Optimal transport problems with interaction effects

Nestor Guillen

www.ndguillen.com
Department of Mathematics
Texas State University
May 2023

Work in collaboration with

With support from the National Science Foundation

Mandatory slide on the history of OT

An Extended Lagrangian Theory of Semi-Geostrophic Frontogenesis
M. J. P. Cullen and R. J. Purser

Meteorological Office, Bracknell, Berkshire RG12 2 SZ U.K.
(Manuscript received 9 August 1983, in final form 8 February 1984)

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 75 (1989) 325-332 NORTH-HOLLAND

A COMBINATORIAL ALGORITHM FOR THE EULER EQUATIONS

 OF INCOMPRESSIBLE FLOWSPolar Factorization and Monotone Rearrangement of Vector-Valued Functions

YANN BRENIER
Université de Paris VI

Overview

Jean-David Benamou

Yann Brenier

Overview

Theorem (Benamou-Brenier)

$$
\left.d_{2}\left(\mu_{0}, \mu_{1}\right)^{2}=\inf _{\rho, v} \int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{1}{2} \right\rvert\, v\left(x,\left.t\right|^{2} d \rho_{t}(x) d t\right.
$$

The infimum being over all pairs (ρ, v) such that

$$
\partial_{t} \rho+\operatorname{div}(\rho v)=0, \rho_{\mid t=0}=\mu_{0}, \rho_{\mid t=1}=\mu_{1}
$$

Overview

Question:

Modify Benamou-Brenier by adding an interaction energy term

$$
\left.\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{1}{2} \right\rvert\, v\left(x,\left.t\right|^{2} d \rho_{t}(x) d t+\int_{0}^{1} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x, y) d \rho_{t}(x) d \rho_{t}(y) d t\right.
$$

Then: is there a corresponding Monge-Kantorovich problem?

Overview Main points

1. Introducing a "lifting" of the OT problem to the path space
2. Lifted problem naturally allows for interaction effects
3. Existence of minimizers, duality, and relation to standard OT
4. Problem formulation à la Benamou-Brenier

Optimal transport + paths

Setup (1/2)

We will be working with the space of all paths

$$
\Omega:=\left\{\gamma: I \rightarrow \mathbb{R}^{n} \mid \gamma \text { is absolutely continuous }\right\}
$$

For each $t \in[0,1]$ we have the evaluation $\operatorname{map} e_{t}$,

Optimal transport + paths

Setup (2/2)
We will also fix an energy / cost functional

$$
\begin{aligned}
& \left.c(\gamma)=\frac{1}{2} \int_{0}^{1}\left|\sigma^{c}(t)\right|^{2} d t\right) \\
& c(\gamma)=\int_{0}^{1} \frac{1}{2}|\gamma(t)|^{2}-V(\gamma(t)) d t
\end{aligned}
$$

Optimal transport + paths
Dynamic transport plans

Consider: $\mu_{0}, \mu_{1}=$ prob. measures in $\mathbb{R}^{n}+$ finite second moment
A dynamic transport plan is a measure $\pi \in \mathcal{P}(\Omega)$ such that

Optimal transport + paths

The OT+paths problem

$$
\begin{aligned}
\text { Minimize } & \pi \mapsto \int_{\Omega} c(\gamma) d \pi(\gamma) \\
\text { subject to: } & \pi \geq 0 \\
& \left(e_{0}\right)_{\#} \pi=\mu_{0} \\
& \left(e_{1}\right)_{\#} \pi=\mu_{1}
\end{aligned}
$$

Optimal transport + paths
 γ

If γ appears in an optimal plan γ, then one would expect that

$$
c(\gamma)=c_{e}(\gamma(0), \gamma(1))
$$

Here c_{e} denotes what we shall call "the end-point cost"

$$
c_{e}(x, y):=\inf \{c(\gamma) \mid \gamma(0)=x, \gamma(1)=y\}
$$

Such paths will be said to be c-minimal.

Optimal transport + paths

Theorem

If π solves the $O T+$ paths problem, then
(1) π is supported in the set of c-minimal paths
(2) The joint probability measure

$$
\left(e_{0}, e_{1}\right)_{\#} \pi \in \mathcal{P}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)
$$

solves the Kantorovich Problem for μ_{0}, μ_{1} and $\operatorname{cost} c_{e}$.
(A proof of this theorem can be found in Cabrera's thesis)

