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We will cover:
m Elliptic nonlocal equations
m Variational formulation
m Finite element approximation
m Matrix formats, in particular hierarchical matrices
m Linear solvers, in particular geometric multigrid

Goals

m Cover theoretical background for the hands-on examples of PyNucleus.
m Favor concepts over technical details.

m Questions are encouraged! Please stop me whenever | should clarify something.
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Sandia
Elliptic nonlocal problems (]
We want to numerically solve a scalar equation involving a nonlocal operator, e.g.:
~Lu(x) i=p. | (ul) — un)(x, )y = F(0), xeQ,
QU

u(x) = g(x), x € Q.

QCRY open, bounded
v (QU Q)2 = Ry is the kernel of the operator

Q:={y €RI\ Q:v(x,y) #0, forsome x € Q} is the interaction domain
u: QUQ — Ris the solution we want to find

f is a forcing, g a volume condition

Nonlocality

The value of Lu at x depends on u(y) for all y in the interaction neighborhood
{y e QU Q : v(x,2) # 0}.
Contrast this with the PDE Laplacian Au(x) = 27:1 8)(2ju(x) which is a local operator.
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Examples of kernel functions () B,
1. Constant kernel, X indicator function

Y%, ¥) = Cs Xjx—y|<s> Q) = collar of width § around €2

2. Inverse distance kernel

C,
75),'X|x_y|g(;, € = collar of width § around 2

y(x,y) =
|x —

3. Integral fractional Laplacian:

Cd,s

d+2s’

O =R\ Q.
Ix —y|

y(x,y) =

m Normalization constants are often chosen such that the operator recovers the classical
PDE Laplacian in parameter limits (e.g. 6 — 0 ors — 1).

m The first two kernels are integrable in the L' sense and have a finite interaction horizon §.

m The fractional kernels are too singular for the integral to be taken in the usual sense:
principal value

m These kernels just depend on |x — y|. More general kernels are allowed but often involve
more work (analysis & numerics).
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Elliptic nonlocal operators

Currently available in PyNucleus
— _y| 7By
’Y(xa Y) (z)(xv Y) ‘X Y‘p |x7y|p§67

mde {1,2},

m ¢(x,y) >0,

m § € (0,00],

mpe {1,200}

m B(x,y) € [0,d+2).

m Some additional conditions are required for well-posedness

What is not available at the moment:
m 3D domains
m vector-valued kernels (peridynamics!)
m kernels that correspond to derivatives wrt parameters

m kernels for non-flat spaces

X,y e QUQ

@
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Nonlocal equations .
m Nonlocal Poisson equation:

—Lu=f inQ,
u=g inQ.

Nonlocal heat equation:
uy—Lu=f in(0,T) X,
u=g in(0,T) x Q,
u=up on {0} xQ.

Combinations of local and nonlocal spatial operators,
e.g. local advection and nonlocal diffusion

fractional time derivatives

Source control:

1
mfin 3 Ju—ug \|L22 + R(f) subject to nonlocal equation
m Parameter learning:

1
r?in 5 Ju— udHfQ + R(s,d,...) subject to nonlocal equation
5,0,...
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Variational formulation () .

Take v € C*°(Q U ) such thatv|Q' =0

/Q FO)v(x)dx = /Q (—Lu(x))v(x)dx = /Q /Q PRCCRCCRNEEE

=[] (w60~ uty)e vy
(QuQy)?

We can perform “integration-by-parts” by splitting into equal parts, relabeling integration
variables and using symmetry of the kernel:

/f vijde =5 //QUSW ) = u(y))y(x, y)v(x)dydx

"3 //(QUQ‘)Q (u(y) = u(x))y(y, x)v(y)dxdy
=3/J — u(y)) (v(x) — v(¥))(x, y)dydx
QUQ;)2

Note: The bilinear form looks a bit different for unsymmetric kernels.
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Variational formulation () .

Instead of solving in the strong form
—Lu(x) = f(x), x€Q,
u(x) = g(x), x €.
we are solving in weak form

Find u € V such that u|QI =gand

a(u,v) = L(v) W e Vo,
where
@) = 5 [ (00~ 00— v v
L(v) = /Q Fx)v(x)dx.
and
V::{UELQ(Rd)|\\u||V<oo}, Vo:={ueV|iu=0inQ}
and

g = Bl + [ w0 —u)? )

V reduces to L2(Q U ) for integrable kernels and to H* (2 U ) for constant order fractional
kernels.
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Infinite horizon kernels () B,
Integration over unbounded domains is computationally not tractable.

