Random Graph Embeddings

Jason Cantarella¹ joint with Tetsuo Deguchi², Clayton Shonkwiler³, Erica Uehara²

¹University of Georgia

²Ochanomizu University, Physics Department

³Colorado State University

Tangled in Knot Theory ICERM May 2023

Random Graph Embeddings

Question

Given a graph \mathfrak{G} with \mathfrak{V} vertices and \mathfrak{E} edges, can we construct a random embedding of the graph into \mathbb{R}^d which "respects the graph structure"?

Related to machine learning literature on graph embeddings (node2vec, Laplacian eigenmaps), but not exactly the same. Motivated by physics/chemistry model of Gaussian phantom network (James, Guth, Flory, Eichinger).

Goal is to say as much as possible about a very general class of models and specialize as late as possible.

A motivating example

Definition

A Gaussian *walk* has i.i.d. Gaussian steps. A Gaussian *bridge* is a Gaussian walk which returns to the starting value.

The steps in the Gaussian bridge are not independent.

Goal

Understand dependence structure of edge r.v.s implied by graph type.

Original motivation: "Topological" polymers

Chemists now able to synthesize polymers with various graph types usable quantities:

synthetic topological polymers (source: Tezuka, 2018)

$\mathsf{Graph} \to \mathsf{chain} \ \mathsf{complex}$

Let \mathfrak{G} be a connected, directed graph with \mathfrak{E} edges and \mathfrak{V} vertices.

Definition

The real vector space VC of *vertex chains* is the vector space of (formal) linear combinations of vertices with coefficients $x_i \in \mathbb{R}$:

 $x = x_1 v_1 + \cdots + x_{\mathfrak{V}} v_{\mathfrak{V}}.$

Definition

The real vector space EC of *edge chains* is the vector space of (formal) linear combinations of edges with coefficients $w_i \in \mathbb{R}$:

$$w = w_1 e_1 + \cdots + w_{\mathfrak{E}} e_{\mathfrak{E}}.$$

$\mathsf{Graph} \to \mathsf{chain} \ \mathsf{complex}$

Definition

The boundary map or incidence matrix $\partial : EC \rightarrow VC$ is the linear map

$$\partial(\boldsymbol{e}_i) = +1 \operatorname{head}(\boldsymbol{e}_i) - 1 \operatorname{tail}(\boldsymbol{e}_i)$$

The chain complex for \mathfrak{G} is $C_0 = VC \xrightarrow{\partial} ED = C_1$.

Integral chains

We say that a chain is *integral* if the coefficients are integers. Integral edge chains w where $\partial w = v_j - v_i$ have a natural interpretation as paths from v_i to v_j .

Cycles and subspaces

A chain is a set of (real) scalar weights on vertices or edges.

Lemma

A path in \mathfrak{G} is a cycle \iff its integral chain $\mathbf{w} \in \ker \partial \subset \mathsf{EC}$.

Cycle rank = Betti # = Euler characteristic

Definition

The subspace $\ker\partial\subset\mathsf{EC}$ is the first homology group or loop space.

Proposition

dim ker ∂ is the cycle rank $\xi(\mathfrak{G}) = \mathfrak{E} - \mathfrak{V} + 1$ or first Betti number:

$$\xi(\mathfrak{G}) = \frac{1}{2} \sum_{i} (\deg(v_i) - 2) + 1$$

Cycle rank = Betti # = Euler characteristic

Definition

The subspace $\ker\partial\subset\mathsf{EC}$ is the first homology group or loop space.

Proposition

dim ker ∂ is the cycle rank $\xi(\mathfrak{G}) = \mathfrak{E} - \mathfrak{V} + 1$ or first Betti number:

$$\xi(\mathfrak{G}) = \frac{1}{2} \sum_{i} (\deg(v_i) - 2) + 1$$

Cochain spaces

Suggestive observation

Usually build cochain complex by dualizing. We **can** use Hom(-, G) for **any** abelian group G.

Cochain spaces

Suggestive observation

Usually build cochain complex by dualizing. We **can** use Hom(-, G) for **any** abelian group G.

Cochain spaces

Suggestive observation

Usually build cochain complex by dualizing. We **can** use Hom(-, G) for **any** abelian group G.

The cochain spaces

A cochain is a set of vector weights on vertices or edges.

Definition

The real vector space of *vertex cochains* $VP = Hom(VC, \mathbb{R}^n)$ is the space of linear maps $X : VC \to \mathbb{R}^d$.

Definition

The real vector space of *edge cochains* $ED = Hom(EC, \mathbb{R}^n)$ is the space of linear maps $W : EC \to \mathbb{R}^d$.

