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Random Graph Embeddings

Question

Given a graph & with U vertices and & edges, can we construct a
random embedding of the graph into RY which “respects the graph
structure”?

Related to machine learning literature on graph embeddings
(node2vec, Laplacian eigenmaps), but not exactly the same.

Motivated by physics/chemistry model of Gaussian phantom
network (James, Guth, Flory, Eichinger).

Goal is to say as much as possible about a very general class of
models and specialize as late as possible.



A motivating example

Definition
A Gaussian walk has i.i.d. Gaussian steps. A Gaussian bridge is a
Gaussian walk which returns to the starting value.

Goal
Understand dependence structure of edge r.v.s implied by graph type.



Original motivation: “Topological” polymers

Chemists now able to synthesize polymers with various graph types
usable quantities:
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Graph — chain complex

Let & be a connected, directed graph with & edges and U vertices.
Definition
The real vector space VC of vertex chains is the vector space of (formal)
linear combinations of vertices with coefficients x; € R:

X =X1Vq + - + XygWy.

Definition
The real vector space EC of edge chains is the vector space of (formal)
linear combinations of edges with coefficients w; € R:

W=wes+: -+ Wgeeg.
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Graph — chain complex

Definition
The boundary map or incidence matrix 9 : EC — VC s the linear map

d(ej) = +1 head(e;) — 1tail(e))

The chain complex for & is Cy = VC 9 ED= Cy.
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Integral chains

We say that a chain is integral if the coefficients are integers. Integral
edge chains w where Ow = v; — v; have a natural interpretation as
paths from v; to v;.
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Cycles and subspaces

A chain is a set of (real) scalar weights on vertices or edges.

Lemma
Apathin & isacycle <= itsintegral chain w € ker 9 C EC.



Cycle rank = Betti # = Euler characteristic

Definition
The subspace ker 0 C EC s the first homology group or loop space.

Proposition
dim ker 0 is the cycle rank £(®) = € — U + 1 or first Betti number:

£(6) = 22 deg(Vj) — 2) + 1
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Cochain spaces

Suggestive observation
Usually build cochain complex by dualizing. We can use Hom(—, G) for
any abelian group G.
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Cochain spaces

Suggestive observation
Usually build cochain complex by dualizing. We can use Hom(—, G) for
any abelian group G.
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The cochain spaces

A cochain is a set of vector weights on vertices or edges.
Definition
The real vector space of vertex cochains VP = Hom(VC, R") is the
space of linear maps X : VC — RY.

Definition

The real vector space of edge cochains ED = Hom(EC,R") is the space
of linear maps W : EC — R,

Definition

The coboundary map 9* : VP — ED is given by

9" (X)(ei) = X(9(ei)) = X(head(e;)) — X(tail(e;))
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cochains — graph embeddings

Proposition
Embeddings of & in R are a vector space (X, W) € VP x ED where

W = o*X,
X(v;) is the position of v;,
W(ej) = X(head(e;)) — X(tail(e))) is the displacement along e;.

VC#EC

|
|
|
Hom(—,R") | | Hom(—,R")
|
|
|

v v

12



Cocycles and the failure-to-close map

Definition
The vector space H' = Hom(ker 9, RY) is the first cohomology
or coloop space.

Lemma
If L € H' and we have a cycle in & with integral chain w € Hy, then

L(w) is the sum of the displacements over the cycle. We call it the failure
to close of the cycle w.

Definition

The dual of the inclusion map i : Hy < Cj is given by the restriction
map i* : C' — H'. We call i* the failure to close map ftc.



What it means to condition on graph type

Theorem

We have W = 9*X <= W € ker ftc. If (0*) " is the Moore-Penrose
pseudoinverse, it is true that

im(0*)* is an isomorphism when restricted to ker ftc.
im(0*)t = im(0*) ™ (ker ftc).
X eim(0)" <= X v)=0.

We call these centered embeddings of &.

Corollary
Arandom W € ED is compatible with the graph type <— W € ker ftc.
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Example: James-Guth-Flory Theory

Definition

The phantom network embedding of & is given by choosing W from a
standard Gaussian on ED conditioned on W = ker ftc and pushing
forward this probability distribution to VC by (6*)*.
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Early geometric/topological learning feature.

Fact
Expected radius of gyration of graph embedding given by
I tr Lt = dKf(®) where Kf(®) is called the Kirchhoff index.

The Kirchhoff index was defined to generalize the Wiener index for trees,
which was a heuristic feature used (by hand!) in 1947 to predict paraffin
boiling points to within 0.4° C.

