

Finite element methods for nonlocal problems

Theoretical background material for PyNucleus

Christian Glusa
github.com/sandialabs/PyNucleus

We will cover:

- Elliptic nonlocal equations
- Variational formulation
- Finite element approximation

■ Matrix formats, in particular hierarchical matrices
■ Linear solvers, in particular geometric multigrid

Goals

■ Cover theoretical background for the hands-on examples of PyNucleus.

- Favor concepts over technical details.

■ Questions are encouraged! Please stop me whenever I should clarify something.

Elliptic nonlocal problems

We want to numerically solve a scalar equation involving a nonlocal operator, e.g.:

$$
\begin{aligned}
-\mathcal{L} u(x):=\text { p.v. } \int_{\Omega \cup \Omega_{I}}(u(\mathbf{x})-u(\boldsymbol{y})) \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} & =f(\mathbf{x}), & & x \in \Omega \\
u(\mathbf{x}) & =g(\mathbf{x}), & & x \in \Omega_{I} .
\end{aligned}
$$

■ $\Omega \subset \mathbb{R}^{d}$ open, bounded
$\square \gamma:\left(\Omega \cup \Omega_{l}\right)^{2} \rightarrow \mathbb{R}_{\geq 0}$ is the kernel of the operator
$■ \Omega_{l}:=\left\{\boldsymbol{y} \in \mathbb{R}^{d} \backslash \Omega: \gamma(\boldsymbol{x}, \boldsymbol{y}) \neq 0\right.$, for some $\left.\boldsymbol{x} \in \Omega\right\}$ is the interaction domain
$■ u: \Omega \cup \Omega_{I} \rightarrow \mathbb{R}$ is the solution we want to find

- f is a forcing, g a volume condition

Nonlocality

The value of $\mathcal{L} u$ at \boldsymbol{x} depends on $u(\boldsymbol{y})$ for all \boldsymbol{y} in the interaction neighborhood $\left\{\boldsymbol{y} \in \Omega \cup \Omega_{I}: \gamma(\boldsymbol{x}, \mathbf{z}) \neq 0\right\}$.
Contrast this with the PDE Laplacian $\Delta u(x)=\sum_{j=1}^{d} \partial_{x_{j}}^{2} u(x)$ which is a local operator.

Examples of kernel functions

1. Constant kernel, \mathcal{X}_{\bullet} indicator function

$$
\gamma(\boldsymbol{x}, \boldsymbol{y})=C_{\delta} \mathcal{X}_{|\boldsymbol{x}-\boldsymbol{y}| \leq \delta}, \quad \quad \Omega_{I}=\text { collar of width } \delta \text { around } \Omega
$$

2. Inverse distance kernel

$$
\gamma(\boldsymbol{x}, \boldsymbol{y})=\frac{\tilde{\boldsymbol{C}}_{\delta}}{|\boldsymbol{x}-\boldsymbol{y}|} \mathcal{X}_{|\boldsymbol{x}-\boldsymbol{y}| \leq \delta}, \quad \Omega_{l}=\text { collar of width } \delta \text { around } \Omega
$$

3. Integral fractional Laplacian:

$$
\gamma(\boldsymbol{x}, \boldsymbol{y})=\frac{C_{d, s}}{|\boldsymbol{x}-\boldsymbol{y}|^{d+2 s}}, \quad \quad \Omega_{l}=\mathbb{R}^{d} \backslash \Omega
$$

■ Normalization constants are often chosen such that the operator recovers the classical PDE Laplacian in parameter limits (e.g. $\delta \rightarrow 0$ or $s \rightarrow 1$).

- The first two kernels are integrable in the L^{1} sense and have a finite interaction horizon δ.

■ The fractional kernels are too singular for the integral to be taken in the usual sense: principal value

$$
\begin{aligned}
\mathcal{L} u(x) & =\text { p.v. } \int_{\Omega \cup \Omega_{I}}(u(\boldsymbol{y})-u(\boldsymbol{x})) \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} \\
& :=\lim _{\epsilon \rightarrow 0} \int_{\left(\Omega \cup \Omega_{I}\right) \backslash B_{\epsilon}(\boldsymbol{x})}(u(\boldsymbol{y})-u(\boldsymbol{x})) \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y}
\end{aligned}
$$

■ These kernels just depend on $|\boldsymbol{x}-\boldsymbol{y}|$. More general kernels are allowed but often involve more work (analysis \& numerics).