Definition

The coboundary map $\partial^* : \mathsf{VP} \to \mathsf{ED}$ is given by

 $\partial^*(X)(e_i) = X(\partial(e_i)) = X(\mathsf{head}(e_i)) - X(\mathsf{tail}(e_i))$

$cochains \rightarrow graph embeddings$

Proposition

Embeddings of \mathfrak{G} *in* \mathbb{R}^d *are a vector space* $(X, W) \in VP \times ED$ *where*

 $W = \partial^* X$, $X(v_i)$ is the position of v_i , $W(e_i) = X(\text{head}(e_i)) - X(\text{tail}(e_i))$ is the displacement along e_i .

Cocycles and the failure-to-close map

Definition

The vector space $H^1 = \text{Hom}(\ker \partial, \mathbb{R}^d)$ is the *first cohomology* or *coloop* space.

Lemma

If $L \in H^1$ and we have a cycle in \mathfrak{G} with integral chain $w \in H_1$, then L(w) is the sum of the displacements over the cycle. We call it the failure to close of the cycle w.

Definition

The dual of the inclusion map $i : H_1 \hookrightarrow C_1$ is given by the restriction map $i^* : C^1 \to H^1$. We call i^* the *failure to close* map ftc.

What it means to condition on graph type

Theorem

We have $W = \partial^* X \iff W \in \text{ker ftc. } If (\partial^*)^+$ is the Moore-Penrose pseudoinverse, it is true that

$$\begin{split} &\operatorname{im}(\partial^*)^+ \text{ is an isomorphism when restricted to } \operatorname{ker ftc.} \\ &\operatorname{im}(\partial^*)^+ = \operatorname{im}(\partial^*)^+ (\operatorname{ker ftc}). \\ & X \in \operatorname{im}(\partial^*)^+ \iff X(\sum v_i) = 0. \end{split}$$

We call these centered embeddings of G.

Corollary

A random $W \in \mathsf{ED}$ is compatible with the graph type $\iff W \in \mathsf{ker}$ ftc.

Example: James-Guth-Flory Theory

Definition

The *phantom network* embedding of \mathfrak{G} is given by choosing W from a standard Gaussian on ED conditioned on $W = \ker$ ftc and pushing forward this probability distribution to VC by $(\partial^*)^+$.

Early geometric/topological learning feature.

Fact

Expected radius of gyration of graph embedding given by $\frac{d}{\mathfrak{V}}$ tr $L^+ = d \operatorname{Kf}(\mathfrak{G})$ where $\operatorname{Kf}(\mathfrak{G})$ is called the Kirchhoff index.

The Kirchhoff index was defined to generalize the Wiener index for trees, which was a heuristic feature used (by hand!) in 1947 to predict paraffin boiling points to within 0.4° C.

Jan., 1947 STRUCTURAL DETERMINATION OF PARAFFIN BOILING POINTS [CONTRIBUTION FROM DEPARTMENT OF CHEMISTRY, BROOKLYN COLLEGE] Structural Determination of Paraffin Boiling Points By HARRY WIENER¹

Suggestive observation (Estrada-Hatano, 2010)

The radius of gyration interpretation explains why the Kirchhoff index is so successful at predicting chemical properties.

Conditioning in elementary probability

Definition

A probability measure $\lambda = f(W) \text{ dVol}_{ED}$ on ED with pdf f(W) is admissible if the pushfoward measure $\mu = \text{ftc } \lambda$ has a density function g(L) on H^1 which is continuous everywhere and nonzero at 0.

We can define a family of conditional probabilities λ_L for W chosen from λ conditioned on the hypothesis that ftc(W) = L by observing that

$$g(L) = \int_{W \in \mathsf{ftc}^{-1}(L)} f(W) \, \mathsf{dVol}_{\mathsf{ftc}^{-1}(L)}$$

and constructing (for a.e. L and g(L)
eq 0)

$$\lambda_L = \frac{f(W)}{g(L)} \, \operatorname{dVol}_{\operatorname{kerftc}} = \frac{\operatorname{joint density}}{\operatorname{marginal density}} \, \operatorname{dVol}_{\operatorname{kerftc}}$$

Sampling Random Graph Embeddings

Compute pseudoinverse matrix ∂^{*+} : ED \rightarrow VP. Sample W from conditional probability λ_0 . Construct vertex positions $X = \partial^{*+} W$.

Sampling Random Graph Embeddings

Compute pseudoinverse matrix ∂^{*+} : ED \rightarrow VP. Sample W from conditional probability λ_0 . Construct vertex positions $X = \partial^{*+} W$.

Sampling Random Graph Embeddings

Compute pseudoinverse matrix ∂^{*+} : ED \rightarrow VP. Sample *W* from conditional probability λ_0 . Construct vertex positions $X = \partial^{*+} W$.

Chain maps and simpler graphs

Definition

Given two graphs \mathfrak{G} and \mathfrak{G}' , we say that linear maps $f_0 : VC \to VC'$ and $f_1 : EC \to EC'$ are *chain maps* if $\partial f_1 = f_0 \partial'$.

