, C. Wang and I. Yotov. Domain decomposition for coupled Stokes and Darcy flows. Comput. Methods Appl. Mech. Engrg., 268: 264-283, 2014.
- X.-M. He, J. Li, Y. Lin, and J. Ming. A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition, SIAM J. Sci. Comput., 37(5): S264-S290, 2015.
- M. Discacciati, and L. Gerardo-Giorda. Optimized Schwarz methods for the Stokes-Darcy coupling, IMA J. Numer. Anal., 38: 1959-1983, 2018.
- Y. Liu, Y. Boubendir, X.-M. He, and Y. He. New optimized Robin-Robin domain decomposition methods using Krylov solvers for the Stokes-Darcy system, SIAM J. Sci. Comput., 44(4): B1068-B1095, 2022.

### Introduction: notations

Spaces:

$$\begin{array}{rcl} X_S &=& \{ \overrightarrow{v} \in [H^1(\Omega_S)]^d \ | \ \overrightarrow{v} = 0 \ \text{on} \ \partial \Omega_S \setminus \Gamma \}, \\ Q_S &=& L^2(\Omega_S), \\ X_D &=& \{ \psi \in H^1(\Omega_D) \ | \ \psi = 0 \ \text{on} \ \partial \Omega_D \setminus \Gamma \}. \end{array}$$

Bilinear forms:

$$\begin{aligned} \mathsf{a}_{D}(\phi_{D},\psi) &= (\mathbb{K}\nabla\phi_{D},\nabla\psi)_{\Omega_{D}}, \\ \mathsf{a}_{S}(\overrightarrow{u}_{S},\overrightarrow{v}) &= 2\mu(\mathbb{D}(\overrightarrow{u}_{S}),\mathbb{D}(\overrightarrow{v}))_{\Omega_{S}}, \\ \mathsf{b}_{S}(\overrightarrow{v},q) &= -(\nabla\cdot\overrightarrow{v},q)_{\Omega_{S}}. \end{aligned}$$

•  $P_{\tau}$  denotes the projection onto the tangent space on  $\Gamma$ , i.e.,

$$P_{\tau} \overrightarrow{u} = \sum_{j=1}^{d-1} (\overrightarrow{u} \cdot \tau_j) \tau_j.$$

 For the Darcy system, we impose the Robin boundary condition: given a constant γ<sub>p</sub> > 0 and given a function η<sub>p</sub> defined on Γ,

$$\gamma_{\rho}\mathbb{K}\nabla\widehat{\phi}_{D}\cdot\overrightarrow{n}_{D}+g\widehat{\phi}_{D}=\eta_{
ho}, \text{ on } \Gamma.$$

The corresponding weak formulation for the Darcy system is given by: for η<sub>p</sub> ∈ L<sup>2</sup>(Γ), find φ̂<sub>D</sub> ∈ X<sub>D</sub> such that

$$\mathsf{a}_D(\widehat{\phi}_D,\psi) + \langle rac{\mathsf{g}\widehat{\phi}_D}{\gamma_{\mathsf{p}}},\psi
angle = (f_D,\psi)_{\Omega_D} + \langle rac{\eta_{\mathsf{p}}}{\gamma_{\mathsf{p}}},\psi
angle, \ orall \psi \in X_D.$$

12 / 45

 For the Stokes system, we impose the Robin boundary conditions: given a constant γ<sub>f</sub> > 0 and given functions η<sub>f</sub> defined on Γ,

$$\overrightarrow{n}_{S} \cdot \left(\mathbb{T}(\widehat{\overrightarrow{u}}_{S}, \widehat{p}_{S}) \cdot \overrightarrow{n}_{S}\right) + \gamma_{f} \widehat{\overrightarrow{u}}_{S} \cdot \overrightarrow{n}_{S} = \eta_{f}, \text{ on } \Gamma,$$

► The corresponding weak formulation for the Navier-Stokes system is given by: for  $\eta_f \in L^2(\Gamma)$ , find  $\widehat{\overrightarrow{u}}_S \in X_S$  and  $\widehat{\rho}_S \in Q_S$  such that

$$\begin{aligned} a_{S}(\widehat{\overrightarrow{u}}_{S},\overrightarrow{v})+b_{S}(\overrightarrow{v},\widehat{\rho}_{S})-b_{S}(\widehat{\overrightarrow{u}}_{S},q)\\ +\gamma_{f}\langle\widehat{\overrightarrow{u}}_{S}\cdot\overrightarrow{n}_{S},\overrightarrow{v}\cdot\overrightarrow{n}_{S}\rangle+\alpha\langle P_{\tau}\widehat{\overrightarrow{u}}_{S},P_{\tau}\overrightarrow{v}\rangle\\ = (\overrightarrow{f}_{S},\overrightarrow{v})_{\Omega_{S}}+\langle\eta_{f},\overrightarrow{v}\cdot\overrightarrow{n}_{S}\rangle, \ \forall \ (\overrightarrow{v},q)\in X_{S}\times Q_{S}. \end{aligned}$$

