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Random Graph Embeddings

Question
Given a graph G with V vertices and E edges, can we construct a
random embedding of the graph into Rd which “respects the graph
structure”?

Related to machine learning literature on graph embeddings
(node2vec, Laplacian eigenmaps), but not exactly the same.

Motivated by physics/chemistry model of Gaussian phantom
network (James, Guth, Flory, Eichinger).

Goal is to say as much as possible about a very general class of
models and specialize as late as possible.
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A motivating example
Definition
A Gaussian walk has i.i.d. Gaussian steps. A Gaussian bridge is a
Gaussian walk which returns to the starting value.
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Gaussian bridge - cycle graph

Gaussian walk - path graph

The steps in the Gaussian bridge are not independent.

Goal
Understand dependence structure of edge r.v.s implied by graph type.
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Original motivation: “Topological” polymers

Chemists now able to synthesize polymers with various graph types
usable quantities:

synthetic topological polymers
(source: Tezuka, 2018)
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Graph→ chain complex

Let G be a connected, directed graph with E edges and V vertices.

Definition
The real vector space VC of vertex chains is the vector space of (formal)
linear combinations of vertices with coefficients xi ∈ R:

x = x1v1 + · · ·+ xVvV.

Definition
The real vector space EC of edge chains is the vector space of (formal)
linear combinations of edges with coefficients wi ∈ R:

w = w1e1 + · · ·+ wEeE.
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Graph→ chain complex
Definition
The boundary map or incidence matrix ∂ : EC→ VC is the linear map

∂(ei) = +1 head(ei)− 1 tail(ei)

The chain complex for G is C0 = VC
∂−→ ED = C1.

e1

e2
e5

e3

e4

v1 v2

v3

v4

∂ =


−1 0 1 0 0
1 −1 0 0 −1
0 1 −1 −1 0
0 0 0 1 1


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Integral chains

We say that a chain is integral if the coefficients are integers. Integral
edge chains w where ∂w = vj − vi have a natural interpretation as
paths from vi to vj .

e1

e2
e5

e3

e4

v1 v2

v3

v4

w = e1 + e2 + e4

∂w = (v2 − v1) + (v3 − v2) + (v4 − v3)

= v4 − v1
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Cycles and subspaces

A chain is a set of (real) scalar weights on vertices or edges.

Lemma
A path in G is a cycle ⇐⇒ its integral chain w ∈ ker ∂ ⊂ EC.
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Cycle rank = Betti #= Euler characteristic
Definition
The subspace ker ∂ ⊂ EC is the first homology group or loop space.

Proposition
dim ker ∂ is the cycle rank ξ(G) = E−V+ 1 or first Betti number:

ξ(G) =
1
2

∑
i

(deg(vi)− 2) + 1
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Cycle rank = Betti #= Euler characteristic
Definition
The subspace ker ∂ ⊂ EC is the first homology group or loop space.

Proposition
dim ker ∂ is the cycle rank ξ(G) = E−V+ 1 or first Betti number:

ξ(G) =
1
2

∑
i

(deg(vi)− 2) + 1

− =
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Cochain spaces

Suggestive observation
Usually build cochain complex by dualizing. We can use Hom(−,G) for
any abelian group G.

Ci−1 Ci Ci+1

C i−1 C i C i+1

∂ ∂ ∂ ∂

duality duality duality

∂∗ ∂∗ ∂∗ ∂∗
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Cochain spaces

Suggestive observation
Usually build cochain complex by dualizing. We can use Hom(−,G) for
any abelian group G.

0 C0 C1 0

0 C0 C1 0

0 ∂ 0

Hom(−,Rd ) Hom(−,Rd )

0 ∂∗ 0
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The cochain spaces

A cochain is a set of vector weights on vertices or edges.

Definition
The real vector space of vertex cochains VP = Hom(VC,Rn) is the
space of linear maps X : VC→ Rd .

Definition
The real vector space of edge cochains ED = Hom(EC,Rn) is the space
of linear maps W : EC→ Rd .

Definition
The coboundary map ∂∗ : VP→ ED is given by

∂∗(X )(ei) = X (∂(ei)) = X (head(ei))− X (tail(ei))
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cochains→ graph embeddings
Proposition

Embeddings of G in Rd are a vector space (X ,W ) ∈ VP×ED where

W = ∂∗X ,

X (vi) is the position of vi ,

W (ei) = X (head(ei))− X (tail(ei)) is the displacement along ei .

VC EC

VP ED

∂

Hom(−,Rn)

∂∗

Hom(−,Rn)
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Cocycles and the failure-to-close map

Definition

The vector space H1 = Hom(ker ∂,Rd) is the first cohomology
or coloop space.