Cochain maps and simpler graphs

Definition

Given two graphs \mathfrak{G} and \mathfrak{G}' , we say that linear maps $f_0^* : VP' \to VP$ and $f_1^* : ED' \to ED$ are *cochain maps* if $(\partial')^* f_0^* = f_1^* \partial^*$.

Which chain maps are ok?

Proposition

Suppose that f_0 and f_1 are chain maps, f_1 is injective and dim $H_1 = \dim H'_1$. There is a unique isomorphism ϕ^* giving a commutative

$$\begin{array}{ccc} \mathsf{VP} & \stackrel{\partial^*}{\longrightarrow} & \mathsf{ED} & \stackrel{\mathsf{ftc}}{\longrightarrow} & H^1 \\ \downarrow^{f_0^*} & & \downarrow^{f_1^*} & & \downarrow^{\phi^*} \\ \mathsf{VP'} & \stackrel{(\partial')^*}{\longrightarrow} & \mathsf{ED'} & \stackrel{\mathsf{ftc'}}{\longrightarrow} & (H^1)' \end{array}$$

That is, the chain map takes cocycles to cocycles.

Main theorem: Law of Iterated Expectations

Theorem

Given an admissible probability measure λ on ED, let $\lambda' = f_1^* \lambda$, $L' = \phi^* L$, and $W' = f_1^* W$. We may construct conditional probabilities

 λ_L for λ , based on the map ftc, $\lambda_{W'}$ for λ , based on the map f_1^* , $\lambda'_{L'}$ for λ' , based on the map ftc'.

and write $\lambda_L = (\lambda'_{L'})^{W'} \lambda_{W'}$.

"For any r.v. *f*, the c.e. of f(W) given ftc(W) = L is equal to c.e. of (the c.e. of *f* given $f_1^*(W)$) given ftc'(W') = L'."

Application: Subdivision graphs

Definition

We say \mathfrak{G} is a subdivision of \mathfrak{G}' if there is a partition of $\{1, \ldots, \mathfrak{E}\}$ into \mathfrak{E}' subsets S_i and chain maps f_0 , f_1 with $f_1(\mathfrak{e}'_i) = \sum_{i \in S_i} \mathfrak{e}_i$.

Conditional independence in subdivisions

Proposition

If \mathfrak{G} is a subdivision of \mathfrak{G}' , and λ is a product of independent distributions λ^j on the spaces $\mathsf{ED}^j = \mathsf{Hom}(e_j, \mathbb{R}^d)$, then λ is the product of independent distributions

$$\lambda^{\mathcal{S}_i} = \prod_{j \in \mathcal{S}_i} \lambda^j$$

Further, each conditional probability

$$\lambda_{W'} = \prod_{i} \lambda_{W'_{i}}^{\mathcal{S}_{i}}$$

where $\lambda_{W'_i}^{S_i}$ is the probability of the edge displacements in S_i conditioned on the hypothesis that their sum is W'_i .

If \mathfrak{G} is a subdivision of \mathfrak{G}' and λ is an admissible measure on ED with independent edges:

Compute $\lambda' = f_1^* \lambda$, including pdf, variance.

Corollary

If \mathfrak{G} is a subdivision of \mathfrak{G}' and λ is an admissible measure on ED with independent edges:

Define $\hat{\lambda}'$ to be the Gaussian with matching mean, variance.

Corollary

If \mathfrak{G} is a subdivision of \mathfrak{G}' and λ is an admissible measure on ED with independent edges:

Choose W' from the conditional probability $\hat{\lambda'}_0$.

Corollary

If \mathfrak{G} is a subdivision of \mathfrak{G}' and λ is an admissible measure on ED with independent edges:

Reweight W' by $\lambda'(W')/\hat{\lambda}'(W')$.

Corollary

If \mathfrak{G} is a subdivision of \mathfrak{G}' and λ is an admissible measure on ED with independent edges:

For each *i*, sample W_j for $j \in S_i$ according to $\lambda_{W'}^{S_i}$.

Corollary

If \mathfrak{G} is a subdivision of \mathfrak{G}' and λ is an admissible measure on ED with independent edges:

Assemble W_i into final sample.

Corollary

Freely-jointed networks

Definition

If the measure μ on ED is the submanifold measure on the product of unit spheres $(S^2)^{\mathfrak{E}} \subset \mathsf{ED} = (\mathbb{R}^3)^{\mathfrak{E}}$, we call the resulting model a *freely jointed network*.

Freely-jointed networks

Definition

If the measure μ on ED is the submanifold measure on the product of unit spheres $(S^2)^{\mathfrak{E}} \subset \mathsf{ED} = (\mathbb{R}^3)^{\mathfrak{E}}$, we call the resulting model a *freely jointed network*.