Compatibility conditions:

$$\begin{aligned} \eta_f &= \gamma_f \widehat{\overrightarrow{u}}_S \cdot \overrightarrow{n}_S - g \widehat{\phi}_D + g z, \\ \eta_p &= \gamma_p \widehat{\overrightarrow{u}}_S \cdot \overrightarrow{n}_S + g \widehat{\phi}_D. \end{aligned}$$

or equivalent conditions:

$$\begin{split} \eta_f &= a\eta_p + bg\widehat{\phi}_D + gz, \\ \eta_p &= c\eta_f + d\widehat{\overrightarrow{u}}_S \cdot \overrightarrow{n}_S + gz, \end{split}$$

where

$$a=rac{\gamma_f}{\gamma_p}, \ \ b=-\left(1+rac{\gamma_f}{\gamma_p}
ight), \ \ c=-1, \ \ d=\gamma_f+\gamma_p.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- 1. Initial values  $\eta_p^0$  and  $\eta_f^0$  are guessed. They may be taken to be zero.
- 2. For k = 0, 1, 2, ..., independently solve the Stokes and Darcy systems with Robin boundary conditions. More precisely,  $\phi_D^k \in X_D$  is computed from

$$\mathsf{a}_{D}(\phi_{D}^{k},\psi) + \langle \frac{\mathsf{g}\phi_{D}^{k}}{\gamma_{p}},\psi\rangle = \langle \frac{\eta_{p}^{k}}{\gamma_{p}},\psi\rangle + (f_{D},\psi)_{\Omega_{D}}, \ \forall \psi \in X_{D}, \quad (1.1)$$

and 
$$(\overrightarrow{u}_{S}^{k}, p_{S}^{k}) \in X_{S} \times Q_{S}$$
 are computed from:  
 $a_{S}(\overrightarrow{u}_{S}^{k}, \overrightarrow{v}) + b_{S}(\overrightarrow{v}, p_{S}^{k}) - b_{S}(\overrightarrow{u}_{S}^{k}, q)$   
 $+\gamma_{f}\langle \overrightarrow{u}_{S}^{k} \cdot \overrightarrow{n}_{S}, \overrightarrow{v} \cdot \overrightarrow{n}_{S} \rangle + \alpha \langle P_{\tau} \overrightarrow{u}_{S}^{k}, P_{\tau} \overrightarrow{v} \rangle$  (1.2)  
 $= \langle \eta_{f}^{k}, \overrightarrow{v} \cdot \overrightarrow{n}_{S} \rangle + (\overrightarrow{f}_{S}, \overrightarrow{v})_{\Omega_{S}}, \ \forall (\overrightarrow{v}, q) \in X_{S} \times Q_{S}.$ 

3.  $\eta_p^{k+1}$  and  $\eta_f^{k+1}$  are updated in the following manner:

$$\begin{array}{lll} \eta_{f}^{k+1} &=& a\eta_{\rho}^{k} + bg\phi_{D}^{k} + gz, \\ \eta_{\rho}^{k+1} &=& c\eta_{f}^{k} + d\overrightarrow{\mathcal{U}}_{S}^{k} \cdot \overrightarrow{n}_{S} + gz \end{array}$$

Introduction: Stokes-Darcy model and multi-physics DDM

Modal analysis for the Robin-Robin DDM

Optimized parameters for the Robin-Robin DDM

Orthodir algorithm for the Robin-Robin DDM

Numerical examples



For modal analysis, we consider:

- The iteration algorithm in continuous context.
- A circular geometric domain



• Simplify the analysis by setting  $\mathbb{K} = KI$ , g = 1 and z = 0.

In continuous context, the Robin-Robin DDM can be described as

• Give initial guess  $\eta^0 = (\eta_f^0, \eta_p^0)^T$ .