Lemma

If L ∈ H1 and we have a cycle in G with integral chain w ∈ H1, then
L(w) is the sum of the displacements over the cycle. We call it the failure
to close of the cycle w .

Definition
The dual of the inclusion map i : H1 ↪→ C1 is given by the restriction
map i∗ : C1 → H1. We call i∗ the failure to close map ftc.
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What it means to condition on graph type

Theorem
We have W = ∂∗X ⇐⇒ W ∈ ker ftc. If (∂∗)+ is the Moore-Penrose
pseudoinverse, it is true that

im(∂∗)+ is an isomorphism when restricted to ker ftc.

im(∂∗)+ = im(∂∗)+(ker ftc).

X ∈ im(∂∗)+ ⇐⇒ X (
∑

vi) = 0.

We call these centered embeddings of G.

Corollary
A random W ∈ ED is compatible with the graph type ⇐⇒ W ∈ ker ftc.
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Example: James-Guth-Flory Theory

Definition
The phantom network embedding of G is given by choosing W from a
standard Gaussian on ED conditioned on W = ker ftc and pushing
forward this probability distribution to VC by (∂∗)+.

im ∂∗

ker ftc

ED

∂∗

∂∗+

(centered)

VP
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Early geometric/topological learning feature.
Fact
Expected radius of gyration of graph embedding given by
d
V tr L+ = d Kf(G) where Kf(G) is called the Kirchhoff index.

The Kirchhoff index was defined to generalize the Wiener index for trees,
which was a heuristic feature used (by hand!) in 1947 to predict paraffin
boiling points to within 0.4◦ C.

Jan., 1947  Structural Determination of Paraffin Boiling Points 17

[Contribution from Department of Chemistry, Brooklyn College]

Structural Determination of Paraffin Boiling Points
By Harry Wiener1

The boiling points of organic compounds, as
well as all their physical properties, depend func-
tionally upon the number, kind and structural
arrangement of the atoms in the molecule.
Within a group of isomers, both the number and
the kind of atoms are constant, and variations in
physical properties are due to changes in structural
interrelationships alone. The study of the effect
of pure structural variation upon the boiling
point of the paraffins may be expected to be of
some theoretical interest. It will be shown in this
paper that satisfactory results can readily be ob-
tained by this approach.

The boiling points of the paraffins are given by
the linear formula

¿b — n«> + bp + c (1)
where a, b and c are constants for a given isomeric
group, and p and w are structural variables de-
fined below.

The polarity number p is defined as the number
of pairs of carbon atoms which are separated by
three carbon-carbon bonds. E.g., for 2,3-di-
methylpentane
Ci—C2—C3—C4—C5

C6 C7

Pairs 3 bonds apart: C1C4, Ci ,

C2C5, C4C6, C5C7, CeC?. p = 6

The path number w is defined as the sum of the
distances between any two carbon atoms in the
molecule, in terms of carbon-carbon bonds.
Brief method of calculation: Multiply the num-
ber of carbon atoms on one side of any bond by
those on the other side; w is the sum of these
values for all bonds. E.g., for 2-methylbutane
C-C---C—-C

1-4 = 4 1 2-3 = 6 1-4=4
| 1-4 = 4

C «> = 4 + 4 + 6 + 4 = 18

The problem is simplified by a change in nota-
tion already employed in this connection by
Taylor, Pignocco and Rossini.2 Let t0 be the
boiling point of the straight-chain member of the
group of isomers, having structural variables w0
and po, and let At = ta — ffi, Aw = w0 — w, Ap =

po — p. Then, for an isomer with structural
variables w and p, equation (1) becomes

At = a Aw + b Ap (2)

Equation (2) was extended to cover the entire
paraffin series. For a compound with n carbon
atoms, the following relation was found to hold

* = ¿ + bAp (3)

Equation (3) was fitted, by means of the method
(1) Present address: 5120 19th'Avenue, Brooklyn 4, N. Y.
(2) Taylor, Pignocco and Rossini, J. Research Bur. Standards, 34,

413 (1945).

of least squares, to the selected boiling point data
for the thirty-seven paraffins from C4H10 to CgHig
in the tables of the American Petroleum Institute
Research Project 44.3

The resulting equation is
98

At = ^ Aw + 5.5Ap (4)

which is the form used in this paper.
The change in notation introduced by equation

(2) is useful not only because of the resulting
simplification, but also because it refers the boiling
points of the branched isomers to the boiling
points of the normal paraffins, which throughout
the series have been much more intensively and
accurately determined and correlated. In par-
ticular, Egloff’s equation4:

to = 745.42 log (re + 4.4) - 689.4 (5)

reproduces the data to within their experimental
limits. Table I gives the reference values for the
normal paraffins from «-butane to «-dodecane.
For normal paraffins, the structural variables are

given by
Wo = ~ (re — 1) (re) (re + 1), po = n — 3 (6)