Optimal transport + paths + interactions

Consider an interaction kernel (even and positive definite)

$$
K: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

This includes the Gaussian

$$
K_{G}(z)=\lambda e^{-\beta|z|^{2}}, \quad \lambda, \beta>0
$$

and the Coulomb potential

$$
K_{C}(z)=\lambda|z|^{2-d}, \quad \lambda>0, d \geq 3
$$

Optimal trannsport + gaths + interactions

Such a K gives rise to intractidmenction $U: \Omega \times \Omega$

$$
U\left(\gamma_{1}, \gamma_{2}\right)=\int_{0}^{1} K\left(\gamma_{1}(t)-\gamma_{2}(t)\right) d t
$$

As K is positivedefinite, this gives rise to a convex functional

$$
\pi \mapsto \int_{\Omega} \int_{\Omega} U\left(\gamma_{1}, \gamma_{2}\right) d \pi\left(\gamma_{1}\right) d \pi\left(\gamma_{2}\right)
$$

Optimal transport + paths + interactions

The OT+interaction problem

$$
\begin{aligned}
\text { Minimize } & \pi \mapsto \int_{\Omega} c(\gamma) d \pi(\gamma) \\
\text { subject to: } & \pi \geq 0 \\
& \left(e_{0}\right)_{\#} \pi=\mu_{0} \\
& \left(e_{1}\right)_{\#} \pi=\mu_{1}
\end{aligned}
$$

Optimal transport + paths + interactions

The OT+interaction problem

$$
\left.K\left(x_{i}-x_{j}\right)\right)
$$

Minimize $\pi \mapsto \int_{\Omega} c(\gamma) d \pi(\gamma)+\int_{\Omega} \int_{\Omega} U\left(\gamma_{1}, \gamma_{2}\right) d \pi\left(\gamma_{1}\right) d \pi\left(\gamma_{2}\right)$ subject to: $\pi \geq 0$

$$
\begin{aligned}
\left(e_{0}\right)_{\#} \pi & =\mu_{0} \\
\left(e_{1}\right)_{\#} \pi & =\mu_{1}
\end{aligned}
$$

Optimal transport + paths + interactions

(In what follows, $c(\gamma)=\int_{0}^{1} \frac{1}{2}|\dot{\gamma}|^{2}-V(\gamma(t)) d t$ for a fixed V, the measures μ_{0}, μ_{1} have compact support)

Theorem (Cabrera 2021)
The $O T+$ path problem has at least one minimizer π_{0}.

Optimal transport + paths + interactions

Characterization of minimizers

Lemma (Cabrera 2021)

The measure π_{0} is a minimizer for the $O T+$ interaction problem

$$
\Leftrightarrow
$$

$\exists \phi, \psi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that:

$$
\begin{aligned}
& \phi(\gamma(0))+\psi(\gamma(1)) \leq \underline{c(\gamma)}+\int \underline{U(\gamma, \sigma) d \pi_{0}(\sigma)} \forall \gamma \in \Omega \\
& \phi(\gamma(0))+\psi(\gamma(1))=c(\gamma)+\int U(\gamma, \sigma) d \pi_{0}(\sigma) \text { for } \pi_{0}-\text { a.e. } \gamma
\end{aligned}
$$

Optimal transport + paths + interactions

Characterization of minimizers

[Sketch of the proof]

$$
\begin{aligned}
\Lambda(\pi, \phi, \psi, \lambda):= & \int_{\Omega} c(\gamma) d \pi(\gamma)+\int_{\Omega} \int_{\Omega} U(\gamma, \sigma) d \pi(\gamma) d \pi(\sigma) \\
& \left.+\int_{\mathbb{R}^{d}} \phi(x) d \mu_{0}(x)-\int_{\Omega} \phi(\gamma(0)) d \pi(\gamma)\right] \\
& \left.+\int_{\mathbb{R}^{d}} \psi(y) d \mu_{0}(y)-\int_{\Omega} \psi(\gamma(1)) d \pi(\gamma)\right\} \\
& \left.+\int_{\Omega} \lambda(\gamma) d \pi(\gamma)\right\}
\end{aligned}
$$

Optimal transport + paths + interactions

Characterization of minimizers
[Sketch of the proof]

$$
\begin{aligned}
\Lambda(\pi, \phi, \psi, \lambda)= & \int_{\Omega} c(\gamma) \phi \pi(\gamma)+\int_{\Omega} \int_{\Omega} U(\gamma, \sigma(\pi(\gamma) d \pi(\sigma) \\
& +\int_{\Omega} \lambda(\gamma)-\phi(\gamma(0))-\psi(\gamma(1)) d \pi(\gamma) \\
& +\int_{\mathbb{R}^{d}} \phi(x) d \mu_{0}(x)+\int_{\mathbb{R}^{d}} \psi(y) d \mu_{0}(y)
\end{aligned}
$$

