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We will cover:

Elliptic nonlocal equations

Variational formulation

Finite element approximation

Matrix formats, in particular hierarchical matrices

Linear solvers, in particular geometric multigrid

Goals

Cover theoretical background for the hands-on examples of PyNucleus.

Favor concepts over technical details.

Questions are encouraged! Please stop me whenever I should clarify something.
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Elliptic nonlocal problems

We want to numerically solve a scalar equation involving a nonlocal operator, e.g.:

−Lu(x) := p.v.

∫
Ω∪ΩI

(u(x)− u(y))γ(x, y)dy = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ΩI.

Ω ⊂ Rd open, bounded
γ : (Ω ∪ ΩI)2 → R≥0 is the kernel of the operator

ΩI := {y ∈ Rd \ Ω : γ(x, y) 6= 0, for some x ∈ Ω} is the interaction domain
u : Ω ∪ ΩI → R is the solution we want to find
f is a forcing, g a volume condition

Nonlocality

The value of Lu at x depends on u(y) for all y in the interaction neighborhood
{y ∈ Ω ∪ ΩI : γ(x, z) 6= 0}.
Contrast this with the PDE Laplacian∆u(x) =

∑d
j=1 ∂

2
xj
u(x) which is a local operator.
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Examples of kernel functions
1. Constant kernel,X• indicator function

γ(x, y) = CδX|x−y|≤δ, ΩI = collar of width δ aroundΩ

2. Inverse distance kernel

γ(x, y) =
C̃δ

|x − y|
X|x−y|≤δ, ΩI = collar of width δ aroundΩ

3. Integral fractional Laplacian:

γ(x, y) =
Cd,s

|x − y|d+2s
, ΩI = Rd \ Ω.

Normalization constants are often chosen such that the operator recovers the classical

PDE Laplacian in parameter limits (e.g. δ → 0 or s → 1).

The first two kernels are integrable in the L1 sense and have a finite interaction horizon δ.

The fractional kernels are too singular for the integral to be taken in the usual sense:

principal value

Lu(x) = p.v.

∫
Ω∪ΩI

(u(y)− u(x))γ(x, y)dy

:= lim
ε→0

∫
(Ω∪ΩI)\Bε(x)

(u(y)− u(x))γ(x, y)dy

These kernels just depend on |x − y|. More general kernels are allowed but often involve
more work (analysis & numerics).
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Elliptic nonlocal operators

Currently available in PyNucleus

γ(x, y) = φ(x, y) |x − y|−β(x,y)
p X|x−y|p≤δ, x, y ∈ Ω ∪ ΩI

d ∈ {1, 2},
φ(x, y) > 0,

δ ∈ (0,∞],

p ∈ {1, 2,∞},
β(x, y) ∈ [0, d+ 2).

Some additional conditions are required for well-posedness

What is not available at the moment:

3D domains

vector-valued kernels (peridynamics!)

kernels that correspond to derivatives wrt parameters

kernels for non-flat spaces
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Nonlocal equations

Nonlocal Poisson equation:

−Lu = f inΩ,

u = g inΩI.

Nonlocal heat equation:

ut − Lu = f in (0, T)× Ω,

u = g in (0, T)× ΩI,

u = u0 on {0} × Ω.

Combinations of local and nonlocal spatial operators,

e.g. local advection and nonlocal diffusion

fractional time derivatives

Source control:

min
f

1

2
||u− ud||2L2 +R(f) subject to nonlocal equation

Parameter learning:

min
s,δ,...

1

2
||u− ud||2L2 +R(s, δ, . . . ) subject to nonlocal equation
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Variational formulation

Take v ∈ C∞(Ω ∪ ΩI) such that v
∣∣
ΩI

= 0.