Elliptic nonlocal operators

Currently available in PyNucleus

$$
\gamma(\boldsymbol{x}, \boldsymbol{y})=\phi(\mathbf{x}, \boldsymbol{y})|\boldsymbol{x}-\boldsymbol{y}|_{p}^{-\beta(\boldsymbol{x}, \boldsymbol{y})} \mathcal{X}_{|\boldsymbol{x}-\boldsymbol{y}|_{p} \leq \delta,} \quad \boldsymbol{x}, \boldsymbol{y} \in \Omega \cup \Omega_{l}
$$

■ $d \in\{1,2\}$,
■ $\phi(\boldsymbol{x}, \boldsymbol{y})>0$,
■ $\delta \in(0, \infty]$,
■ $p \in\{1,2, \infty\}$,
■ $\beta(\boldsymbol{x}, \boldsymbol{y}) \in[0, d+2)$.

- Some additional conditions are required for well-posedness

What is not available at the moment:

- 3D domains

■ vector-valued kernels (peridynamics!)
■ kernels that correspond to derivatives wrt parameters
■ kernels for non-flat spaces

Nonlocal equations

■ Nonlocal Poisson equation:

$$
\begin{aligned}
-\mathcal{L} u=f & \text { in } \Omega \\
u=g & \text { in } \Omega_{l}
\end{aligned}
$$

- Nonlocal heat equation:

$$
\begin{aligned}
u_{t}-\mathcal{L} u=f \quad & \text { in }(0, T) \times \Omega \\
u=g \quad & \text { in }(0, T) \times \Omega_{l} \\
u=u_{0} & \quad \text { on }\{0\} \times \Omega .
\end{aligned}
$$

- Combinations of local and nonlocal spatial operators, e.g. local advection and nonlocal diffusion
- fractional time derivatives

■ Source control:

$$
\min _{f} \frac{1}{2}\left\|u-u_{d}\right\|_{L^{2}}^{2}+\mathcal{R}(f) \quad \text { subject to nonlocal equation }
$$

■ Parameter learning:

$$
\min _{s, \delta, \ldots} \frac{1}{2}\left\|u-u_{d}\right\|_{L^{2}}^{2}+\mathcal{R}(s, \delta, \ldots) \quad \text { subject to nonlocal equation }
$$

Variational formulation

Take $v \in C^{\infty}\left(\Omega \cup \Omega_{l}\right)$ such that $\left.v\right|_{\Omega_{1}}=0$.

$$
\begin{aligned}
\int_{\Omega} f(\mathbf{x}) v(\mathbf{x}) d \mathbf{x}=\int_{\Omega}(-\mathcal{L} u(\mathbf{x})) v(\mathbf{x}) d \mathbf{x} & =\int_{\Omega} \int_{\Omega \cup \Omega_{I}}(u(\mathbf{x})-u(\boldsymbol{y})) \gamma(\mathbf{x}, \boldsymbol{y}) v(\mathbf{x}) d \boldsymbol{y} d \mathbf{x} \\
& =\iint_{\left(\Omega \cup \Omega_{I}\right)^{2}}(u(\boldsymbol{x})-u(\boldsymbol{y})) \gamma(\boldsymbol{x}, \boldsymbol{y}) v(\mathbf{x}) d \boldsymbol{y} d \mathbf{x}
\end{aligned}
$$

We can perform "integration-by-parts" by splitting into equal parts, relabeling integration variables and using symmetry of the kernel:

$$
\begin{aligned}
\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) d \boldsymbol{x}= & \frac{1}{2} \iint_{\left(\Omega \cup \Omega_{I}\right)^{2}}(u(\boldsymbol{x})-u(\boldsymbol{y})) \gamma(\boldsymbol{x}, \boldsymbol{y}) v(\boldsymbol{x}) d \boldsymbol{y} d \boldsymbol{x} \\
& +\frac{1}{2} \iint_{\left(\Omega \cup \Omega_{I}\right)^{2}}(u(\boldsymbol{y})-u(\boldsymbol{x})) \gamma(\boldsymbol{y}, \boldsymbol{x}) v(\boldsymbol{y}) d \boldsymbol{x} d \boldsymbol{y} \\
= & \frac{1}{2} \iint_{\left(\Omega \cup \Omega_{I}\right)^{2}}(u(\boldsymbol{x})-u(\boldsymbol{y}))(v(\boldsymbol{x})-v(\boldsymbol{y})) \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} d \boldsymbol{x}
\end{aligned}
$$

Note: The bilinear form looks a bit different for unsymmetric kernels.