For  $k = 0, 1, 2, \ldots$ , solve Darcy equations

$$\begin{cases} \overrightarrow{u}_{D}^{k} + \mathbb{K}\nabla\phi_{D}^{k} = 0, \ \nabla \cdot \overrightarrow{u}_{D}^{k} = 0 & \text{in } \Omega_{D}, \\ \gamma_{p}\mathbb{K}\nabla\phi_{D}^{k} \cdot \overrightarrow{n}_{D} + \phi_{D}^{k} = \eta_{p}^{k} & \text{on } \Gamma, \end{cases}$$
(2.3)

and Stokes equations

$$\begin{cases} \mu \Delta \overrightarrow{u}_{S}^{k} - \nabla p_{S}^{k} = 0, \ \nabla \cdot \overrightarrow{u}_{S}^{k} = 0 & \text{in } \Omega_{S}, \\ \overrightarrow{u}_{S}^{k} = 0 & \text{on } \Sigma, \\ \overrightarrow{u}_{S}^{k} \cdot \overrightarrow{\tau}_{S} = 0, & \text{on } \Gamma, \\ \overrightarrow{n}_{S} \cdot (\mathbb{T}(\overrightarrow{u}_{S}^{k}, p_{S}^{k}) \cdot \overrightarrow{n}_{S}) + \gamma_{f} \overrightarrow{u}_{S}^{k} \cdot \overrightarrow{n}_{S} = \eta_{f}^{k} & \text{on } \Gamma, \end{cases}$$
(2.4)

where  $\Gamma = \partial \Omega_D \cap \partial \Omega_S$  and  $\Sigma = \partial \Omega_S \setminus \Gamma$ .

Update iteration by

$$\eta^{k+1} = \begin{pmatrix} a\eta_{\rho}^{k} + b\phi_{D}^{k} \\ c\eta_{f}^{k} + d\overrightarrow{u}_{S}^{k} \cdot \overrightarrow{n}_{S} \end{pmatrix}.$$
 (2.5)

18 / 45

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▶ Define the Darcy operator  $\mathcal{D} : \eta_p \in L^2(\Gamma) \mapsto \mathcal{D}\eta_p \in L^2(\Gamma)$  as

$$\mathcal{D}\eta_{p} = a\eta_{p} + b\phi_{D}, \qquad (2.6)$$

▶ Define the Stokes operator  $S : \eta_f \in L^2(\Gamma) \mapsto S\eta_f \in L^2(\Gamma)$  as

$$S\eta_f = c\eta_f + d\overrightarrow{u}_S \cdot \overrightarrow{n}_S, \qquad (2.7)$$

► The iteration operator A : η ∈ (L<sup>2</sup>(Γ))<sup>2</sup> → Aη ∈ (L<sup>2</sup>(Γ))<sup>2</sup> can be written as

$$\mathcal{A} = \left(\begin{array}{cc} 0 & \mathcal{D} \\ \mathcal{S} & 0 \end{array}\right). \tag{2.8}$$

(日) (四) (三) (三) (三)

### Proposition

The operator  $\mathcal{D}$  has the decomposition  $\mathcal{D}\eta_p = \sum_{m \in \mathbf{Z}} \mathcal{D}_m \eta_{p,m} H_m(\theta)$  with

$$\mathcal{D}_0 = -1, \quad \mathcal{D}_m = \frac{\gamma_f K |m| / R_1 - 1}{\gamma_p K |m| / R_1 + 1} \quad (m \neq 0),$$
 (2.9)

where 
$$\eta_p = \sum_{m \in \mathbb{Z}} \eta_{p,m} H_m(\theta)$$
.

### Proposition

The operator S has the decomposition  $S\eta_f = \sum_{m \in \mathbb{Z}} S_m \eta_{f,m} H_m(\theta)$  with

$$\mathcal{S}_0 = -1, \quad \mathcal{S}_m = \frac{\gamma_p M_m / \mu - N_m}{\gamma_f M_m / \mu + N_m} \quad (m \neq 0), \tag{2.10}$$

where  $\eta_f = \sum_{m \in \mathbb{Z}} \eta_{f,m} H_m(\theta)$ .

Here

$$H_m( heta) = rac{1}{\sqrt{2\pi}} e^{im heta}, \ heta \in [0, 2\pi], \ m \in \mathbf{Z},$$

is the basis functions in  $L^2(\Gamma)$ ,

I

$$M_{m} = \begin{cases} -\frac{R_{1}^{2}}{2}(\lambda^{2}-1) + h_{1}\ln\lambda, & |m| = 1, \\ -\frac{R_{1}^{|m|+1}}{2}(\lambda^{2}-1) + \frac{h_{m}}{2(|m|-1)R_{1}^{|m|-1}}(1-\lambda^{-2(|m|-1)}), & |m| > 1, \end{cases}$$

$$(2.11)$$

$$W_m = R_1^{|m|} + \frac{h_m}{R_1^{|m|}} + \frac{2}{R_1}M_m, \ |m| \ge 1,$$
 (2.12)