Optimal transport + paths + interactions

Characterization of minimizers
[Sketch of the proof]

$$
\begin{aligned}
& \frac{d}{d s}{ }_{\mid s=0} \Lambda(\pi(s), \phi, \psi, \lambda)= \int_{\Omega} c(\gamma) \underbrace{}_{d \dot{\pi}(\gamma)}+2 \int_{\Omega} U(\gamma, \sigma) d \pi_{0}(\sigma) d \dot{\pi}(\gamma) \\
&+\int_{\Omega} \lambda(\gamma)-\phi(\gamma(0))-\psi(\gamma(1)) \\
& \& \dot{\pi}(\gamma)
\end{aligned}
$$

Minimality means there must be $\phi, \psi, \lambda(\lambda \geq 0)$ such that

$$
c(\gamma)+2 \int_{\Omega} U(\gamma, \sigma) d \pi_{0}(\sigma)+\lambda(\gamma)-\phi(\gamma(0))-\psi(\gamma(1))=0
$$

moreover, $\lambda \equiv 0$ in the support of π.

Optimal transport + paths + interactions

Characterization of minimizers

If π_{0} is a minimizer, define the effective cost

$$
c_{\pi_{0}}(\gamma)=c(\gamma)+\int_{\Omega} U(\gamma, \sigma) d \pi(\sigma)
$$

and the corresponding endpoint cost

$$
c_{e, \pi_{0}}(x, y):=\inf \left\{c_{\pi_{0}}(\gamma) \mid \gamma(0)=x, \gamma(1)=y\right\}
$$

Optimal transport + paths + interactions

Characterization of minimizers

Theorem (Cabrera, 2021)

If π_{0} solves the $O T+$ interaction roblem, then
(1) π_{0} is supported in the set of $c_{\pi_{0}}$-minimal paths
(2) The joint probability measure

$$
\left(e_{0}, e_{1}\right)_{\#} \pi_{0}
$$

solves the Kantorovich problem for μ_{0}, μ_{1} and $\operatorname{cost} c_{e, \pi_{0}}(x, y)$.
This theorem opens the door to using the rich OT theory to understand minimizers of the problem with interaction.

Benamou-Brenier with interaction effects

Theorem (with Cabrera and Homerosky, 2023)

The min value for the OT+interaction problem $=$ the infimum of $\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{1}{2}|v(x, t)|^{2} d \rho_{t}(x) d t+\int_{0}^{1} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x-y) d \rho_{t}(x) d \rho_{t}(y) d t$ here the infimum is taken over all pairs (ρ, v) such that

$$
\partial_{t} \rho+\operatorname{div}(\rho v)=0, \rho_{0}=\mu_{0}, \rho_{1}=\mu_{1}
$$

Benamou-Brenier with interaction effects

Basics of the proof

As done since Benamou-Brenier, one can do a change variables

$$
(\rho, v) \rightarrow(\rho, E) \text { where } E=v \rho
$$

and obtain a convex functional in (ρ, E)

$$
\int_{0}^{1} \int_{\mathbb{R}^{d}} \frac{|E|^{2}}{\rho_{t}(x)} d x d t+\int_{0}^{1} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x-y) \rho_{t}(x) \rho_{t}(y) d x d y d y
$$

This convexity of the functional allows us to work with smooth approximations.

Benamou-Brenier with interaction effects

Basics of the proof

In terms of the variables (ρ, E) we can regularize via convolutions

$$
\rho^{(\varepsilon)}:=\rho * \eta_{\varepsilon}, E^{(\varepsilon)}:=E * \eta_{\varepsilon}, v^{(\varepsilon)}:=\frac{E_{\varepsilon}}{\rho^{\varepsilon}}
$$

and obtain smooth approximations to $(\rho, v) /(\rho, E)$ that still solve the transport equation

$$
\partial_{t} \rho^{(\varepsilon)}+\operatorname{div}\left(\rho^{(\varepsilon)} v^{(\varepsilon)}\right)=0
$$

Benamou-Brenier with interaction effects

Basics of the proof

Take a smooth vector field $v(x, t)$)
The flow of $v, \Gamma: \mathbb{R}^{n} \times[0,\rceil \Rightarrow \mathbb{R}^{n}$ is characterized by

$$
\partial_{t} \Gamma_{t}(x)=v\left(\Gamma_{t}(x), t\right), \quad \Gamma_{0}(x)=x \forall x
$$

Equivalently, the flow defines a map $\Gamma: \mathbb{R}^{n} \rightarrow \Omega$.

$$
x \rightarrow \gamma(t)=\Gamma_{t}(x)
$$

Benamou-Brenier with interaction effects
Basics of the proof
With Γ and μ_{0}, we can create measures

$$
\mu_{0}=\left(e_{0}\right) \neq \pi
$$

$$
\pi:=\Gamma_{\#} \mu_{0}, \rho_{t}:=\left(e_{t}\right)_{\#} \pi \quad \mu_{1}=\left\langle e_{1}\right)_{\text {生 }} \pi
$$