Variational formulation

Instead of solving in the strong form

$$
\begin{aligned}
-\mathcal{L} u(\boldsymbol{x}) & =f(\boldsymbol{x}), & x \in \Omega \\
u(\boldsymbol{x}) & =g(\boldsymbol{x}), & x \in \Omega_{l}
\end{aligned}
$$

we are solving in weak form

$$
\begin{aligned}
& \text { Find } u \in V \text { such that }\left.u\right|_{\Omega_{1}}=g \text { and } \\
& \qquad a(u, v)=L(v) \quad \forall v \in V_{0},
\end{aligned}
$$

where

$$
\begin{aligned}
a(u, v) & =\frac{1}{2} \iint_{\left(\Omega \cup \Omega_{\|}\right)^{2}}(u(\boldsymbol{x})-u(\boldsymbol{y}))(v(\boldsymbol{x})-v(\boldsymbol{y})) \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} d \boldsymbol{x} \\
L(v) & =\int_{\Omega} f(\boldsymbol{x}) v(\boldsymbol{x}) d \boldsymbol{x}
\end{aligned}
$$

and

$$
V:=\left\{u \in L^{2}\left(\mathbb{R}^{d}\right) \mid\|u\|_{V}<\infty\right\}, \quad V_{0}:=\left\{u \in V \mid u=0 \text { in } \Omega_{l}\right\}
$$

and

$$
\|u\|_{V}^{2}=\|u\|_{L^{2}}^{2}+\iint_{\left(\Omega \cup \Omega_{I}\right)^{2}}(u(\boldsymbol{x})-u(\boldsymbol{y}))^{2} \gamma(\boldsymbol{x}, \boldsymbol{y}) .
$$

V reduces to $L^{2}\left(\Omega \cup \Omega_{l}\right)$ for integrable kernels and to $H^{s}\left(\Omega \cup \Omega_{l}\right)$ for constant order fractional kernels.

Infinite horizon kernels

Integration over unbounded domains is computationally not tractable.

$$
a(u, v)=\frac{1}{2} \iint_{\left(\Omega \cup \Omega_{l}\right)^{2}}(u(x)-u(y))(v(x)-v(y)) \gamma(x, y) d y d x
$$

is problematic when $\Omega_{I}=\mathbb{R}^{d} \backslash \Omega$.
Need some additional restriction / approximation, e.g.
■ u is compactly supported or even $u=0$ in Ω_{1},
■ u has sufficient decay so that it can be approximated.
When $u=0$ on Ω_{l}, we can play tricks with the Gauss theorem:
■ Write $\gamma(\boldsymbol{x}, \boldsymbol{y})=\nabla_{\boldsymbol{y}} \cdot \boldsymbol{\Gamma}(\boldsymbol{x}, \boldsymbol{y})$ for some vectorial kernel $\boldsymbol{\Gamma}$.
■ Split (remember $\left.v\right|_{\mathbb{R}^{d} \backslash \Omega}=0$)

$$
\begin{aligned}
a(u, v)= & \frac{1}{2} \iint_{\Omega^{2}}(u(\boldsymbol{x})-u(\boldsymbol{y}))(v(\boldsymbol{x})-v(\boldsymbol{y})) \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} d \boldsymbol{x} \\
& +\int_{\Omega} \int_{\mathbb{R}^{d} \backslash \Omega}(u(\boldsymbol{x})-u(\boldsymbol{y}))(v(\boldsymbol{x})-v(\boldsymbol{y})) \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} d \mathbf{x} \\
= & \frac{1}{2} \iint_{\Omega^{2}}(u(\boldsymbol{x})-u(\boldsymbol{y}))(v(\boldsymbol{x})-v(\boldsymbol{y})) \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} d \boldsymbol{x} \\
& +\int_{\Omega} u(\boldsymbol{x}) v(\boldsymbol{x}) \underbrace{\int_{\mathbb{R}^{d} \backslash \Omega} \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y}}_{\int_{\partial \Omega} \boldsymbol{n}_{\mathbf{y}} \cdot \Gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y}} d \boldsymbol{x}
\end{aligned}
$$

Finite element approximation

■ V is an infinite dimensional space \rightarrow cannot be represented on a computer.