∫
Ω
f(x)v(x)dx =

∫
Ω
(−Lu(x))v(x)dx =

∫
Ω

∫
Ω∪ΩI

(u(x)− u(y))γ(x, y)v(x)dydx

=

∫∫
(Ω∪ΩI)2

(u(x)− u(y))γ(x, y)v(x)dydx

We can perform “integration-by-parts” by splitting into equal parts, relabeling integration

variables and using symmetry of the kernel:∫
Ω
f(x)v(x)dx =

1

2

∫∫
(Ω∪ΩI)2

(u(x)− u(y))γ(x, y)v(x)dydx

+
1

2

∫∫
(Ω∪ΩI)2

(u(y)− u(x))γ(y, x)v(y)dxdy

=
1

2

∫∫
(Ω∪ΩI)2

(u(x)− u(y))(v(x)− v(y))γ(x, y)dydx

Note: The bilinear form looks a bit different for unsymmetric kernels.
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Variational formulation
Instead of solving in the strong form

−Lu(x) = f(x), x ∈ Ω,

u(x) = g(x), x ∈ ΩI.

we are solving in weak form

Find u ∈ V such that u
∣∣
ΩI

= g and

a(u, v) = L(v) ∀v ∈ V0,

where

a(u, v) =
1

2

∫∫
(Ω∪ΩI)2

(u(x)− u(y))(v(x)− v(y))γ(x, y)dydx,

L(v) =

∫
Ω
f(x)v(x)dx.

and

V :=
{
u ∈ L2

(
Rd

)
| ||u||V < ∞

}
, V0 := {u ∈ V | u = 0 inΩI}

and

||u||2V = ||u||2
L2

+

∫∫
(Ω∪ΩI)2

(u(x)− u(y))2 γ(x, y).

V reduces to L2(Ω ∪ ΩI) for integrable kernels and to Hs(Ω ∪ ΩI) for constant order fractional
kernels.
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Infinite horizon kernels
Integration over unbounded domains is computationally not tractable.

a(u, v) =
1

2

∫∫
(Ω∪ΩI)2

(u(x)− u(y))(v(x)− v(y))γ(x, y)dydx

is problematic whenΩI = Rd \ Ω.
Need some additional restriction / approximation, e.g.

u is compactly supported or even u = 0 inΩI,

u has sufficient decay so that it can be approximated.

When u = 0 onΩI, we can play tricks with the Gauss theorem:

Write γ(x, y) = ∇y · Γ(x, y) for some vectorial kernel Γ.
Split (remember v

∣∣
Rd\Ω = 0)

a(u, v) =
1

2

∫∫
Ω2

(u(x)− u(y))(v(x)− v(y))γ(x, y)dydx

+

∫
Ω

∫
Rd\Ω

(u(x)− u(y))(v(x)− v(y))γ(x, y)dydx

=
1

2

∫∫
Ω2

(u(x)− u(y))(v(x)− v(y))γ(x, y)dydx

+

∫
Ω
u(x)v(x)

∫
Rd\Ω

γ(x, y)dy︸ ︷︷ ︸∫
∂Ω ny·Γ(x,y)dy

dx
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Finite element approximation

V is an infinite dimensional space→ cannot be represented on a computer.

Take a finite dimensional sub-space Vh ⊂ V and solve

Find uh ∈ Vh such that uh
∣∣
ΩI

= gh and

a(uh, vh) = L(vh) ∀vh ∈ Vh,0,

Let Th be a simplical mesh forΩ ∪ ΩI.

Set Vh := {v ∈ Cq(Ω ∪ ΩI) | v
∣∣
K
∈ Pk(K) ∀K ∈ Th}.

Here: Pk(K) are the polynomials of degree up to k on K.
In practice:

continuous piecewise linears (q = 0 and k = 1) or
piecewise constant discontinuous space q = −1 and k = 0.