)= 5 [ 00 U000~ )

is problematic when €, = RY\ Q.
Need some additional restriction / approximation, e.g.
m U is compactly supported or even u = 0 in €,
m u has sufficient decay so that it can be approximated.
When u = 0 on €2, we can play tricks with the Gauss theorem:
m Write v(x,y) = Vy - T'(x, y) for some vectorial kernel I".
m Split (remember V|Rd\ﬂ =0)

awv) = 5 [0 = u) (00 = v(y)) .y
[ 0 = u) (00 = v(y) )
RI\Q
5 000 = utr))v0) = vy ey ey

+/ x)v(x) / ~v(x,y)dy dx
RI\Q
N———

fag ny-T(x,y)dy
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Finite element approximation @ .
m Vs an infinite dimensional space — cannot be represented on a computer.
m Take a finite dimensional sub-space V}, C V and solve
Find up, € V}, such that up, }Q: = gp and

a(un, vh) = L(va) WYWh € Vho,

Let 7, be a simplical mesh for Q2 U €.

Set Vi, := {v € CI(QU ) | v|, € Pi(K) VK € Tp}.
Here: Pk (K) are the polynomials of degree up to k on K.
m In practice:

m continuous piecewise linears (g = Oandk = 1) or
m piecewise constant discontinuous space g = —1 and k = 0.

m Basis functions ¢;(x) span the space Vj,, obtain linear system

Ao Ao uq Lo
) , = = A ug =L — A
( o, ug, 30, Q,QUQ Q Q,2,8Q,

Here
Aq.q = {a(di, &)} jcq Aq,0 = {a(d, ) tic jeq, »
Uun(X) = Y uq idi(x) + Y _ uq,idi(x)
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Finite element approximation =

m Sub-assembly loop:

aln ) =33 // (61 (%) — 61 (1) (65 (%) — 5 (¥) v(x,¥) dly dx

KKET2

m No closed form for local stiffness matrix
— need to use numerical quadrature to evaluate double integrals

m Avoid integration across discontinuities for finite horizon § or jumps in kernels:
approximate with sub-simplices, O(h2) error?

1Marta D’Elia, Max Gunzburger, and Christian Vollmann. “A cookbook for approximating Euclidean balls and for quadrature
rules in finite element methods for nonlocal problems”. In: Mathematical Models and Methods in Applied Sciences 31.08
(2021), pp. 1505-1567.
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Quadrature (s

m In subassembly procedure, use quadrature to evaluate element pair contributions:

@0 = 5 [ [y (@0 = ) (400 = ) 1)

m Treatment for element pairs K N K # (), containing the singularity at x = y:

m split K x K into sub-simplices,
m Duffy transform onto a hypercube, with Jacobian canceling the singularity.
m Choose quadrature order so that quadrature error < discretization error?:
| |log hy | if the elements coincide (red),
|log hk | 2 if the elements share only an edge (yellow),
|log h,<|3 if the elements share only a vertex (blue),

]
u
m |loghg |4 if the elements are “near neighbours” (green), and
| Cif the elements are well separated.

B PyNucleus tries to handle the selection of quadrature rules automatically.

2Mark Ainsworth and Christian Glusa. “Aspects of an adaptive finite element method for the fractional Laplacian: A priori
and a posteriori error estimates, efficient implementation and multigrid solver”. In: Computer Methods in Applied Mechanics
and Engineering (2017).
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FE convergence D=

Rate of convergence depends on
m Polynomial order of the FE space
m Mesh resolution of salient features

m Regularity of the solution
m kernel function
m regularity of the data (forcing, boundary data)
m domain regularity
m Compared with classical PDEs:
m Rates are generally lower than for classical PDEs
m Major difference: nice domain + nice data 7 high regularity

(But one can obviously construct examples where higher rates of convergence are obtained.)
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Choice of mesh
Fractional problems often display steep gradients near 02.