- Take a finite dimensional sub-space $V_{h} \subset V$ and solve

$$
\begin{aligned}
& \text { Find } u_{h} \in V_{h} \text { such that }\left.u_{h}\right|_{\Omega_{1}}=g_{h} \text { and } \\
& \qquad a\left(u_{h}, v_{h}\right)=L\left(v_{h}\right) \quad \forall v_{h} \in v_{h, 0},
\end{aligned}
$$

- Let \mathcal{T}_{h} be a simplical mesh for $\Omega \cup \Omega_{1}$.
- Set $V_{h}:=\left\{v \in C^{q}\left(\Omega \cup \Omega_{1}\right)|v|_{K} \in \mathbb{P}_{k}(K) \forall K \in \mathcal{T}_{h}\right\}$.

Here: $\mathbb{P}_{k}(K)$ are the polynomials of degree up to k on K.
■ In practice:

- continuous piecewise linears ($q=0$ and $k=1$) or

■ piecewise constant discontinuous space $q=-1$ and $k=0$.

- Basis functions $\phi_{i}(\boldsymbol{x})$ span the space V_{h}, obtain linear system

$$
\left(\begin{array}{cc}
A_{\Omega, \Omega} & A_{\Omega, \Omega_{1}} \\
& I_{\Omega_{1}}
\end{array}\right)\binom{\mathbf{u}_{\Omega}}{\mathbf{u}_{\Omega_{1}}}=\binom{\mathbf{L}_{\Omega}}{\boldsymbol{g}_{\Omega_{1}}} \Rightarrow A_{\Omega, \Omega} \mathbf{u}_{\Omega}=\mathbf{L}_{\Omega}-A_{\Omega, \Omega_{1}} \boldsymbol{g}_{\Omega_{1}}
$$

Here

$$
\begin{array}{ll}
A_{\Omega, \Omega}=\left\{a\left(\phi_{i}, \phi_{j}\right)\right\}_{i, j \in \Omega} \\
u_{h}(\boldsymbol{x})=\sum_{i} \mathbf{u}_{\Omega, i} \phi_{i}(\boldsymbol{x})+\sum_{i} \mathbf{u}_{\Omega_{I}, i} \phi_{i}(\boldsymbol{x})
\end{array} \quad A_{\Omega, \Omega_{I}}=\left\{a\left(\phi_{i}, \phi_{j}\right)\right\}_{i \in \Omega, j \in \Omega_{I}},
$$

Finite element approximation

■ Sub-assembly loop:

$$
a\left(\phi_{i}, \phi_{j}\right)=\frac{1}{2} \sum_{\kappa, \tilde{K} \in \mathcal{T}_{h}^{2}} \sum_{K \times \tilde{K}}\left(\phi_{i}(\boldsymbol{x})-\phi_{i}(\boldsymbol{y})\right)\left(\phi_{j}(\boldsymbol{x})-\phi_{j}(\boldsymbol{y})\right) \gamma(\boldsymbol{x}, \boldsymbol{y}) d \boldsymbol{y} d \boldsymbol{x}
$$

■ No closed form for local stiffness matrix
\rightarrow need to use numerical quadrature to evaluate double integrals

- Avoid integration across discontinuities for finite horizon δ or jumps in kernels: approximate with sub-simplices, $\mathcal{O}\left(h_{K}^{2}\right)$ error 1

[^0]
Quadrature

■ In subassembly procedure, use quadrature to evaluate element pair contributions:

$$
a^{K \times \tilde{K}}\left(\phi_{i}, \phi_{j}\right)=\frac{1}{2} \int_{K} d \boldsymbol{x} \int_{\tilde{K}} d \boldsymbol{y}\left(\phi_{i}(\boldsymbol{x})-\phi_{i}(\boldsymbol{y})\right)\left(\phi_{j}(\boldsymbol{x})-\phi_{j}(\boldsymbol{y})\right) \gamma(\boldsymbol{x}, \boldsymbol{y})
$$

- Treatment for element pairs $K \cap \tilde{K} \neq \emptyset$, containing the singularity at $\boldsymbol{x}=\boldsymbol{y}$:

- split $K \times \tilde{K}$ into sub-simplices,
- Duffy transform onto a hypercube, with Jacobian canceling the singularity.
- Choose quadrature order so that quadrature error \leq discretization error ${ }^{2}$:
- $\left|\log h_{K}\right|$ if the elements coincide (red),

■ $\left|\log h_{K}\right|^{2}$ if the elements share only an edge (yellow),

- $\left|\log h_{K}\right|^{3}$ if the elements share only a vertex (blue),
- $\left|\log h_{K}\right|^{4}$ if the elements are "near neighbours" (green), and
- C if the elements are well separated.