with

$$h_{m} = \begin{cases} \frac{R_{1}^{2}}{2} \frac{(\lambda^{4} - 1)/2 + (\lambda^{2} - 1)}{\ln \lambda + (\lambda^{2} - 1)/2}, & |m| = 1, \\ R_{1}^{2|m|} \lambda^{2(|m|+1)} \frac{|m| - 1}{|m| + 1} \frac{1 + \lambda^{-2(|m|+1)}((\lambda^{2} - 1)(|m| + 1) - 1)}{(\lambda^{2} - 1)(|m| - 1) + 1 - \lambda^{-2(|m|-1)}}, & |m| > 1, \end{cases}$$

and  $\lambda = R_2/R_1 > 1$ . Here  $R_1$  is the radius of the Darcy domain  $\Omega_D$ ,  $R_2$  is the radius of the Stokes-Darcy domain  $\Omega$ .

#### Lemma

Let  $M_m$  and  $N_m$  be defined as in (2.11) and (2.12), respectively, and  $C_m = \frac{M_m}{N_m}$ . Then, for |m| > 1, we have

$$C_m^{-1} = \frac{N_m}{M_m} = \frac{2}{R_1} |m| \left( 1 + O\left(\frac{|m|^2}{\lambda^{2|m|-2} - |m|^2}\right) \right).$$
(2.13)

#### Remark

When  $m \to \infty$ , we have  $O\left(\frac{|m|^2}{\lambda^{2|m|-2}-|m|^2}\right) \to 0$  with  $\lambda > 1$ , hence  $\frac{N_m}{M_m} \to \frac{2}{R_1}|m|$ . This almost linear dependence is also observed geometrically in the next plot.



Figure: Change of  $\frac{N_m}{M_m}$  with respect to *m*: almost linear performance after a big enough *m*.

► The iterative operator can be written as  $\mathcal{A} = \sum_{m \in \mathbb{Z}} \mathcal{A}_m H_m(\theta)$ , where

$$\mathcal{A}_m := \begin{pmatrix} 0 & \mathcal{D}_m \\ \mathcal{S}_m & 0 \end{pmatrix} = \begin{pmatrix} 0 & \frac{\gamma_f K |m|/R_1 - 1}{\gamma_\rho K |m|/R_1 + 1} \\ \frac{\gamma_p M_m / \mu - N_m}{\gamma_f M_m / \mu + N_m} & 0 \end{pmatrix}.$$
 (2.14)

#### Theorem

Let  $\rho(\mathcal{A}_m)$  be the spectral radius of  $\mathcal{A}_m$  defined in (2.14). When  $\gamma_f = \gamma_p$ , we have

$$ho(\mathcal{A}_0)=1$$
 and  $ho(\mathcal{A}_m)<1$  for  $m
eq 0.$ 

When  $\gamma_f \neq \gamma_p$ , by choosing  $\gamma_f$  and  $\gamma_p$  satisfying

 $\gamma_f \gamma_p K/(2\mu) = 1, \ \gamma_p K |m|/R_1 + C_m \gamma_f/\mu \gg \gamma_f K |m|/R_1 + C_m \gamma_p/\mu,$ we have  $|\rho(\mathcal{A}_m)| < 1.$ 

• Spectral radius: 
$$\rho(\gamma_f, \gamma_p, m) = \left| \left( \frac{\gamma_f Km/R_1 - 1}{\gamma_p Km/R_1 + 1} \right) \left( \frac{\gamma_p C_m/\mu - 1}{\gamma_f C_m/\mu + 1} \right) \right|.$$

► Using C<sub>m</sub><sup>-1</sup> ≈ 2/R<sub>1</sub>|m|, spectral radius ρ(γ<sub>f</sub>, γ<sub>p</sub>, m) can be approximately reduced to

$$\rho(\gamma_f, \gamma_p, m) \approx \left| \left( \frac{2\widetilde{\mu}m - \gamma_p}{2\widetilde{\mu}m + \gamma_f} \right) \left( \frac{1 - \gamma_f \widetilde{K}m}{1 + \gamma_p \widetilde{K}m} \right) \right|,$$

where  $\widetilde{\mu} = \mu/R_1$  and  $\widetilde{K} = K/R_1$ .

