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Symmetric Moment Tensor
Given data x1, . . . , xp ∈ Rn. It is often useful to form the moment

Md = 1
p

p∑
i=1

x⊗d
i ∈ Sd(Rn)

where (x⊗d)i1,...,id = xi1 . . . xid for each (i1, . . . , id) ∈ [n]d .

▶ d = 1⇝ sample average
▶ d = 2⇝ sample covariance matrix (uncentered)
▶ d = 3⇝ n × n × n real symmetric tensor (sample third

moment), etc.
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Moment Tensor Decompositions: A Mix of Algebra and
Computation

When the data x1, . . . , xp follows a nice model, typically the
moment tensors Md admit a nice algebraic decomposition. We’ll
see computing it helps to e.g. estimate model parameters.

I will focus on two examples of (model, decomposition) pairs:

I. Gaussian Mixture Models & CP Tensor Decompositions

II. Mixture of Products & Coupled Incomplete
CP Tensor Decompositions
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PART I: Gaussian Mixture Models & CP Tensor
Decompositions



Gaussian Distribution

Gaussian vector: x ∼ N (µ, Σ)

probability density function: exp(− 1
2 (x−µ)⊤Σ−1(x−µ))√

(2π)n det(Σ)

parameters: µ = E[x] ∈ Rn, Σ = E[(x − µ)⊗2] ∈ S2(Rn)

▶ Limiting average of any (suff. integrable) i.i.d. random vectors
▶ Marginals are themselves lower-dimensional Gaussians
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Gaussian Mixture Models

GMM: x ∼
∑r

j=1 λjN (µj , Σj)

r is the number of components, λj are the mixing weights (convex
combination)

parameters: {(λj , µj , Σj) : j = 1, . . . , r}



The Many Applications of Gaussian Mixtures

GMMs are one of the most prevalent tools in data analysis!
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Neat Formula for Moment Tensors of GMM

Lemma (Wick ’50, Pereira-K.-Kolda ’22)
Let x1, . . . , xp be i.i.d. realizations of a GMM with parameters
{(λj , µj , Σj)}. Then

Md −→
r∑

j=1
λj

⌊d/2⌋∑
k=0

(
d
2k

)
(2k)!
k!2k sym(µ⊗(d−2k)

j ⊗ Σ⊗k
j ) as p → ∞.

The proof is most easily done using the bijection Φ from symmetric
tensors to homogeneous forms, because Φ(sym(S ⊗ T )) = Φ(S)Φ(T ).
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Symmetric CP Tensor Decomposition

Proposition (Pereira-Kileel-Kolda ’22)
Let x1, . . . , xp be i.i.d. realizations of a GMM with parameters
{(λj , µj , Σ)}, i.e. there is a common covariance. Then as p → ∞,

⌊d/2⌋∑
k=0

(−1)k
(

d
2k

)
(2k)!
k!2k sym(Md−2k ⊗ Σ⊗k) −→

r∑
j=1

λjµ
⊗d
j .

The right-hand side is a real symmetric CP tensor decomposition.



Computational Algebraic Geometry: GMM Identifiability
What is the maximal number r of Gaussian components in Rn that
is uniquely determined by the first d moments?

Symmetric CP tensor decomposition is generically unique when

r dim vd(P(Rn)) + (r − 1) < dimP(Sd(Rn)) ⇔ r <
1
n

(
n + d − 1

d

)
if d ≥ 3, with a few classified exceptions for (d , n, r) (see e.g.
Chiantini-Ottaviani-Vannieuwenhoven ’17 about secants of Veronese
varieties). It implies that a GMM with a known common covariance and
generic (λj , µj) is determined by its moments of order ≤ d up to such r .

[Others study identifiability of GMMs under different assumptions. Boils
down to other secant varieties, e.g. Améndola-Ranestad-Sturmfels ’17.]

To my knowledge, identifiability for the most general case of
unknown, different and unconstrained Σj is currently unresolved.
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To my knowledge, identifiability for the most general case of
unknown, different and unconstrained Σj is currently unresolved.



Numerical Algorithm Beating the Curse of Dimensionality

To fit a GMM to data, consider minimizing the cost function

argminλj ,µj ,Σj ∥Md − (aforementioned formula in parameters)∥2
F

Naively forming the terms would take O(pnd) flops and O(nd) in storage!

Theorem (Pereira-Kileel-Kolda ’22)
Given the parameters λj , µj , Σj and data xi , there is an algorithm to
evaluate the above cost and its gradient in O(prn2 + r2n3) flops and
O(rn2 + pn) storage. If Σj are diagonal, these drop to O(prn + r2n) flops
and O(rn + pn) storage.
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In Practice: Method of Moments Can Outperform EM

▶ Randomly-generated problems with overlapping Gaussians
▶ n = 100, r = 20, p = 8000, common diagonal Σ
▶ Compared EM, MM3 (moments d = 3), MM4 (moments d = 4)



Sketch: Expanding Out The Inner Products

Idea is to operate on moment tensors without forming them!



Example Calculation: d = 3

Computing terms ⟨M(d)
i , M(d)

j ⟩ more involved (Bell polynomials).