Table I
Normal Paraffins

Cpd. to wo po,
re-Butane -0.5 10 1

re-Pentane 36.1 20 2
re-Hexane 68.7 35 3

ra-Heptañe 98.4 56 4
re-Octane 125.7 84 5

re-Nonane 150.8 120 6
re-Decane 174.0 165 7
re-Undecane 195.8 220 8
re-Dodecane 216.2 286 9

Example of calculation:
3-Ethylhexane w = 72, Aw = 12, p = 7, Ap —

0 1 0 1 0 1 0 1 0 1 o — 2, Aícalcd. = 7.3°, Atohs. =

1
7.1°. Deviation = -0.2°. Caled.

c b. p.: tB =

7.3 = 118.4°
¿0

— At = 125.7-

c

Table II lists the detailed results obtained by
applying equation (4) to the thirty-seven par-
affins from C4H10 to CgHis, for which carefully
selected boiling point values are given in the
A.P.I. tables,3 and from which data the two em-

pirical constants of equation (4) were evaluated.
(3) American Petroleum Institute Research Project 44 at the Na-

tional Bureau of Standards. Selected values of Physical and Ther-
modynamical Properties of Hydrocarbons. Tables No. la, 2a, 3a
and 4a, dated June 30, 1945.

(4) Egloff, Sherman and Dull, J. Phys. Chem., 44, 730 (1940).
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Suggestive observation (Estrada-Hatano, 2010)
The radius of gyration interpretation explains why the Kirchhoff index is
so successful at predicting chemical properties. 16



Conditioning in elementary probability
Definition
A probability measure λ = f (W ) dVolED on ED with pdf f (W ) is
admissible if the pushfoward measure µ = ftcλ has a density function
g(L) on H1 which is continuous everywhere and nonzero at 0.

We can define a family of conditional probabilities λL for W chosen from
λ conditioned on the hypothesis that ftc(W ) = L by observing that

g(L) =
∫

W∈ftc−1(L)
f (W ) dVolftc−1(L)

and constructing (for a.e. L and g(L) ̸= 0)

λL =
f (W )

g(L)
dVolker ftc =

joint density
marginal density

dVolker ftc
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Sampling Random Graph Embeddings

Compute pseudoinverse matrix ∂∗+ : ED→ VP.
Sample W from conditional probability λ0.
Construct vertex positions X = ∂∗+W .

→
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Chain maps and simpler graphs
Definition
Given two graphs G and G′, we say that linear maps f0 : VC→ VC′

and f1 : EC→ EC′ are chain maps if ∂f1 = f0∂′.

e'1 e'2 e'3

v'1

v'2

chain maps−→

e1

e2
e5

e3

e4

v1 v2

v3

v4

f0(v ′
1) = v2, f0(v ′

2) = v3

f1(e′
1) = −e1 − e3, f1(e′

2) = e2,

f1(e′
3) = e5 − e4
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Cochain maps and simpler graphs
Definition
Given two graphs G and G′, we say that linear maps f ∗0 : VP′ → VP

and f ∗1 : ED′ → ED are cochain maps if (∂′)∗f ∗0 = f ∗1 ∂
∗.

e'1 e'2 e'3

v'1

v'2

cochain maps←−

e1

e2
e5

e3

e4

v1 v2

v3

v4

(f ∗0 X )(v ′
1) = X (v2), (f ∗0 X )(v ′

2) = X (v3)

(f ∗1 W )(e′
1) = −W (e1 + e5), (f ∗1 W )(e′

2) = W (e2),

(f ∗1 W )(e′
3) = W (e5 − e4)
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Which chain maps are ok?

Proposition
Suppose that f0 and f1 are chain maps, f1 is injective and
dimH1 = dimH ′

1. There is a unique isomorphism ϕ∗ giving a
commutative

VP ED H1

VP′ ED′ (H1)′

∂∗

f∗0 f∗1

ftc

ϕ∗

(∂′)∗ ftc′

That is, the chain map takes cocycles to cocycles.
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Main theorem: Law of Iterated Expectations
Theorem
Given an admissible probability measure λ on ED, let λ′ = f ∗1λ,
L′ = ϕ∗L, and W ′ = f ∗1 W . We may construct conditional probabilities

λL for λ, based on the map ftc,

λW ′ for λ, based on the map f ∗1 ,

λ′
L′ for λ′, based on the map ftc′.

and write λL = (λ′
L′)W ′

λW ′ .