Junction-junction distance

With the obvious chain maps:

can compute μ' on ED' explicitly. Junction-junction distances are explicit 6-d numerical integrals inside ED'.

Comparison with Markov-chain experiments

What happens as subdivisions $ightarrow \infty$?

Definition

The *normalized* graph Laplacian $\mathcal{L}(\mathfrak{G})$ is given by

$$\mathcal{L}_{ij} = \begin{cases} 1 - \frac{2 \times \# \operatorname{loop} \operatorname{edges}}{\operatorname{degree}(v_i)}, & \text{if } i = j, \\ -\frac{k}{\sqrt{\operatorname{degree}(v_i) \operatorname{degree}(v_j)}}, & \text{if } v_i, v_j \operatorname{joined} \operatorname{by} k \operatorname{edges}, \\ 0, & \text{otherwise.} \end{cases}$$

Theorem (with Deguchi, Shonkwiler, Uehara) $\lim_{n\to\infty} \frac{1}{\mathfrak{V}(\mathfrak{G}_n)} \mathcal{E}(R_g^2(\mathfrak{G}_n)) = \frac{1}{\mathfrak{E}(\mathfrak{G})^2} \left(\operatorname{Tr} \mathcal{L}^+(\mathfrak{G}) + \frac{1}{3} \operatorname{Loops}(\mathfrak{G}) - \frac{1}{6} \right)$

Proof.

Superposition of solutions to Poisson problems.

Tezuka polymer predictions

G	$\mathcal{E}(R_g^2(\mathfrak{G}_n))$ (with $v = \mathfrak{V}(\mathfrak{G}_n)$)	$\lim_{n \to \infty} \frac{1}{\mathfrak{V}(\mathfrak{G}_n)} \mathcal{E}(R_g^2(\mathfrak{G}_n))$
\otimes	$\frac{17v^3 + 60v^2 - 261v + 108}{486v^2}$	<u>17</u> 486
\bigotimes	$\frac{107v^3 + 270v^2 - 933v + 340}{2430v^2}$	<u>107</u> 2430
50	$\frac{109v^3 + 372v^2 - 1305v + 540}{2430v^2}$	<u>109</u> 2430
Ø	$\frac{31\nu^3 + 78\nu^2 - 177\nu + 68}{486\nu^2}$	<u>31</u> 486
oro	$\frac{43v^3 + 108v^2 - 165v + 68}{486v^2}$	$\frac{43}{486}$
y	$\frac{49v^3 + 96v^2 - 177v + 32}{486v^2}$	<u>49</u> 486

Experimental measurement of relative size

Size-exclusion Chromatography (SEC) apparatus Tezuka lab (Source: Cantarella, 2018)

Experimental measurement of relative size

Comparison of theory and experiment

The relative $\lim_{n\to\infty} \frac{1}{\mathfrak{V}(\mathfrak{G}_n)} \mathcal{E}(R_g^2(\mathfrak{G}_n))$ values are:

Comparison of theory and experiment: II

Comparison of theory and simulation

We performed molecular dynamics simulations using LAMMPS on the TSUBAME supercomputer at Tokyo Tech. These included self-avoidance so the radii of gyration fit to

$$\mathcal{E}(R_g^2;\mathfrak{G}_n)=\mathcal{C}_\mathfrak{G}\mathfrak{V}(\mathfrak{G}_n)^{1.176}+\Delta_\mathfrak{G}$$

and we could estimate $g(\mathfrak{G}_\infty,\mathfrak{G}_\infty^{\mathsf{tree}})^{\mathsf{MD}} = \mathcal{C}_\mathfrak{G}/\mathcal{C}_{\mathsf{tree}}.$

G	MD	theory	G	MD	theory
X	1.0	1	L	$\textbf{0.962} \pm \textbf{0.034}$	43/49
a G	$\textbf{0.782} \pm \textbf{0.026}$	31/49	\square	$\textbf{0.582} \pm \textbf{0.015}$	109/245
\bigcirc	0.546 ± 0.016	107/245	Ĩ	$\textbf{0.445} \pm \textbf{0.011}$	17/49

Comparison of theory and simulation II

Thank you for inviting me!

Radius of Gyration, Contraction Factors, and Subdivisions of Topological Polymers, Cantarella, Shonkwiler, Deguchi, Uehara, arXiv:2004.06199

Random graph embeddings with general edge potentials Cantarella, Shonkwiler, Deguchi, Uehara, arXiv:2205.09049

Sampling freely jointed networks Cantarella, Shonkwiler, Schumacher, In preparation.

Also thanks to our funding agencies:

Simons Foundation/SFARI 524120, J.C.

Simons Foundation/SFARI 354225, C.S.

Japan Science and Technology Agency (CREST Grant Number JPMJCR19T4, Deguchi Lab) and JSPS KAKENHI Grant Number JP17H06463.