Optimal transport problems with interaction effects

Nestor Guillen

www.ndguillen.com

Department of Mathematics
Texas State University

May 2023
Work in collaboration with

René Cabrera
(UT Austin)

Jacob Homerosky
(Texas State)

With support from the National Science Foundation
An Extended Lagrangian Theory of Semi-Geostrophic Frontogenesis

M. J. P. Cullen and R. J. Purser
Meteorological Office, Bracknell, Berkshire RG12 2SZ U.K.
(Manuscript received 9 August 1983, in final form 8 February 1984)

A COMBINATORIAL ALGORITHM FOR THE EULER EQUATIONS OF INCOMPRESSIBLE FLOWS

Yann Brenier
INRIA, Rocquencourt, 78153 Le Chesnay Cedex, France

Polar Factorization and Monotone Rearrangement of Vector-Valued Functions

Yann Brenier
Université de Paris VI
Overview

Jean-David Benamou

Yann Brenier
Overview

Theorem (Benamou-Brenier)

\[d_2(\mu_0, \mu_1)^2 = \inf_{\rho, v} \int_0^1 \int_{\mathbb{R}^d} \frac{1}{2} |v(x, t)|^2 \, d\rho_t(x) \, dt \]

The infimum being over all pairs \((\rho, v)\) such that

\[\partial_t \rho + \text{div}(\rho v) = 0, \quad \rho|_{t=0} = \mu_0, \quad \rho|_{t=1} = \mu_1 \]
Question:
Modify Benamou-Brenier by adding an interaction energy term

\[\int_0^1 \int_{\mathbb{R}^d} \frac{1}{2} |v(x, t)|^2 \, d\rho_t(x) \, dt + \int_0^1 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} K(x, y) \, d\rho_t(x) \, d\rho_t(y) \, dt \]

Then: is there a corresponding Monge-Kantorovich problem?
Overview
Main points

1. Introducing a “lifting” of the OT problem to the path space
2. Lifted problem naturally allows for interaction effects
3. Existence of minimizers, duality, and relation to standard OT
4. Problem formulation à la Benamou-Brenier
Optimal transport + paths

Setup (1/2)
We will be working with the space of all paths

\[\Omega := \{ \gamma : I \to \mathbb{R}^n \mid \gamma \text{ is absolutely continuous} \} \]

For each \(t \in [0, 1] \) we have the evaluation map \(e_t \),

\[e_t : \Omega \to \mathbb{R}^n, \quad e_t(\gamma) := \gamma(t), \quad t \in [0, 1]. \]
Setup (2/2)
We will also fix an energy / cost functional

\[c : \Omega \to \mathbb{R} \]

\[c(\gamma) = \frac{1}{2} \int_0^1 |\gamma'(t)|^2 \, dt \]

\[c(\gamma) = \int_0^1 \frac{1}{2} |\check{\gamma}'(t)|^2 - \sqrt{\check{\gamma}(t)} \, dt \]
Consider: \(\mu_0, \mu_1 = \text{prob. measures in } \mathbb{R}^n + \text{finite second moment} \)

A dynamic transport plan is a measure \(\pi \in \mathcal{P}(\Omega) \) such that

\[
(e_0)\#\pi = \mu_0, \quad (e_1)\#\pi = \mu_1
\]
Optimal transport + paths

The OT+paths problem

Minimize $\pi \mapsto \int_{\Omega} c(\gamma) \, d\pi(\gamma)$

subject to: $\pi \geq 0$

$(e_0) \# \pi = \mu_0$

$(e_1) \# \pi = \mu_1$
If γ appears in an optimal plan γ, then one would expect that

$$c(\gamma) = c_e(\gamma(0), \gamma(1))$$

Here c_e denotes what we shall call “the end-point cost”

$$c_e(x, y) := \inf\{c(\gamma) \mid \gamma(0) = x, \gamma(1) = y\}$$

Such paths will be said to be c-minimal.
Theorem

If π solves the OT+paths problem, then

1. π is supported in the set of c-minimal paths
2. The joint probability measure $(e_0, e_1) # \pi \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d)$ solves the Kantorovich Problem for μ_0, μ_1 and cost c_e.