Basis functions φi(x) span the space Vh, obtain linear system(
AΩ,Ω AΩ,ΩI

IΩI

)(
uΩ
uΩI

)
=

(
LΩ
gΩI

)
⇒ AΩ,ΩuΩ = LΩ − AΩ,ΩI

gΩI

Here

AΩ,Ω = {a(φi, φj)}i,j∈Ω AΩ,ΩI
= {a(φi, φj)}i∈Ω,j∈ΩI

,

uh(x) =
∑
i

uΩ,iφi(x) +
∑
i

uΩI,iφi(x)

10 / 25



Finite element approximation

Sub-assembly loop:

a(φi, φj) =
1

2

∑∑
K,K̃∈T 2

h

∫∫
K×K̃

(φi (x)− φi (y)) (φj (x)− φj (y)) γ(x, y) dy dx

No closed form for local stiffness matrix

→ need to use numerical quadrature to evaluate double integrals

Avoid integration across discontinuities for finite horizon δ or jumps in kernels:
approximate with sub-simplices,O(h2K ) error

1

1Marta D’Elia, Max Gunzburger, and Christian Vollmann. “A cookbook for approximating Euclidean balls and for quadrature

rules in finite element methods for nonlocal problems”. In: Mathematical Models and Methods in Applied Sciences 31.08

(2021), pp. 1505–1567.
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Quadrature

In subassembly procedure, use quadrature to evaluate element pair contributions:

aK×K̃(φi, φj) =
1

2

∫
K

dx

∫
K̃

dy (φi(x)− φi(y)) (φj(x)− φj(y)) γ(x, y)

Treatment for element pairs K ∩ K̃ 6= ∅, containing the singularity at x = y:

split K × K̃ into sub-simplices,

Duffy transform onto a hypercube, with Jacobian canceling the singularity.

Choose quadrature order so that quadrature error≤ discretization error
2
:

|log hK | if the elements coincide (red),
|log hK |2 if the elements share only an edge (yellow),
|log hK |3 if the elements share only a vertex (blue),
|log hK |4 if the elements are “near neighbours” (green), and
C if the elements are well separated.

PyNucleus tries to handle the selection of quadrature rules automatically.

2Mark Ainsworth and Christian Glusa. “Aspects of an adaptive finite element method for the fractional Laplacian: A priori

and a posteriori error estimates, efficient implementation and multigrid solver”. In: Computer Methods in Applied Mechanics

and Engineering (2017).

12 / 25



FE convergence

Rate of convergence depends on

Polynomial order of the FE space

Mesh resolution of salient features

Regularity of the solution

kernel function

regularity of the data (forcing, boundary data)

domain regularity

Compared with classical PDEs:

Rates are generally lower than for classical PDEs

Major difference: nice domain + nice data 6⇒ high regularity

(But one can obviously construct examples where higher rates of convergence are obtained.)
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Choice of mesh

Fractional problems often display steep gradients near ∂Ω.
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Figure: Solutions u = C(1 − |x|2)s ∼ dist (x, ∂Ω)s corresponding to the constant right-hand side f = 1
for s = 0.25 and for s = 0.75, δ = ∞.

Higher rates of convergence can be achieved by resolving this behavior via graded or

adaptively refined meshes.
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FEM convergence rates for fractional kernels, P1 elements

V = H̃s (Ω) L2(Ω)
d
=

1 quasi-uniform h1/2 1
n1/2

h(1/2+s)∧1 1
n(1/2+s)∧1

graded / adaptive 1
n2−s

1
n2

d
≥

2 quasi-uniform h1/2 1
n1/(2d)

h(1/2+s)∧1 1
n(1/2+s)/d)∧(1/d)

graded / adaptive 1
n1/d

1
n(1+s)/d

mesh size h, number of unknowns n, spatial dimension d, fractional order s
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Representation of linear operators
After FEM discretization:

Au = L, A ∈ Rn×n

Depending on δ and h:

Assembly and solve has complexity and memory
usage

O
(
n( δ

h
)d
)
for δ < ∞ and

O(n2) for δ = ∞.