0.8

’ 0.6

0.4
0.2

I
Figure: Solutions u = C(1 — |x|?)* ~ dist (x, 82)° corresponding to the constant right-hand side f = 1

fors = 0.25and fors = 0.75,4 = oco.

Higher rates of convergence can be achieved by resolving this behavior via graded or
adaptively refined meshes.
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V=FH(Q) L2(Q)
. 1/2 1 1/2 1 1
'ﬂ‘ quasi-uniform ht/ el h(1/2+9)A W2+ AT
e
graded / adaptive nzl,s %2
~ P 1/2 1 (1/24s)A1 [ S
N quasi-uniform h ~T72d) h (1/2F5)/d)A(1/d)
e
. 1 1
graded / adaptive Tijd na+s)/d

mesh size h, number of unknowns n, spatial dimension d, fractional order s
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Representation of linear operators .
After FEM discretization:

Au=1L, A c R™N

Depending on § and h:

m Assembly and solve has complexity and memory
usage

O (n(%)d) for § < oo and
m O(n?)ford = co.
m For small % we can use a sparse matrix rowptr = (2NN 5 )

(CSR format) l \\

m For large %, we end up with an (almost) dense

: indices = (IMNONNINNZY)
matrix.
values = (IEENSINENSN)

Better approach

Panel clustering / Fast Multipole Method / hierarchical matrix approximation

CSR format:

m Split operator into near and far interactions

m Directly assembly near interactions

m Low-rank approximation of far interactions

m Keep approximation error below discretization error to preserve FE convergence.
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Hierarchical matrices: Admissible sub-blocks (D=

Tasks:
1. Choose sub-blocks to be compressed.
2. Construct low-rank approximations.

Build tree of clusters of DoFs.

m root contains all unknowns

m subdivision based on DoF coordinates

m distributed computations: first level given by MPI distribution of unknowns
Admissibility criterion:

m Cluster pairs (P, Q) that are sufficiently separated compared to their sizes are admissible
for compression:

ndist(P, Q) < max{diam(P),diam(Q)}, n > 0 fixed parameter

m Matrix entries that are not admissible are assembled directly into a sparse near-field
matrix Anear-
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Hierarchical matrices: low-rank approximation s
T T I 111

m Splitting of operator into sub-blocks based on admissibility

A= Anear + Afar - Anear + Z AP,Q
blocks(P,Q)
m H-matrix approximation

Apq ~ UPFP,QUE (low-rank approximation)

| use Chebyshev interpolation, but other techniques are possible, e.g. Adaptive Cross
Approximation (ACA).

m H2-matrices
Using hierarchical nestedness of clusters, can express

Up= > Uqlaor

Q child of P
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Matrix-vector product with an 2-matrix e

Steps:

m Matvec with sparse near-field matrix

m Upward

m Cluster-cluster interaction

H2-matrix approximation

Finite element assembly and matrix-vector product and in O (n log2d n) operations & memory.
Approximation error same order as discretization error.
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Hierarchical matrices for finite horizon kernels (D=

m Regular CSR sparse matrices are efficient (complexity, memory) for small horizon 6§ ~ h.
m 7#{2-matrices are efficient for § = co.

m Low-rank approximation relies on smoothness of the kernel
— need to fully assemble entries near 9B (x).

|
At what ratio §/h do H2-matrices become more efficient than sparse matrices?

175 X sparse
H? 2

150 - x B QC R y(X,Y) = ca,sX|x—y|<s
2 1237 — Nog'y m Break-even:
5 100 x
g m 1D:6/h ~ 100 — 200

[ e m 2D:5/h~5—10

i x
Z’z . x m Break-even depends on:
i m Cost of quadrature
4x10° 6x10° 10! m Lots of implementation details

horizon/meshsize
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Conditioning and scalable solvers () B,

m Direct solvers for hierarchical matrices have quasi-optimal O (nlog® n) scaling
BUT: can be tricky to implement, especially in distributed memory.

O(nlog® n) matrix-vector product in all cases — use iterative solvers

Number of iterations required depends on condition number x(A) = |A], [|A~1]],

m Steady-state:
B Integrable kernel, § finite®: x(A) ~ § 2
m Fractional kernel, § = oo: k(A) ~ h=2% ~ n
m Fractional kernel, § < 8o k(A) ~ 6257 2p—25 ~ §25—2p25/d
m Time-dependent:

B k(M4 AtA) ~ 1 + At r(A)
B Depending on time-stepper and CFL condition, this is well-conditioned for small s, large §.