Jan., 1947 - STRUCTURAL DETERMINATION OF PARAFFIN BOILING POINTS

[CoNTRIBUTION FROM DEPARTMENT OF CHEMISTRY, BROOKEYN COLLEGE]
Structural Determination of Paraffin Boiling Points

By HARRY WIENER!

Suggestive observation (Estrada-Hatano, 2010)
The radius of gyration interpretation explains why the Kirchhoff index is
so successful at predicting chemical properties.



Conditioning in elementary probability

Definition

A probability measure A = f(W) dVolgp on ED with pdf f(W) is
admissible if the pushfoward measure i = ftc A has a density function
9(L) on H' which is continuous everywhere and nonzero at 0.

We can define a family of conditional probabilities A; for W chosen from
A conditioned on the hypothesis that ftc(W) = L by observing that

g(L) = / (W) dVol,_ 1,
Wefte1(L) e (b

and constructing (for a.e. Land g(L) # 0)
f(W joint densit
A= T Vol e = )

g(L) ~ marginal density Volierfic
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Sampling Random Graph Embeddings

Compute pseudoinverse matrix 9** : ED — VP.
Sample W from conditional probability Aq.
Construct vertex positions X = 9* T W.

18



Sampling Random Graph Embeddings

Compute pseudoinverse matrix 9** : ED — VP.
Sample W from conditional probability Aq.
Construct vertex positions X = 9* T W.

18



Sampling Random Graph Embeddings

Compute pseudoinverse matrix 9** : ED — VP.
Sample W from conditional probability Aq.
Construct vertex positions X = 9* T W.
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Chain maps and simpler graphs

Definition
Given two graphs & and &', we say that linear maps f : VC — VC'
and f; : EC — EC' are chain maps if 0f; = fo'.

V'p Vg
N 1% €4
[ chain maps
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fo(vi) = va, (V) = v3
fi(e}) = —ey — e3, f1(€5) = e,

fi(eg) = €5 — €4 19



Cochain maps and simpler graphs

Definition

Given two graphs & and &', we say that linear maps f3 : VP' — VP

and f{ : ED" — ED are cochain maps if (8')*f; = f;:0*.
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[ cochain maps
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V' Jie

) = X(v2), (f5X)(v2) = X(vs)
(f1 )(94) = —W(es + &5), (ffW)(e3) = W(e2),
)

= W(es — e4)
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Which chain maps are ok?

Proposition
Suppose that fy and fy are chain maps, fi is injective and
dim Hy = dim Hj. There is a unique isomorphism ¢* giving a

commutative

vP —9 , Ep ftc
a/ * /
vp O pp f ity

That is, the chain map takes cocycles to cocycles.
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Main theorem: Law of Iterated Expectations

Theorem
Given an admissible probability measure X on ED, let ' = £ ),
L' = ¢*L, and W' = f W. We may construct conditional probabilities

AL for A, based on the map ftc,
Awr for A, based on the map f;,

X, for X', based on the map ftc'.

and write \p = (X, )V Aw.

“For any r.v. f, the c.e. of f(W) given ftc(W) = Lis equal to
c.e. of (the c.e. of f given f;(W)) given ftc'(W') = L'
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Application: Subdivision graphs

Definition
We say & is a subdivision of &' if there is a partition of {1, ..., €} into
¢’ subsets Sj and chain maps fo, f; with fi(€}) = 3, e/
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Conditional independence in subdivisions

Proposition

If & is a subdivision of &', and \ is a product of independent
distributions M on the spaces ED/ = Hom(ej, R?), then \ is the product
of independent distributions

A =TI ¥
JES;

Further, each conditional probability
/\W/ _ H )\Si/
i 1

where )\‘a",_, is the probability of the edge displacements in S;
conditioned on the hypothesis that their sum is W/.



Sampling subdivision graphs

If & is a subdivision of &’ and )\ is an admissible measure on ED with
independent edges:

Compute X' = £}, including pdf, variance.

Corollary
Subdivisions with large enough groups are approximately Gaussian.
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Sampling subdivision graphs

If & is a subdivision of &’ and )\ is an admissible measure on ED with
independent edges:

Define X’ to be the Gaussian with matching mean, variance.

Corollary
Subdivisions with large enough groups are approximately Gaussian.
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Sampling subdivision graphs

If & is a subdivision of &’ and )\ is an admissible measure on ED with
independent edges:

Choose W' from the conditional probability X';.