“For any r.v. f , the c.e. of f (W ) given ftc(W ) = L is equal to
c.e. of (the c.e. of f given f ∗1 (W )) given ftc′(W ′) = L′.”

22



Application: Subdivision graphs

Definition
We say G is a subdivision of G′ if there is a partition of {1, . . . ,E} into
E′ subsets Si and chain maps f0, f1 with f1(e′

i) =
∑

j∈Si
ej .

e'1 e'2 e'3

v'1

v'2

23



Conditional independence in subdivisions
Proposition
If G is a subdivision of G′, and λ is a product of independent
distributions λj on the spaces EDj = Hom(ej ,Rd), then λ is the product
of independent distributions

λSi =
∏
j∈Si

λj

Further, each conditional probability

λW ′ =
∏

i

λSi
W ′

i

where λSi
W ′

i
is the probability of the edge displacements in Si

conditioned on the hypothesis that their sum is W ′
i .

24



Sampling subdivision graphs

If G is a subdivision of G′ and λ is an admissible measure on ED with
independent edges:

Compute λ′ = f ∗1λ, including pdf, variance.

Define λ̂′ to be the Gaussian with matching mean, variance.

Choose W ′ from the conditional probability λ̂′
0.

Reweight W ′ by λ′(W ′)/λ̂′(W ′).

For each i , sample Wj for j ∈ Si according to λSi
W ′

i
.

Assemble Wj into final sample.

Corollary
Subdivisions with large enough groups are approximately Gaussian.
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Freely-jointed networks

Definition
If the measure µ on ED is the submanifold measure on the product of
unit spheres (S2)E ⊂ ED = (R3)E, we call the resulting model a freely
jointed network.
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Junction-junction distance
With the obvious chain maps:

f0,f1←−−

can compute µ′ on ED′ explicitly. Junction-junction distances are
explicit 6-d numerical integrals inside ED′.

2 4 6 8 10

1

2

3

4

5

Comparison with Markov-chain experiments
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What happens as subdivisions→∞?
Definition
The normalized graph LaplacianL(G) is given by

Lij =


1− 2×# loop edges

degree(vi )
, if i = j ,

− k√
degree(vi ) degree(vj )

, if vi , vj joined by k edges,

0, otherwise.

Theorem (with Deguchi, Shonkwiler, Uehara)

lim
n→∞

1
V(Gn)

E(R2
g(Gn)) =

1
E(G)2

(
TrL+(G) +

1
3
Loops(G)− 1

6

)

Proof.
Superposition of solutions to Poisson problems. 28



Tezuka polymer predictions
G E(R2

g(Gn)) (with v = V(Gn)) limn→∞
1

V(Gn)
E(R2

g(Gn))

17v3+60v2−261v+108
486v2

17
486

107v3+270v2−933v+340
2430v2

107
2430

109v3+372v2−1305v+540
2430v2

109
2430

31v3+78v2−177v+68
486v2

31
486

43v3+108v2−165v+68
486v2

43
486

49v3+96v2−177v+32
486v2

49
486
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Experimental measurement of relative size

Size-exclusion Chromatography (SEC) apparatus
Tezuka lab

(Source: Cantarella, 2018)
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Experimental measurement of relative size

(Suzuki, Yamamoto, Tezuka, 2014)
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Comparison of theory and experiment

The relative limn→∞
1

V(Gn)
E(R2

g(Gn)) values are:

(1,1.00) (43
49 ,0.86) (31

49 ,0.75)

(109
245 ,0.71) (107

245 ,0.67) (17
49 ,0.62)
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Comparison of theory and experiment: II

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.7

0.8

0.9

1.0

Theory

Experiment
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Comparison of theory and simulation

We performed molecular dynamics simulations using LAMMPS on the
TSUBAME supercomputer at Tokyo Tech. These included self-avoidance
so the radii of gyration fit to

E(R2
g ;Gn) = CGV(Gn)

1.176 +∆G

and we could estimate g(G∞,Gtree
∞ )MD = CG/Ctree.

G MD theory G MD theory
1.0 1 0.962± 0.034 43/49

0.782± 0.026 31/49 0.582± 0.015 109/245

0.546± 0.016 107/245 0.445± 0.011 17/49
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Comparison of theory and simulation II

Theory

MD
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Thank you for inviting me!

Radius of Gyration, Contraction Factors, and Subdivisions of Topological
Polymers, Cantarella, Shonkwiler, Deguchi, Uehara, arXiv:2004.06199

Random graph embeddings with general edge potentials Cantarella,
Shonkwiler, Deguchi, Uehara, arXiv:2205.09049

Sampling freely jointed networks Cantarella, Shonkwiler, Schumacher,
In preparation.
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