PART II: Mixture of Products & Coupled Incomplete CP
Decompositions



Other Noise Models

Implicit moment tensor decomposition can be applied to
mixtures with other noise models (e.g., Poisson noise).

▶ Focus on conditionally-independent mixtures in Rn:

D =
r∑

j=1
wjDj =

r∑
j=1

wj

n⊗
i=1

Dij

for some distributions Dij on R. That is, conditional on latent
variable, standard coords in Rn are indep. [e.g. Hall-Zhou ’03]

▶ Make no parametric assumptions on Dij .



Precise Formulation

D =
∑r

j=1
wjDj =

∑r
j=1

wj
⊗n

i=1
Dij .

Denote dth joint moment and componentwise moments by

Md = EX∼D[X⊗d ] ∈ Rnd
and md

j = EX∼Dj [X ∗d ] ∈ Rn,

where ∗ denotes entrywise power.

Problem
Given data V ⊂ Rn from a conditionally-independent mixture D of
r components. We want to estimate the mixing weights w and
componentwise moments {(m1

j , m2
j , . . .) : j = 1, . . . , r} from the

sample moment tensors M̂1, M̂2, . . . without parametrizing D.



Precise Formulation

D =
∑r

j=1
wjDj =

∑r
j=1

wj
⊗n

i=1
Dij .

Denote dth joint moment and componentwise moments by

Md = EX∼D[X⊗d ] ∈ Rnd
and md

j = EX∼Dj [X ∗d ] ∈ Rn,

where ∗ denotes entrywise power.

Problem
Given data V ⊂ Rn from a conditionally-independent mixture D of
r components. We want to estimate the mixing weights w and
componentwise moments {(m1

j , m2
j , . . .) : j = 1, . . . , r} from the

sample moment tensors M̂1, M̂2, . . . without parametrizing D.



Incomplete Tensor Decomposition: Up To d = 3
Unknowns {wj , m1

j , m2
j , m3

j }j∈[r ].

M1 =
∑r

j=1
wjm1

j ∈ Rn

P(M2) = P
(∑r

j=1
wj(m1

j )⊗2) ∈ S2(Rn)

P(2)(M2) =
∑r

j=1
wjm2

j ∈ Rn

P(M3) = P
(∑r

j=1
wj(m1

j )⊗3) ∈ S3(Rn)

P(2,1)(M3) = P
(∑r

j=1
wjm2

j ⊗ m1
j
)

∈ Rn×n

P(3)(M3) =
∑r

j=1
wjm3

j ∈ Rn.

For general d, this becomes a coupled system of partially
symmetric incomplete CP tensor decomposition problems.
[building on Guo-Nie-Yang ’22]



Identifiability Bound

Theorem (Zhang-K. ’23)
Let D be a conditionally independent mixture with positive weights
w ∈ Rn and Zariski-generic means A ∈ Rn×r . Let d1, d2 ∈ N be
distinct such that 2 < d1 < n, r ≤

(⌊(n−1)/2⌋
⌊d1/2⌋

)
and r ≤

( n
d2

)
. Then

w and A are uniquely determined from the equations

P
(∑r

j=1
wjm1⊗d1

j

)
= P

(
Md1

)
, P

(∑r
j=1

wjm1⊗d2
j

)
= P

(
Md2

)
,

up to possible sign flips on each m1
j if d1 and d2 are both even.



Numerical Optimization

Use least squares cost function:

f [d](w , A; V ) =
d∑

i=1
τi

∥∥∥∥∥P
(

1
p

p∑
ℓ=1

vℓ
⊗i

︸ ︷︷ ︸
M̂i

−
r∑

j=1
wja⊗i

j︸ ︷︷ ︸
Mi

)∥∥∥∥∥
2

.

Residuals are multilinear in w (obvious) and each row of the mean
matrix A (less obvious).



Implicit Tensor Computations
▶ M̂d needs O(nd) to store and O(pnd) flops to compute.

▶ Implicit: compute the normal equations for the least square solves
without forming any higher-order tensors. Flops: O(npr + nr3).
Storage: O(n(r + p)).

▶ Main thing is to efficiently evaluate the kernel:

Kd(x , y) = ⟨P(x⊗d), P(y⊗d)⟩

at Kd(aj , aj′) and Kd(aj , vℓ).

Lemma
Let ed be the elementary symmetric polynomial of degree d. Then
Kd(x , y) = d! · ed(x ∗ y).

We evaluate ed via Newton-Gerard identities, relating ed to power sums.
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Example: Clustering X-Ray Free Electron Laser Images

▶ Here n = 1024, r = 30, p = 20000.

▶ Noise is pixelwise Poisson. Our algorithm doesn’t know this, but EM does.

▶ We take ∼ 40 min to converge. Error 0.9% in weights, 0.5% in means.

▶ EM is initialized with best of 30 k-means runs. We then run EM three times
with different seeds. It takes ∼ 50 − 70 min. Error in means is > 13%.



CONCLUSIONS



Summary

▶ Moment formulas for general Gaussian Mixture Models and a
tensor-based algorithm avoiding exponential cost in order d .

▶ Variations for non-Gaussian mixtures, with product structure.

▶ Competitive with non-tensor approaches; in some cases better.
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