■ PyNucleus tries to handle the selection of quadrature rules automatically.

[^1]Rate of convergence depends on

- Polynomial order of the FE space
- Mesh resolution of salient features
- Regularity of the solution
- kernel function
- regularity of the data (forcing, boundary data)
- domain regularity
- Compared with classical PDEs:
- Rates are generally lower than for classical PDEs
- Major difference: nice domain + nice data \nRightarrow high regularity
(But one can obviously construct examples where higher rates of convergence are obtained.)

Choice of mesh

Fractional problems often display steep gradients near $\partial \Omega$.

Figure: Solutions $u=C\left(1-|\mathbf{x}|^{2}\right)^{s} \sim \operatorname{dist}(\mathbf{x}, \partial \Omega)^{s}$ corresponding to the constant right-hand side $f=1$ for $s=0.25$ and for $s=0.75, \delta=\infty$.

Higher rates of convergence can be achieved by resolving this behavior via graded or adaptively refined meshes.

FEM convergence rates for fractional kernels, \mathbf{P}_{1} elements

				${ }^{s}(\Omega)$		(Ω)	
$\stackrel{-}{\\|}$	quasi-uniform		$\frac{1}{n^{1 / 2}}$	$h^{(1 / 2+s) \wedge 1}$	$\frac{1}{n^{(1 / 2+s) \wedge 1}}$	
		graded / adaptive		$\frac{1}{n^{2-s}}$		$\frac{1}{n^{2}}$	
$\begin{aligned} & N \\ & \wedge \\ & \sim \end{aligned}$		quasi-uniform	$h^{1 / 2}$	$\frac{1}{n^{1 /(2 d)}}$	$h^{(1 / 2+s) \wedge 1}$	$\frac{1}{n^{(1 / 2+s) / d) \wedge(1 / d)}}$	
		graded / adaptive		$\frac{1}{n^{1 / d}}$		$\frac{1}{n^{(1+s) / d}}$	

mesh size h, number of unknowns n, spatial dimension d, fractional order s

Representation of linear operators

After FEM discretization:

$$
A u=L, \quad A \in \mathbb{R}^{n \times n}
$$

Depending on δ and h :

- Assembly and solve has complexity and memory usage

$$
\boldsymbol{A}=\left(\begin{array}{lll}
1 & 2 & 0 \\
3 & 4 & 0 \\
0 & 0 & 5
\end{array}\right)
$$

- $\mathcal{O}\left(n\left(\frac{\delta}{h}\right)^{d}\right)$ for $\delta<\infty$ and

CSR format:

- $\mathcal{O}\left(n^{2}\right)$ for $\delta=\infty$.
- For small $\frac{\delta}{h}$ we can use a sparse matrix (CSR format)
- For large $\frac{\delta}{h}$, we end up with an (almost) dense matrix.

Better approach

Panel clustering / Fast Multipole Method / hierarchical matrix approximation

- Split operator into near and far interactions
- Directly assembly near interactions
- Low-rank approximation of far interactions
- Keep approximation error below discretization error to preserve FE convergence.

Hierarchical matrices: Admissible sub-blocks

Tasks:

1. Choose sub-blocks to be compressed.
2. Construct low-rank approximations.

Build tree of clusters of DoFs.

- root contains all unknowns
- subdivision based on DoF coordinates

■ distributed computations: first level given by MPI distribution of unknowns
Admissibility criterion:
■ Cluster pairs (P, Q) that are sufficiently separated compared to their sizes are admissible for compression:

$$
\eta \operatorname{dist}(P, Q) \leq \max \{\operatorname{diam}(P), \operatorname{diam}(Q)\}, \quad \eta>0 \text { fixed parameter }
$$

- Matrix entries that are not admissible are assembled directly into a sparse near-field matrix $A_{\text {near }}$.

■ Splitting of operator into sub-blocks based on admissibility

$$
A=A_{\text {near }}+A_{\text {far }}=A_{\text {near }}+\sum_{\text {blocks }(P, Q)} A_{P, Q}
$$

- \mathcal{H}-matrix approximation

$$
A_{P, Q} \approx U_{P} \Gamma_{P, Q} U_{Q}^{T} \quad \text { (low-rank approximation) }
$$

I use Chebyshev interpolation, but other techniques are possible, e.g. Adaptive Cross Approximation (ACA).