For small δ
h
we can use a sparse matrix

(CSR format)

For large δ
h
, we end up with an (almost) dense

matrix.

A =

 1 2 0
3 4 0
0 0 5


CSR format:

rowptr =
(

0 2 4 5
)

indices =
(

0 1 0 1 2
)

values =
(

1 2 3 4 5
)

Better approach

Panel clustering / Fast Multipole Method / hierarchical matrix approximation

Split operator into near and far interactions

Directly assembly near interactions

Low-rank approximation of far interactions

Keep approximation error below discretization error to preserve FE convergence.
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Hierarchical matrices: Admissible sub-blocks

Tasks:

1. Choose sub-blocks to be compressed.

2. Construct low-rank approximations.

Build tree of clusters of DoFs.

root contains all unknowns

subdivision based on DoF coordinates

distributed computations: first level given by MPI distribution of unknowns

Admissibility criterion:

Cluster pairs (P,Q) that are sufficiently separated compared to their sizes are admissible
for compression:

η dist(P,Q) ≤ max{diam(P), diam(Q)}, η > 0 fixed parameter

Matrix entries that are not admissible are assembled directly into a sparse near-field

matrix Anear.
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Hierarchical matrices: low-rank approximation

Splitting of operator into sub-blocks based on admissibility

A = Anear + Afar = Anear +
∑

blocks(P,Q)

AP,Q

H-matrix approximation

AP,Q ≈ UPΓP,QU
T
Q (low-rank approximation)

I use Chebyshev interpolation, but other techniques are possible, e.g. Adaptive Cross

Approximation (ACA).

H2-matrices

Using hierarchical nestedness of clusters, can express

UP =
∑

Q child of P

UQTQ,P
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Matrix-vector product with anH2-matrix

A = +

Steps:

Matvec with sparse near-field matrix

Upward recursion

Cluster-cluster interaction

Downward recursion

H2-matrix approximation

Finite element assembly and matrix-vector product and inO
(
n log2d n

)
operations & memory.

Approximation error same order as discretization error.
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Hierarchical matrices for finite horizon kernels

Regular CSR sparse matrices are efficient (complexity, memory) for small horizon δ ∼ h.

H2-matrices are efficient for δ = ∞.

Low-rank approximation relies on smoothness of the kernel

→ need to fully assemble entries near ∂Bδ(x).

At what ratio δ/h doH2-matrices become more efficient than sparse matrices?

1014 × 100 6 × 100

horizon/meshsize

25

50

75

100

125

150

175

se
co

nd
s

sparse
H2

N(δ/h)2

Nlog4N

Ω ⊂ R2, γ(x, y) = cd,δX|x−y|≤δ

Break-even:

1D: δ/h ∼ 100 − 200
2D: δ/h ∼ 5 − 10

Break-even depends on:

Cost of quadrature

Lots of implementation details
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Conditioning and scalable solvers

Direct solvers for hierarchical matrices have quasi-optimalO(n logα n) scaling
BUT: can be tricky to implement, especially in distributed memory.

O(n logα n)matrix-vector product in all cases→ use iterative solvers

Number of iterations required depends on condition number κ(A) = ||A||2
∣∣∣∣A−1

∣∣∣∣
2

Steady-state:

Integrable kernel, δ finite8 : κ(A) ∼ δ−2

Fractional kernel, δ = ∞: κ(A) ∼ h−2s ∼ n2s/d

Fractional kernel, δ ≤ δ0 : κ(A) ∼ δ2s−2h−2s ∼ δ2s−2n2s/d

Time-dependent:

κ(M + ∆tA) ∼ 1 + ∆t κ(A)
Depending on time-stepper and CFL condition, this is well-conditioned for small s, large δ.

Ill-conditioned cases κ(A) � 1 need a preconditioner:

PAu = PL

such that κ(PA) � κ(A) and cost(P) ∼ cost(A).

A solver (+preconditioner) is scalable if the number of iterations required is independent

of the number of unknowns, κ ∼ 1.

