
Gerardo Chowell, PhD

Forecasting epidemiological patterns using multi-scale 
semi-mechanistic models

Privacy and Ethics in Pandemic Data Collection and 
Processing 

ICERM @ Brown University
19 January 2023



Inferring the structure of aggregate epidemiological patterns
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Observe aggregated incidence data

2003 SARS outbreak in Singapore

?

Adapted from Goh et al. 2006

More than one transmission tree could give rise to very similar epidemic curves



Increasing 
Saturation 
effects

- Mode of transmission

- Reactive behavior changes

- Spatial effects (clustering)

- Other individual-level 
heterogeneities in 
susceptibility and infectivity

Real epidemics exhibit variable epidemic growth scaling
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Viboud et al. Epidemics 2016; Chowell et al. JR Interface 2016



The initial phase of the HIV/AIDS epidemic 
in the United States

Colgate et al. PNAS 1989

1=White; 2= Black; 3=Hispanic; 4=unknown

https://www.pbs.org/newshour/science/america-hiv-outbreak-origins-nyc-gaetan-dugas



Multimodal epidemics

• Aggregation of multiple 
underlying spreading 
mechanisms. 

• Transmission occurs in 
high-risk groups first 
before affecting others.

• Transmission in different 
geographic areas occurs at 
different times.

• Emergence of new 
variants



Building block: generalized logistic growth model

Chowell et al. Plos Currents Outbreaks 2016.

Where:
• C’(t) describes the incidence curve 

over time t
• r is a positive parameter denoting the 

growth rate 
• p ∈ [0,1]  is an “deceleration” growth 

parameter
• K is the final epidemic size parameter

Deceleration of 
growth parameter 

Growth rate 

Epidemic sizer=0.3, K=100,000

p=0.86

p=0.92

p=1.0



Overlapping sub-epidemic wave model

• Each sub-epidemic is modelled by a generalized logistic growth model
• An epidemic wave comprising of a set of n over lapping sub-epidemics is modelled using 

coupled differential equations

𝑑𝐶! 𝑡
𝑑𝑡

= 𝑟𝐴!"#(𝑡)𝐶!(𝑡)$ 1 −
𝐶!(𝑡)
𝐾!

Where,
𝐶!= cumulative number of infections for sub-epidemic i,
𝐾!= size of the ith   sub-epidemic
Ai= indicator variable

𝐴!(𝑡)=𝑓 𝑥 = .1 𝐶! 𝑡 > 𝐶%&'
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

i = 1,2,3……n

i=1

i=2𝐶!"!

i=3

Chowell, G., Tariq, A., & Hyman, J. M. (2019). BMC medicine, 17(1), 1-18.Number of model parameters is  5 (n>1)



Assuming the subsequent sub-epidemic sizes decline exponentially we have,

𝐾! = 𝐾" 𝑒#$(!#&)

Where,
𝐾! is the size of the initial sub-epidemic (𝐾" = 𝐾! )

The total size of the epidemic wave composed of n overlapping sub-epidemics is given by:

𝐾()( =$
!*&

+

𝐾"𝑒#$(!#&) =
𝐾"(1 − 𝑒#$+)
1 − 𝑒#$)

Where,
q= interventions or behavior change, q> 0 and n= number of sub-epidemics

𝐾#$#= 𝑛𝐾! ,          when 𝑞 =0
Where 𝐾#$#= total epidemic size 

𝐶#$# 𝑡 ='
"%&

'

𝐶"(𝑡)

Where 𝐶#$# 𝑡 = cumulative curve of epidemic wave

Modeling sub-epidemic sizes

i=2𝐶!"!

i=1

i=3



Representative epidemic waves composed of overlapping 
sub-epidemics

Endemic state

Temporary 
endemic state

Declining sub-
epidemics

Sustained 
oscillations

Damped 
oscillations

Number of model parameters is  5 (n>1)



Parameter estimation

Model parameters are estimated by fitting the model to the 
aggregated incidence curve

Chowell et al. Infectious Disease Modeling. 2017

Nonlinear least squares fitting or 
maximum likelihood estimation with 
parametric bootstrapping.



SARS outbreak in Singapore, 2003

Peak 1
Peak 2

Hence two sub-
epidemics in the 
sub-epidemic profile 





https://github.com/gchowell/spatial_wave_subepidemic_framework

Spatial wave sub-epidemic framework - MATLAB Toolbox



Real-time forecasts of the ongoing COVID-19 pandemic

https://publichealth.gsu.edu/research/coronavirus/



Sub-epidemic wave model forecasts: USA



Mean Absolute Error

Mean Squared Error

Weighted Interval Score

𝑦!! = time series of incident cases 
describing epidemic wave 

𝑡#= time points of time series data

Coverage of the 95% Prediction 
Interval
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1 𝑦% > 𝐿% ∩ 𝑦% < 𝑈%

Tilmann Gneiting & Adrian E Raftery (2007)

𝐿!= lower bound of 95% prediction 
interval
𝑈!= Upper bound of 95% prediction 
interval

𝑓(𝑡# , .Θ)= model fit

Performance metrics
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Sub-epidemic wave model performance - USA



COVID-19 Resurgence after relaxation of social 
distancing - USA





n-subepidemic modeling framework

• Each sub-epidemic is modelled by a generalized logistic growth model
• An epidemic wave comprising of a set of n overlapping sub-epidemics is modelled using 

coupled differential equations

•
=>*(?)
=?