- \mathcal{H}^{2}-matrices

Using hierarchical nestedness of clusters, can express

$$
U_{P}=\sum_{Q \text { child of } P} U_{Q} T_{Q, P}
$$

Matrix-vector product with an \mathcal{H}^{2}-matrix

Steps:
■ Matvec with sparse near-field matrix
■ Upward recursion

- Cluster-cluster interaction
- Downward recursion

\mathcal{H}^{2}-matrix approximation

Finite element assembly and matrix-vector product and in $\mathcal{O}\left(n \log ^{2 d} n\right)$ operations \& memory. Approximation error same order as discretization error.

■ Regular CSR sparse matrices are efficient (complexity, memory) for small horizon $\delta \sim h$.

- \mathcal{H}^{2}-matrices are efficient for $\delta=\infty$.

■ Low-rank approximation relies on smoothness of the kernel
\rightarrow need to fully assemble entries near $\partial \mathrm{B}_{\delta}(\boldsymbol{x})$.

At what ratio δ / h do \mathcal{H}^{2}-matrices become more efficient than sparse matrices?

$\square \Omega \subset \mathbb{R}^{2}, \gamma(\boldsymbol{x}, \boldsymbol{y})=c_{d, \delta} \mathcal{X}_{|\mathbf{x}-\boldsymbol{y}| \leq \delta}$
■ Break-even:

- 1D: $\delta / h \sim 100-200$
- 2D: $\delta / h \sim 5-10$
- Break-even depends on:
- Cost of quadrature
- Lots of implementation details

Conditioning and scalable solvers

- Direct solvers for hierarchical matrices have quasi-optimal $\mathcal{O}\left(n \log ^{\alpha} n\right)$ scaling BUT: can be tricky to implement, especially in distributed memory.
- $\mathcal{O}\left(n \log ^{\alpha} n\right)$ matrix-vector product in all cases \rightarrow use iterative solvers

■ Number of iterations required depends on condition number $\kappa(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}\left\|\boldsymbol{A}^{-1}\right\|_{2}$
■ Steady-state:
■ Integrable kernel, δ finite ${ }^{8}: \kappa(\mathbf{A}) \sim \delta^{-2}$
■ Fractional kernel, $\delta=\infty: \kappa(A) \sim h^{-2 s} \sim n^{2 s / d}$

- Fractional kernel, $\delta \leq \delta_{0}: \kappa(\boldsymbol{A}) \sim \delta^{2 s-2} h^{-2 s} \sim \delta^{2 s-2} n^{2 s / d}$
- Time-dependent:

■ $\kappa(\mathbf{M}+\Delta t \mathbf{A}) \sim 1+\Delta t \kappa(\mathbf{A})$
■ Depending on time-stepper and CFL condition, this is well-conditioned for small s, large δ.
■ III-conditioned cases $\kappa(\mathbf{A}) \gg 1$ need a preconditioner:

$$
P A u=P L
$$

such that $\kappa(\mathbf{P A}) \ll \kappa(\mathbf{A})$ and $\operatorname{cost}(\mathbf{P}) \sim \operatorname{cost}(\mathbf{A})$.

- A solver (+preconditioner) is scalable if the number of iterations required is independent of the number of unknowns, $\kappa \sim 1$.

■ Scalable solver options:

- Krylov method + multigrid,
- Krylov method + domain decomposition,

■ Unpreconditioned Krylov method (when $\kappa(\boldsymbol{A}) \sim 1$).

Geometric multigrid in a nutshell

User specifies:
■ Operators A_{ℓ}, assembled on hierarchy of nested meshes

- Transfer operators: prolongations $P_{\ell+1 \rightarrow \ell}$, restrictions $R_{\ell \rightarrow \ell+1}=P_{\ell+1 \rightarrow \ell}^{T}$,

■ Smoothers $\mathcal{S}_{\ell}^{\text {pre/post }}$ (Jacobi, Gauss-Seidel, Chebyshev, ...)
■ Coarse solver \mathcal{S}_{L} (typically direct solver)
How does multigrid work?
■ On each level:

- smoother reduces high frequency error
- low frequency error is transferred to next coarser levels

■ High/low frequency splitting depends on mesh
\rightarrow each error frequency gets strongly reduced on one of the levels.