In fact, the above conclusion is consistent with the corresponding conclusion in the following reference which uses Fourier analysis based on a geometric assumption of a straight line:

M. Discacciati, and L. Gerardo-Giorda. Optimized Schwarz methods for the Stokes-Darcy coupling, IMA J. Numer. Anal., 38: 1959-1983, 2018. Introduction: Stokes-Darcy model and multi-physics DDM

Modal analysis for the Robin-Robin DDM

### Optimized parameters for the Robin-Robin DDM

Orthodir algorithm for the Robin-Robin DDM

Numerical examples



# Min-Max approach: hyperbolic relation (review)

- M. Discacciati, and L. Gerardo-Giorda. Optimized Schwarz methods for the Stokes-Darcy coupling, IMA J. Numer. Anal., 38: 1959-1983, 2018.
- Hyperbolic relation between Robin parameters  $\gamma_f$  and  $\gamma_p$ :

$$\gamma_f \gamma_p = \frac{2\widetilde{\mu}}{\widetilde{K}}.$$

Min-max problem with hyperbolic relation (M-H):

$$\min_{\gamma_{f}\gamma_{p}=\frac{2\tilde{\mu}}{\tilde{K}}} \max_{m \in [m_{\min}, m_{\max}]} \rho(\gamma_{f}, \gamma_{p}, m)$$

$$= \min_{\gamma_{f}\gamma_{p}=\frac{2\tilde{\mu}}{\tilde{K}}} \max \left\{ \rho(\gamma_{f}, \gamma_{p}, m_{\min}), \rho(\gamma_{f}, \gamma_{p}, m_{\max}) \right\}. \quad (3.15)$$

### Min-Max approach: linear relation

When m = m<sub>min</sub> and m = m<sub>max</sub>, the parameter pairs (γ<sub>f</sub>, γ<sub>p</sub>) reach optima at

$$\left(\frac{1}{\widetilde{K}m_{\min}}, 2\widetilde{\mu}m_{\min}\right)$$
 and  $\left(\frac{1}{\widetilde{K}m_{\max}}, 2\widetilde{\mu}m_{\max}\right)$ .

Linear relation between Robin parameters γ<sub>f</sub> and γ<sub>p</sub>:

$$\gamma_{p} = \left(-2\widetilde{\mu}\widetilde{K}\,m_{\min}\,m_{\max}\right)\gamma_{f} + 2\widetilde{\mu}(m_{\min}+m_{\max})$$
  
:= $p\gamma_{f} + q$  (3.16)

for any 
$$\gamma_f \in \mathcal{I}_f$$
, where  $\mathcal{I}_f = \left[\frac{1}{\widetilde{K}m_{\max}}, \frac{1}{\widetilde{K}m_{\min}}\right]$ .

Min-max problem with linear relation (M-L):

$$\min_{\gamma_{\rho}=\rho\gamma_{f}+q} \max_{m \in [m_{\min}, m_{\max}]} \rho(\gamma_{f}, \gamma_{\rho}, m).$$
(3.17)

28 / 45

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへの

#### Theorem

Let  $(\gamma_f^*, \gamma_p^*)$  and  $(\gamma_f^*, \gamma_p^*)$  be the solution of (3.15) and (3.17), respectively. If  $\widetilde{K}$  tends to zero and  $m_{\max} > m_{\min}$ , then

$$\max_{m \in [m_{\min}, m_{\max}]} \rho(\gamma_f^*, \gamma_p^*, m) > \max_{m \in [m_{\min}, m_{\max}]} \rho(\gamma_f^*, \gamma_p^*, m).$$
(3.18)

### Min-Max approach: spectral comparison



Figure: Comparison of the maximum spectral radius with respect to  $\gamma_f$  and the corresponding optimal  $\gamma_{\rho}$ :  $\mu = 1, K = 1$  (left) or  $\mu = 1e - 1, K = 1e - 4$  (right).

## Expectation approach: hyperbolic relation (review)

1

Spectral cluster can improve the convergence of Krylov methods.

► Define 
$$\mathcal{A}_f = \left\{ \gamma_f > 0 : \rho(\gamma_f, \gamma_p, m) |_{\gamma_f \gamma_p = \frac{2\mu}{K}} \leq 1, \quad \forall m \in [m_{\min}, m_{\max}] \right\}.$$

Expectation minimization problem with hyperbolic relation (E-H):

$$\min_{\substack{\gamma_f \in \mathcal{A}_f \\ \gamma_f \gamma_p = \frac{2\mu}{K}}} E(\gamma_f, \gamma_p) := \min_{\gamma_f \in \mathcal{A}_f} E(\gamma_f),$$
(3.19)

where

$$\begin{split} \mathsf{E}(\gamma_f) &= \frac{1}{m_{\max} - m_{\min}} \int_{m_{\min}}^{m_{\max}} \rho(\gamma_f, \gamma_p, m) \mathsf{d}m \\ &= \frac{\gamma_f^2 \widetilde{K}}{2\widetilde{\mu}} + \frac{(\gamma_f^2 \widetilde{K} + 2\widetilde{\mu})^2}{2\widetilde{\mu} \widetilde{K} (2\widetilde{\mu}m_{\max} + \gamma_f) (2\widetilde{\mu}m_{\min} + \gamma_f)} \\ &- \frac{\gamma_f (\gamma_f^2 \widetilde{K} + 2\widetilde{\mu})}{2\widetilde{\mu}^2 (m_{\max} - m_{\min})} \ln \left( \frac{2\widetilde{\mu}m_{\max} + \gamma_f}{2\widetilde{\mu}m_{\min} + \gamma_f} \right). \end{split}$$