Corollary
Subdivisions with large enough groups are approximately Gaussian.



Sampling subdivision graphs

If & is a subdivision of &’ and )\ is an admissible measure on ED with
independent edges:

Reweight W’ by X(W')/X(W').

Corollary
Subdivisions with large enough groups are approximately Gaussian.
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Sampling subdivision graphs

If & is a subdivision of &’ and )\ is an admissible measure on ED with
independent edges:

For each i, sample W forj € S; according to /\S’,.

Corollary
Subdivisions with large enough groups are approximately Gaussian.
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Sampling subdivision graphs

If & is a subdivision of &’ and )\ is an admissible measure on ED with
independent edges:

Assemble W, into final sample.

Corollary
Subdivisions with large enough groups are approximately Gaussian.



Freely-jointed networks

Definition

If the measure i on ED is the submanifold measure on the product of
unit spheres (S2)¢ c ED = (R%)¢, we call the resulting model a freely
jointed network.
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Freely-jointed networks

Definition

If the measure i on ED is the submanifold measure on the product of
unit spheres (S2)¢ c ED = (R%)¢, we call the resulting model a freely
jointed network.

26



Junction-junction distance

With the obvious chain maps:

fo,fy

can compute 1/ on ED’ explicitly. Junction-junction distances are
explicit 6-d numerical integrals inside ED’.

L L L L L
2 4 6 8 10

Comparison with Markov-chain experiments
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What happens as subdivisions — c0?

Definition
The normalized graph Laplacian £(®) is given by

2x# loop edges e
1- degree(v;) it/ = Js
k . .« .
Ly=4 — o) degresl)’ if vj, v; joined by k edges,
0, otherwise.

Theorem (with Deguchi, Shonkwiler, Uehara)

1

Jim ‘1](16,7)5("?3(6”)) = @(105)2 (Tr LT(®) + % Loops(®) — 6)

Proof.
Superposition of solutions to Poisson problems.



Tezuka polymer predictions

: 1
® E(R5(n)) (with v =B(&n))  limpso0 ey € (RG(En))
17v3+60v2—261v+108 17
4862 86
107v3+270v2—933v+340 107
2430v2 2430
A 109v3+372v2—1305v+540 109
‘ ) 2430v2 2430
31v34+78v2—177v+68 31
48612 486
43v34+108v2—165v+68 43
48612 486
r 49v34+96v2—177v+32 49
\Qg 48612 486

i
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Experimental measurement of relative size

Size-exclusion Chromatography (SEC) apparatus
Tezuka lab
(Source: Cantarella, 2018)
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Experimental measurement of relative size

.7-.5. M |8.0‘ M I8.ISI
elution volume / mL

(Suzuki, Yamamoto, Tezuka, 2014)
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Comparison of theory and experiment

The relative limy_,o0 1®n E(R5(®p)) values are:

S Ev

(1,1.00)  (32.,0.86) (35,0.75)

D ) @

(109 (107 (17
(225.0.71)  (25,0.67)  (25,0.62)
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Comparison of theory and experiment: ||

Experiment

1.0F

0.9F

0.8F

0.7F

0.4

0.5

06
Theory

0.7

0.8

0.9

1.0

33



Comparison of theory and experiment: ||

Experiment >"§
1.0F [ J
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Comparison of theory and simulation

We performed molecular dynamics simulations using LAMMPS on the
TSUBAME supercomputer at Tokyo Tech. These included self-avoidance
so the radii of gyration fit to

E(RS: &) = CoB(6n) 178 + Ay
and we could estimate g(® .., B¢)MP = Cy / Ciree.

(] MD theory | & MD theory

>_§ 1.0 1 O’Q 0.962 +0.034  43/a9

Q\@ 0.782+0.026  31/49 @ 0.582+0.015 109/245
@ 0.546 £ 0.016 107/245 @ 0.445+0.011  17/a9
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Comparison of theory and simulation I

MD
1.f

0.4 0.5 0.6 0.7 0.8 0.9 1.
Theory



Thank you for inviting me!

Radius of Gyration, Contraction Factors, and Subdivisions of Topological
Polymers, Cantarella, Shonkwiler, Deguchi, Uehara, arXiv:2004.06199

Random graph embeddings with general edge potentials Cantarella,
Shonkwiler, Deguchi, Uehara, arXiv:2205.09049

Sampling freely jointed networks Cantarella, Shonkwiler, Schumacher,
In preparation.
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