Scalable solver options:

Krylov method + multigrid,

Krylov method + domain decomposition,

Unpreconditioned Krylov method (when κ(A) ∼ 1).
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Geometric multigrid in a nutshell

P2→1R1→2

P1→0R0→1

Spost1

Spost0

Spre1

Spre0

S2

A0

A1

A2

User specifies:

Operators A`, assembled on hierarchy of nested meshes

Transfer operators: prolongations P`+1→`, restrictions R`→`+1 = PT`+1→`,

Smoothers Spre/post` (Jacobi, Gauss-Seidel, Chebyshev, …)

Coarse solver SL (typically direct solver)
How does multigrid work?

On each level:

smoother reduces high frequency error

low frequency error is transferred to next coarser levels

High/low frequency splitting depends on mesh

→ each error frequency gets strongly reduced on one of the levels.
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Geometric multigrid for nonlocal equations

Hierarchy of meshes from uniform or adaptive refinement

Restriction / prolongation given by nesting of FE spaces

Assembly into hierarchical or CSR matrix format on every level

Smoothers:

H-matrices: Jacobi, Chebyshev

CSR matrices: no limitations

Coarse solve: convert to dense or CSR matrix

Topics we did not cover:

time discretization (classical and fractional)

adaptive mesh refinement

local-nonlocal coupling

inverse problems

domain decomposition solvers

algebraic multigrid
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Getting started with PyNucleus

Source repository: github.com/sandialabs/PyNucleus

Documentation: sandialabs.github.io/PyNucleus

Installing & running PyNucleus:

Option 1 Directly from the browser:

No installation, not sure about stability of the cloud service

mybinder.org/v2/gh/sandialabs/PyNucleus/binder

Option 2 Locally in a container
Needs to download container image (∼ 2GB!)

Install docker and docker-compose, or podman and podman-compose.
Download compose.yaml from PyNucleus repository to an EMPTY folder.

podman-compose run pynucleus
More detailed instructions sandialabs.github.io/PyNucleus/installation.html#
pre-built-container-image

Option 3 Spack

Builds all dependencies, first installation can be slow

spack install py-pynucleus

Option 4 Manual build against pre-installed dependencies

Could be complicated and is system dependent

Recommendation for the hands-on session

Use option 1. If the cloud service goes down try option 2.
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Operator interpolation3,4

Parameter learning problem requires operators for different values of s and δ.

Piecewise Chebyshev interpolation in s:

Lemma

Let s ∈ [smin, smax] ⊂ (0, 1), δ ∈ (0,∞), and let η > 0. Assume that u(s) ∈ H
s+1/2−
Ω (Rn),

v ∈ HsΩ(R
n). There exists a partition of [smin, smax] into sub-intervals Sk and interpolation

orders Mk such that the piecewise Chebyshev interpolant ã(·, ·; s, δ) satisfies:

|a(u(s), v; s, δ)− ã(u(s), v; s, δ)| ≤ η ||u(s)||
H
s2(s)
Ω (Rn)

||v||HsΩ(Rn) ,

and the total number of interpolation nodes satisfies

K∑
k=1

(Mk + 1) ≤ C |log η| .

The constant C depends on δ and smax.

Combined with hierarchical matrix approach: O(n log2d+1 n) complexity & memory.

Also allows to evaluate derivatives wrt s.

Assembly for different values of δ is achieved by splitting the kernel into infinite horizon,
singular part, and δ-dependent regular part.

3Olena Burkovska and Max Gunzburger. “Affine approximation of parametrized kernels and model order reduction for

nonlocal and fractional Laplace models”. In: SIAM Journal on Numerical Analysis 58.3 (2020), pp. 1469–1494.
4Olena Burkovska, Christian Glusa, and Marta D’Elia. “An optimization-based approach to parameter learning for fractional

type nonlocal models”. In: Computers & Mathematics with Applications (2021).
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