>

### Expectation approach: linear relation

Expectation minimization problem with linear relation (E-L):

$$\min_{\substack{\gamma_f \in \mathcal{I}_f \\ \gamma_p = p\gamma_f + q}} E(\gamma_f, \gamma_p), \tag{3.20}$$

where

$$\begin{split} E(\gamma_{f},\gamma_{p}) &:= \frac{1}{m_{\max} - m_{\min}} \int_{m_{\min}}^{m_{\max}} \rho(\gamma_{f},\gamma_{p},m) dm \\ &= \frac{1}{m_{\max} - m_{\min}} \left( \int_{m_{\min}}^{m_{1c}} -g(\gamma_{f},\gamma_{p},m) dm + \int_{m_{1c}}^{m_{2c}} g(\gamma_{f},\gamma_{p},m) dm + \int_{m_{2c}}^{m_{\max}} -g(\gamma_{f},\gamma_{p},m) dm \right) \\ &= \frac{(\gamma_{f} + \gamma_{p}) \left( 2\widetilde{\mu} + \widetilde{K}\gamma_{p}^{2} \right)}{\widetilde{K}\gamma_{p}^{2}(m_{\max} - m_{\min}) \left(\gamma_{f}\gamma_{p}\widetilde{K} - 2\widetilde{\mu}\right)} \ln \left( \left( \frac{\widetilde{K}\gamma_{p}m_{\max} + 1}{\widetilde{K}\gamma_{p}m_{\min} + 1} \right) \left( \frac{\widetilde{K}\gamma_{p}m_{1c} + 1}{\widetilde{K}\gamma_{p}m_{2c} + 1} \right)^{2} \right) \\ &- \frac{(\gamma_{f} + \gamma_{p}) \left( 2\widetilde{\mu} + \widetilde{K}\gamma_{f}^{2} \right)}{2\widetilde{\mu}(m_{\max} - m_{\min}) \left(\gamma_{f}\gamma_{p}\widetilde{K} - 2\widetilde{\mu}\right)} \ln \left( \left( \frac{\gamma_{f} + 2\widetilde{\mu}m_{\max}}{\gamma_{f} + 2\widetilde{\mu}m_{\min}} \right) \left( \frac{\gamma_{f} + 2\widetilde{\mu}m_{1c}}{\gamma_{f} + 2\widetilde{\mu}m_{2c}} \right)^{2} \right) \\ &+ \frac{\gamma_{f}}{\gamma_{p}} \left( 1 - \frac{2(m_{2c} - m_{1c})}{m_{\max} - m_{\min}} \right). \end{split}$$

<ロ > < 回 > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > 32 / 45

### Expectation approach: spectral comparison



Figure: Comparison of the maximum spectral radius with respect to  $\gamma_f$  and the corresponding optimal  $\gamma_{\rho}$ :  $\mu = 1, K = 1$  (left) or  $\mu = 1e - 1, K = 1e - 4$  (right).

・ロ ・ ・ 一 ・ ・ 言 ・ く 言 ・ こ ・ う へ で 33 / 45 Introduction: Stokes-Darcy model and multi-physics DDM

Modal analysis for the Robin-Robin DDM

Optimized parameters for the Robin-Robin DDM

Orthodir algorithm for the Robin-Robin DDM

Numerical examples

## Robin-Robin Orthodir DDM

- Algebraic system of Stokes equation (1.2):  $A_1u_1 = b_1 + l_1$ .
- Algebraic system of Darcy equation (1.1):  $A_2u_2 = b_2 + l_2$ .