Then, observe

$$
\begin{aligned}
& =\frac{1}{2} \int_{\mathbb{R}^{n}} \int_{0}^{1}\left|\partial_{t} \Gamma_{t}(x)\right|^{2} d t d \rho_{0}(x) \\
& =\frac{1}{2} \int_{0}^{1} \int_{\mathbb{R}^{n}}\left|v\left(\Gamma_{t}(x), t\right)\right|^{2} d \rho_{0}(x) d t \\
& =\frac{1}{2} \int_{0}^{1} \int_{\mathbb{R}^{n}}|v(y, t)|^{2} d \rho_{t}(y) d t \quad \downarrow
\end{aligned}
$$

Benamou-Brenier with interaction effects

Basics of the proof

On the other hand,

$$
\begin{aligned}
& \int_{\Omega} \int_{\Omega} U\left(\gamma_{1}, \gamma_{2}\right) d \pi\left(\gamma_{1}\right) d \pi\left(\gamma_{2}\right) \\
& =\int_{\Omega} \int_{\Omega} \int_{0}^{1} K\left(\gamma_{1}(t)-\gamma_{2}(t)\right) d t d \pi\left(\gamma_{1}\right) d \pi\left(\gamma_{2}\right) \\
& =\int_{0}^{1}\left(\int_{\Omega}^{1} \int_{\Omega} K\left(\gamma_{1}(t)-\gamma_{2}(t)\right) d \pi\left(\gamma_{1}\right) d \pi\left(\gamma_{2}\right) d t\right. \\
& \left.=\int_{0}^{1} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} K(x-y) d \rho_{t}(x) d \rho_{t}(y) d t\right)
\end{aligned}
$$

Benamou-Brenier with interaction effects

Basics of the proof

Therefore, for $\pi=\Gamma_{\#} \mu_{0}$ and $\rho_{t}=\left(e_{t}\right)_{\#} \pi$,

$$
\begin{aligned}
& \int_{\Omega} c(\gamma) d \pi+\int_{\Omega} \int_{\Omega} U(\gamma, \sigma) d \pi(\gamma) d \pi(\sigma) \\
& =\frac{1}{2} \int_{0}^{2} \int|v(x, t)|^{2} \rho_{t}(d x) d t+\int_{0}^{1} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x-y) d \rho_{t}(x) d \rho_{t}(y) d t
\end{aligned}
$$

Benamou-Brenier with interaction effects

Hamilton-Jacobi equation

As in the interaction-free case, the minimizer ρ, v yields a solution to a HJ equation, in fact:

There is a $\phi(x, t)$ such that $v=-\nabla \phi$, and (ρ, ϕ) solves

$$
\begin{aligned}
& \partial_{t} \rho=\operatorname{div}(\rho \nabla \phi) \\
& \partial_{t} \phi=\frac{1}{2}|\nabla \phi|^{2}-K * \rho
\end{aligned}
$$

A numerical experiment

A two-phase problem

We have begun studying the problem of minimizing

$$
\begin{aligned}
E & \left(\rho^{(1)}, \rho^{(2)}, v^{(1)}, v^{(2)}\right) \\
:= & \frac{1}{2} \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|v^{(1)}(x, t)\right| d \rho_{t}^{(1)}(x) d t \\
& +\frac{1}{2} \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|v^{(2)}(x, t)\right| d \rho_{t}^{(2)}(x) d t \\
& +\int_{0}^{1} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} K(x-y) d \rho_{t}^{(1)}(x) d \rho_{t}^{(2)}(y) d t
\end{aligned}
$$

constrained to initial/final time constraints and

$$
\partial_{t} \rho^{(i)}+\operatorname{div}\left(\rho^{(i)} v^{(i)}\right)=0 \text { for } i=0,1 .
$$

Problems

1. Build a dedicated solver (we used CVXPY)
2. How smooth is the Brenier map?
3. Kinetic version \Rightarrow build solutions to Vlasov-Poisson?
4. Are there interesting extensions to other functions

$$
\mathcal{U}: \mathcal{P}(\Omega) \rightarrow \mathbb{R}
$$

which are "lifted" from functions $\mathcal{P}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$?
5. (serious question!) What else is this hammer good for?

$$
\ddot{\gamma}=-\nabla \int_{\mathbb{R}^{n}} k(\gamma-z) d \rho_{t}(z)
$$

Thank you!

Questions / Comments / Suggestions: nestor@txstate.edu