= 𝐶@A 𝑡 = 𝐴@(𝑡)𝑟@𝐶@B*(𝑡) 1 − >*(?)
C+*

Where,
𝐶!= cumulative number of infections for sub-epidemic i,
𝐾!= size of the ith   sub-epidemic
Ai= indicator variable

𝐴!(𝑡)=𝑓 𝑥 = .1 𝐶! 𝑡 > 𝐶%&'
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

i = 1,2,3……n

i=1

i=2

𝐶!"!

Number of model parameters is  3n+1 



We considered a set of 𝑛-subepidemic models with 1 ≤ 𝑛 ≤ 2 and different values of

𝐶%?@ . Then we ranked them from best to worst according to the 𝐴𝐼𝐶A which is given by:

𝐴𝐼𝐶A = 𝑛B𝑙𝑜𝑔 𝑆𝑆𝐸 + 2𝑚 +
2𝑚 𝑚 + 1
𝑛B −𝑚 − 1

where 𝑆𝑆𝐸 = ∑C&'
(, (𝑓 𝑡C, >Θ − 𝑦%-)

D, 𝑚 = 3𝑛 + 1 is the number of model parameters and

𝑛B is the number of data points.

Top-ranking K sub-epidemic models via model selection



Ensemble(K) models from top-ranking K sub-epidemic models

We generate ensemble models from the weighted combination of the highest-ranking sub-
epidemic models as deemed by the AICC.  An ensemble derived from the top-ranking 
”K" models is denoted by Ensemble(K).

Ensemble n-subepidemic modeling framework



Representative fits of the top-ranking sub-epidemic models



Parameter estimates for the top-ranking sub-epidemic model



Summer resurgence, USA



Sub-epidemic profiles



Ensemble models – Summer resurgence, USA



Fall resurgence, USA



Sub-epidemic profiles



Ensemble models – Fall resurgence



Spring 2021



Ensemble models – Spring 2021



Ensemble n-subepidemic framework - MATLAB Toolbox

https://github.com/gchowell/ensemble_n-subepidemic_framework



>> Commonly used to forecast trends in finance and the weather.

The auto.arima function in the R package “forecast” is used to select orders and build the

model. First, the degree of differencing 0 ≤ 𝑑 ≤ 2 is selected based on successive KPSS

unit-root. Then given d, the orders p and q are selected based on the AICc for the d-times

differenced data. For d=0 or d=1, a constant will be included if it improves the AICc value;

for d>1, the constant 𝜇 is fixed as 0 to avoid the model having a quadratic or higher order

trend.

ARIMA models

1) (log)ARIMA using log-transformed data. Then we take the exponential of the forecasted 
values and the PI bounds to predict the incident death counts and get the PIs. 

2) ARIMA. Any negative values are set as zero. Then, it is possible that the actual coverage 
probability of such PIs can be smaller than the nominal value (95%). 



Forecasting strategy

Data. We used daily COVID-19 deaths reported in the USA from the publicly available data 
tracking system of the Johns Hopkins Center for Systems Science and Engineering (CSSE) 
from 27 February 2020 to 30 March 2022.

Models. We conducted short-term forecasts using the top-ranking 𝑛-subepidemic model 
(1≤𝑛≤2) and three ensemble models constructed with the top-ranking sub-epidemic models 
namely Ensemble(2), Ensemble(3), and Ensemble(4).  For comparison, we also generated 
short-term forecasts using the previously described ARIMA models. 

Forecasting periods. Using a 90-day calibration period for each model, we conducted a total 
of 98 weekly sequential 10-day, 20-day and 30-day ahead forecasts from 20 April 2020 to 28 
February 2022, spanning five pandemic waves. The calibration period for each sequential 
forecast included seven additional days of data than the previous forecast. 



Average forecasting performance metrics

20 April 2020 to 28 February 2022 (98 sequential forecasts)



Performance metrics

20 April 2020 to 28 February 2022



Representative top-ranking sub-epidemic forecasts



Representative top-ranking sub-epidemic profile forecasts



Representative ensemble sub-epidemic forecasts derived from top-
ranking sub-epidemic models





Summary
• Our ensemble sub-epidemic models outperformed top-ranking sub-epidemic models and 

a set of ARIMA models in weekly short-term forecasts covering the national trajectory of 
the COVID-19 pandemic in the USA from the early growth phase up until the Omicron-
dominated wave. 

• Forecasting performance consistently improved for the ensemble sub-epidemic models 
that incorporated a higher number of top-ranking sub-epidemic models. 

• The sub-epidemic framework could also be used to forecast other biological and social 
growth processes, such as the epidemics of lung injury associated with e-cigarette use or 
vaping and the viral spread of information through social media platforms.

• Code and performance metrics are publicly available in a GitHub repository to facilitate 
comparison with other modeling approaches.

• Possibilities for further development of the framework.



Real-time forecasting monkeypox, July-October 2022

• Data. Weekly updates of the daily confirmed monkeypox cases by date of report 
from the CDC and the Global.health (G.h) GitHub repository. The CDC and G.h
data sources define a confirmed case of monkeypox as a person with a 
laboratory-confirmed case of monkeypox.

• Scope. At the global level and for countries that have reported the great majority 
of the cases including Brazil, Canada, England, France, Germany, Spain, and the 
United States.

• Forecasting periods. Data updated on Wednesday evening from both the CDC 
and GitHub Global.health (G.h) repository.



https://publichealth.gsu.edu/research/monkeypox-forecasting-center/



Weighted ensemble model forecasts, Global



Weighted ensemble model forecasts,  USA



Weighted ensemble model forecasts, Brazil



Weighted ensemble model forecasts, England
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