 $\sim$ 

The Robin-Robin DDM is a Jacobian iteration of the problem

$$\mathcal{A}\eta = \eta,$$

or

$$\mathcal{A}\eta := (I - \mathcal{A})\eta = g_0,$$
  
where  $\widehat{\mathcal{A}}\eta := \{\mathcal{A}\eta | l_1 = 0, l_2 = 0\}$ ,  $g_0 := \{\mathcal{A}\eta | b_1 = 0, b_2 = 0\}.$ 

 $\sim$ 

# Robin-Robin Orthodir DDM

### Algorithm 1 Robin-Robin Orthodir DDM for Stoke-Darcy problem

1: Initialize 
$$\eta^0 = 0$$
.  
2: Solve  $g_0 = A\eta^0$  with  $b_1 = 0$  and  $b_2 = 0$ .  
3: Set  $r^0 = p^0 = g_0$ .  
4: for  $j = 0, 1, ...$  do  
5: Compute  $\widehat{A}p^j$  by solving  $Ap^j$  with  $l_1 = 0$  and  $l_2 = 0$ , and then set  $\widehat{A}p^j = p^j - \widehat{A}p^j$ . Compute  $\widehat{A}^2p^j$  using the same routine but with  $\widehat{A}p^j$  instead of  $p^j$ .  
6:  $\alpha_j = \frac{\langle r^i, \widehat{A}p^j \rangle}{\langle \widehat{A}p^j, \widehat{A}p^j \rangle}$ .  
7:  $X^{j+1} = X^j + \alpha_j p^j$ .  
8:  $r^{j+1} = r^j - \alpha_j \widehat{A}p^j$ .  
9: for  $i = 0, ..., j$  do  
10:  $\beta_{ij} = -\frac{\langle \widehat{A}^2p^j, \widehat{A}p^j \rangle}{\langle \widehat{A}p^j, \widehat{A}p^j \rangle}$ .  
11: end for  
12:  $p^{j+1} = \widehat{A}p^j + \sum_{i=0}^j \beta_{ij}p^i$ .  
13: end for

Introduction: Stokes-Darcy model and multi-physics DDM

Modal analysis for the Robin-Robin DDM

Optimized parameters for the Robin-Robin DDM

Orthodir algorithm for the Robin-Robin DDM

Numerical examples

- Domain:  $\Omega = (0, 1) \times (0, 2)$  where  $\Omega_D = (0, 1) \times (0, 1)$ ,  $\Omega_S = (0, 1) \times (1, 2)$  and interface  $\Gamma = (0, 1) \times \{1\}$
- ▶ Parameters:  $\alpha = \alpha_0 \sqrt{\mu/K}$ ,  $\alpha_0 = 1$ , g = 1 and z = 0.
- Exact solution:

$$\begin{cases} \phi_D = (-\alpha_0 x (y-1) + y^3/3 - y^2 + y)/K + 2\mu x, \\ \overrightarrow{u}_S = (\sqrt{\mu K}, \alpha_0 x), \\ \rho_S = 2\mu (x+y-1) + 1/(3K). \end{cases}$$



Figure: Orthodir DDM with different Robin parameters for  $\mu = 1, K = 10^{-2}$  and h = 1/32. Left: nonoptimized Robin parameters; Right: optimal Robin parameters obtained from the four different optimal approaches.

Table: The optimal parameter pairs  $(\gamma_f, \gamma_p)$  and the number of iterations with four optimal approaches: M-L, M-H, E-L, and E-H.

| $\mu$ | K    | $\gamma_f$ | $\gamma_{P}$ | $ ho_{max}$ | $E(\gamma_f, \gamma_p)$ | lter |       |
|-------|------|------------|--------------|-------------|-------------------------|------|-------|
| 1     | 1    | 0.2703     | 36.6256      | 0.0060      | 0.0041                  | 7    | (M–L) |
|       |      | 0.1618     | 12.3606      | 0.0116      | 0.0089                  | 8    | (M–H) |
|       |      | 0.1014     | 143.3135     | 0.0324      | 0.0008                  | 6    | (E–L) |
|       |      | 0.0363     | 55.1120      | 0.0393      | 0.0009                  | 7    | (E–H) |
| 1     | 1e-6 | 5.6434e+04 | 171.6983     | 0.0024      | 0.0014                  | 18   | (M–L) |
|       |      | 1.9245e+04 | 103.9255     | 0.0048      | 0.0016                  | 21   | (M–H) |
|       |      | 5.6434e+04 | 171.6983     | 0.0024      | 0.0014                  | 18   | (E–L) |
|       |      | 1.9245e+04 | 103.9255     | 0.0048      | 0.0016                  | 21   | (E–H) |
| 1e-1  | 1e-4 | 595.3315   | 16.9741      | 0.0222      | 0.0129                  | 31   | (M–L) |
|       |      | 207.9411   | 9.6181       | 0.0457      | 0.0145                  | 33   | (M–H) |
|       |      | 533.3490   | 17.3656      | 0.0260      | 0.0129                  | 31   | (E–L) |
|       |      | 192.4455   | 10.3926      | 0.0474      | 0.0143                  | 33   | (E–H) |

(ロ) (部) (注) (注) (10)

40 / 45



Figure: Contour distribution of the number of iterations and the optimal  $(\gamma_f, \gamma_p)$  pairs: blue circle (M-L), blue diamond (E-L), red circle (M-H) and red diamond (E-L), respectively.