Geometric multigrid for nonlocal equations

■ Hierarchy of meshes from uniform or adaptive refinement

- Restriction / prolongation given by nesting of FE spaces

■ Assembly into hierarchical or CSR matrix format on every level
■ Smoothers:

- \mathcal{H}-matrices: Jacobi, Chebyshev
- CSR matrices: no limitations

■ Coarse solve: convert to dense or CSR matrix

Topics we did not cover:

- time discretization (classical and fractional)
- adaptive mesh refinement

■ local-nonlocal coupling

- inverse problems

■ domain decomposition solvers
■ algebraic multigrid

Getting started with PyNucleus

■ Source repository: github.com/sandialabs/PyNucleus
■ Documentation: sandialabs.github.io/PyNucleus
Installing \& running PyNucleus:
Option 1 Directly from the browser:
No installation, not sure about stability of the cloud service
mybinder.org/v2/gh/sandialabs/PyNucleus/binder
Option 2 Locally in a container Needs to download container image (\sim 2GB!)

■ Install docker and docker-compose, or podman and podman-compose.

- Download compose . yaml from PyNucleus repository to an EMPTY folder.
- podman-compose run pynucleus
- More detailed instructions sandialabs.github.io/PyNucleus/installation.html\# pre-built-container-image
Option 3 Spack
Builds all dependencies, first installation can be slow spack install py-pynucleus
Option 4 Manual build against pre-installed dependencies
Could be complicated and is system dependent
Recommendation for the hands-on session
Use option 1. If the cloud service goes down try option 2.

Operator interpolation ${ }^{3,4}$

Parameter learning problem requires operators for different values of s and δ.
■ Piecewise Chebyshev interpolation in s:

Lemma

Let $s \in\left[s_{\min }, s_{\max }\right] \subset(0,1), \delta \in(0, \infty)$, and let $\eta>0$. Assume that $u(s) \in H_{\Omega}^{s+1 / 2-}\left(\mathbb{R}^{n}\right)$, $v \in H_{\Omega}^{s}\left(\mathbb{R}^{n}\right)$. There exists a partition of [$\left.s_{\text {min }}, s_{\max }\right]$ into sub-intervals \mathcal{S}_{k} and interpolation orders M_{k} such that the piecewise Chebyshev interpolant $\tilde{a}(\cdot, \cdot ; s, \delta)$ satisfies:

$$
|a(u(s), v ; s, \delta)-\tilde{a}(u(s), v ; s, \delta)| \leq \eta\|u(s)\|_{\mu_{\Omega}^{\bar{s}_{2}(s)}\left(\mathbb{R}^{n}\right)}\|v\|_{H_{\Omega}^{s}\left(\mathbb{R}^{n}\right)},
$$

and the total number of interpolation nodes satisfies

$$
\sum_{k=1}^{K}\left(M_{k}+1\right) \leq C|\log \eta|
$$

The constant C depends on δ and $s_{\text {max }}$.

- Combined with hierarchical matrix approach: $\mathcal{O}\left(n \log ^{2 d+1} n\right)$ complexity \& memory.
- Also allows to evaluate derivatives wrt s.
- Assembly for different values of δ is achieved by splitting the kernel into infinite horizon, singular part, and δ-dependent regular part.

[^2]
[^0]: ${ }^{1}$ Marta D'Elia, Max Gunzburger, and Christian Vollmann. "A cookbook for approximating Euclidean balls and for quadrature rules in finite element methods for nonlocal problems". In: Mathematical Models and Methods in Applied Sciences 31.08 (2021), pp. 1505-1567.

[^1]: ${ }^{2}$ Mark Ainsworth and Christian Glusa. "Aspects of an adaptive finite element method for the fractional Laplacian: A priori and a posteriori error estimates, efficient implementation and multigrid solver". In: Computer Methods in Applied Mechanics and Engineering (2017).

[^2]: ${ }^{3}$ Olena Burkovska and Max Gunzburger. "Affine approximation of parametrized kernels and model order reduction for nonlocal and fractional Laplace models". In: SIAM Journal on Numerical Analysis 58.3 (2020), pp. 1469-1494.
 ${ }^{4}$ Olena Burkovska, Christian Glusa, and Marta D'Elia. "An optimization-based approach to parameter learning for fractional type nonlocal models". In: Computers \& Mathematics with Applications (2021).