2s/d

m lll-conditioned cases k(A) > 1 need a preconditioner:
PAu = PL

such that k(PA) < k(A) and cost(P) ~ cost(A).

m A solver (+preconditioner) is scalable if the number of iterations required is independent
of the number of unknowns, xk ~ 1.

m Scalable solver options:

m Krylov method + multigrid,
m Krylov method + domain decomposition,
m Unpreconditioned Krylov method (when k(A) ~ 1).
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Geometric multigrid in a nutshell D=

User specifies:

m Operators Ay, assembled on hierarchy of nested meshes

m Transfer operators: prolongations Py 1_,¢, restrictionsRy_, o411 = PE_H_)E,
m Smoothers Szre/p“t (Jacobi, Gauss-Seidel, Chebyshey, ...)

m Coarse solver S| (typically direct solver)

How does multigrid work?
m On each level:

m smoother reduces high frequency error
m low frequency error is transferred to next coarser levels

m High/low frequency splitting depends on mesh
— each error frequency gets strongly reduced on one of the levels.
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Geometric multigrid for nonlocal equations (=%

Hierarchy of meshes from uniform or adaptive refinement
Restriction / prolongation given by nesting of FE spaces
Assembly into hierarchical or CSR matrix format on every level

Smoothers:

m H-matrices: Jacobi, Chebyshev
m CSR matrices: no limitations

m Coarse solve: convert to dense or CSR matrix

Topics we did not cover:

time discretization (classical and fractional)

adaptive mesh refinement
local-nonlocal coupling

]
]

m inverse problems

m domain decomposition solvers
]

algebraic multigrid
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Getting started with PyNucleus (]

m Source repository: github.com/sandialabs/PyNucleus
m Documentation: sandialabs.github.io/PyNucleus
Installing & running PyNucleus:
Option 1 Directly from the browser:
No installation, not sure about stability of the cloud service
mybinder.org/v2/gh/sandialabs/PyNucleus/binder
Option 2 Locally in a container
Needs to download container image (~ 2GB!)
m Install docker and docker-compose, or podman and podman-compose.
m Download compose . yaml from PyNucleus repository to an EMPTY folder.
m podman-compose run pynucleus
®m More detailed instructions sandialabs.github.io/PyNucleus/installation.html#
pre-built-container-image
Option 3 Spack
Builds all dependencies, first installation can be slow
spack install py-pynucleus

Option 4 Manual build against pre-installed dependencies
Could be complicated and is system dependent

Recommendation for the hands-on session

Use option 1. If the cloud service goes down try option 2.
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Operator interpolation®# @ .
Parameter learning problem requires operators for different values of s and 4.
m Piecewise Chebyshev interpolation in s:

Lets € [Smin, Smax] C (0,1), 6 € (0,00), and let n > 0. Assume that u(s) € H;"I/Q_(R"),
Vv € Hg, (R"). There exists a partition of [Smin, Smax] into sub-intervals Sy and interpolation
orders My such that the piecewise Chebyshev interpolant a(-, -; s, d) satisfies:

|G(U(S), v;s, 6) - a(u(s)v V;s, 6)‘ S n "U(S)"H%(s) (R") "vHH?Z(JR") )

and the total number of interpolation nodes satisfies

K
> (M +1) < Cllogn].
k=1

The constant C depends on § and smax.

m Combined with hierarchical matrix approach: O(n log2d+1 n) complexity & memory.
m Also allows to evaluate derivatives wrt s.
m Assembly for different values of § is achieved by splitting the kernel into infinite horizon,

singular part, and §-dependent regular part.
30lena Burkovska and Max Gunzburger. “Affine approximation of parametrized kernels and model order reduction for
nonlocal and fractional Laplace models”. In: SIAM Journal on Numerical Analysis 58.3 (2020), pp. 1469-1494.
40Olena Burkovska, Christian Glusa, and Marta D’Elia. “An optimization-based approach to parameter learning for fractional
type nonlocal models”. In: Computers & Mathematics with Applications (2021).
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