### Numerical example 2: curved interface

Domain: Ω = (-1.5, 1.5) × (-1.5, 1.5) where interface Γ = {y = -0.5 sin(π(x + 1.5)), -1.5 ≤ x ≤ 1.5}, Stokes and Darcy regions are the top and bottom parts, respectively.

• Parameters: 
$$\alpha = \sqrt{\mu/K}$$
,  $g = 1$  and  $z = 0$ .

- Stokes boundary condition:  $\overrightarrow{u}_{S} = (0, x^{2} 4).$
- Darcy boundary condition: K∇φ<sub>D</sub> · n<sub>D</sub> = 0 on the left and right boundaries; φ<sub>D</sub> = 0 on the bottom boundary.
- Source terms:  $\overrightarrow{f}_S = 0$ ,  $f_D = 0$ .

# Numerical example2: curved interface

Table: The optimal parameter pairs  $(\gamma_f, \gamma_p)$  and the numbers of iterations with four optimal approaches: M-L, M-H, E-L, and E-H.

| ( K)                    | h = 1/8    |            | h = 1/128 |            |            |      |       |
|-------------------------|------------|------------|-----------|------------|------------|------|-------|
| $(\mu, \kappa)$         | $\gamma_f$ | $\gamma_P$ | Iter      | $\gamma_f$ | $\gamma_P$ | lter |       |
|                         | 2.44e-01   | 1.80e+01   | 12        | 2.66e-01   | 1.39e+02   | 10   | (M-L) |
| $(1 \ 1)$               | 1.77e-01   | 1.13e+01   | 12        | 1.58e-01   | 1.27e+01   | 10   | (M-H) |
| (1,1)                   | 1.57e-01   | 3.17e+01   | 12        | 5.01e-02   | 6.84e+02   | 10   | (E-L) |
|                         | 9.44e-02   | 2.12e+01   | 12        | 1.20e-02   | 1.67e+02   | 10   | (E-H) |
|                         | 1.91e+01   | 2.64e+01   | 24        | 2.28e+01   | 2.35e+02   | 24   | (M-L) |
| $(1 \ 1 \ 2)$           | 1.22e+01   | 1.63e+01   | 25        | 9.29e+00   | 2.15e+01   | 22   | (M-H) |
| (1,10-2)                | 1.42e+01   | 3.41e+01   | 22        | 5.96e+00   | 6.60e+02   | 24   | (E-L) |
|                         | 8.74e+00   | 2.29e+01   | 23        | 1.52e+00   | 1.32e+02   | 30   | (E-H) |
|                         | 1.15e+01   | 3.83e-01   | 35        | 8.34e+00   | 6.00e+00   | 35   | (M-L) |
| $(1 \circ 2 1 \circ 2)$ | 7.20e+00   | 2.78e-01   | 35        | 1.68e+00   | 1.19e+00   | 31   | (M-H) |
| (10-2,10-2)             | 1.14e+01   | 3.86e-01   | 35        | 2.31e+00   | 7.52e+00   | 40   | (E-L) |
|                         | 7.20e+00   | 2.78e-01   | 35        | 8.84e-01   | 2.26e+00   | 38   | (E-H) |
|                         | 1.13e+05   | 3.88e-05   | 9         | 5.49e+04   | 6.72e-04   | 11   | (M-L) |
| (10.6.10.6)             | 7.06e+04   | 2.83e-05   | 9         | 5.66e+03   | 3.53e-04   | 11   | (M-H) |
| (10-0,10-0)             | 1.13e+05   | 3.88e-05   | 9         | 8.66e+04   | 5.92e-04   | 11   | (E-L) |
|                         | 7.06e+04   | 2.83e-05   | 9         | 5.66e+03   | 3.53e-04   | 11_  | (E-H) |

43 / 45

# Numerical example2: curved interface



Figure: Stokes velocity field (left), Darcy velocity field (middle) and pressure (right) with  $(\mu, K) = (1, 10^{-2})$ .

# Ongoing & future work

Modal analysis and optimized DDM with Orthodir algorithm for

- Stokes-Darcy model with Beavers-Joseph interface condition
- Navier-Stokes-Darcy model
- Dual-Porosity-Navier-Stokes model
- Helmholtz equation
- Phase field models

▶ ......