(A proof of this theorem can be found in Cabrera’s thesis)
Optimal transport + paths + interactions

Consider an interaction kernel (even and positive definite)

\[K : \mathbb{R}^d \rightarrow \mathbb{R} \]

This includes the Gaussian

\[K_G(z) = \lambda e^{-\beta|z|^2}, \quad \lambda, \beta > 0 \]

and the Coulomb potential

\[K_C(z) = \lambda |z|^{2-d}, \quad \lambda > 0, \quad d \geq 3 \]
Optimal transport + paths + interactions

Such a K gives rise to an interaction function $U : \Omega \times \Omega \to \mathbb{R}$

$$U(\gamma_1, \gamma_2) = \int_0^1 K(\gamma_1(t) - \gamma_2(t)) \, dt$$

As K is positive definite, this gives rise to a convex functional

$$\pi \mapsto \int_\Omega \int_\Omega U(\gamma_1, \gamma_2) \, d\pi(\gamma_1) d\pi(\gamma_2)$$
Optimal transport + paths + interactions

The OT+interaction problem

Minimize $\pi \mapsto \int_{\Omega} c(\gamma) \, d\pi(\gamma)$

subject to: $\pi \geq 0$

$(e_0) \# \pi = \mu_0$

$(e_1) \# \pi = \mu_1$
Optimal transport + paths + interactions

The OT+interaction problem

Minimize \(\pi \mapsto \int_{\Omega} c(\gamma) \, d\pi(\gamma) + \int_{\Omega} \int_{\Omega} U(\gamma_1, \gamma_2) \, d\pi(\gamma_1) d\pi(\gamma_2) \)

subject to: \(\pi \geq 0 \)

\((e_0)\#\pi = \mu_0 \)

\((e_1)\#\pi = \mu_1 \)
Optimal transport + paths + interactions

(In what follows, $c(\gamma) = \int_0^1 \frac{1}{2}\dot{\gamma}^2 - V(\gamma(t)) \, dt$ for a fixed V, the measures μ_0, μ_1 have compact support)

Theorem (Cabrera 2021)

The $OT+$ path problem has at least one minimizer π_0.
The measure π_0 is a minimizer for the $OT+interaction$ problem

\[\exists \phi, \psi : \mathbb{R}^d \to \mathbb{R} \text{ such that:} \]

\[\phi(\gamma(0)) + \psi(\gamma(1)) \leq c(\gamma) + \int U(\gamma, \sigma) \ d\pi_0(\sigma) \quad \forall \gamma \in \Omega \]

\[\phi(\gamma(0)) + \psi(\gamma(1)) = c(\gamma) + \int U(\gamma, \sigma) \ d\pi_0(\sigma) \quad \text{for } \pi_0\text{-a.e.} \gamma \]
Optimal transport + paths + interactions

Characterization of minimizers

[Sketch of the proof]

\[\Lambda(\pi, \phi, \psi, \lambda) := \int_\Omega c(\gamma) \, d\pi(\gamma) + \int_\Omega \int_\Omega U(\gamma, \sigma) \, d\pi(\gamma) \, d\pi(\sigma) \]

\[+ \int_{\mathbb{R}^d} \phi(x) \, d\mu_0(x) - \int_\Omega \phi(\gamma(0)) \, d\pi(\gamma) \]

\[+ \int_{\mathbb{R}^d} \psi(y) \, d\mu_0(y) - \int_\Omega \psi(\gamma(1)) \, d\pi(\gamma) \]

\[+ \int_\Omega \lambda(\gamma) \, d\pi(\gamma) \]
Optimal transport + paths + interactions
Characterization of minimizers

[Sketch of the proof]

\[\Lambda(\pi, \phi, \psi, \lambda) = \int_{\Omega} c(\gamma) \, d\pi(\gamma) + \int_{\Omega} \int_{\Omega} U(\gamma, \sigma) \, d\pi(\gamma) \, d\pi(\sigma) \]
\[+ \int_{\Omega} \lambda(\gamma) - \phi(\gamma(0)) - \psi(\gamma(1)) \, d\pi(\gamma) \]
\[+ \int_{\mathbb{R}^d} \phi(x) \, d\mu_0(x) + \int_{\mathbb{R}^d} \psi(y) \, d\mu_0(y) \]
Optimal transport + paths + interactions

Characterization of minimizers

[Sketch of the proof]

\[
\frac{d}{ds}|_{s=0} \Lambda(\pi(s), \phi, \psi, \lambda) = \int_\Omega c(\gamma) d\dot{\pi}(\gamma) + 2 \int_\Omega \int_\Omega U(\gamma, \sigma) d\pi_0(\sigma) d\dot{\pi}(\gamma) \\
+ \int_\Omega \lambda(\gamma) - \phi(\gamma(0)) - \psi(\gamma(1)) d\dot{\pi}(\gamma)
\]

Minimality means there must be \(\phi, \psi, \lambda \ (\lambda \geq 0) \) such that

\[
c(\gamma) + 2 \int_\Omega U(\gamma, \sigma) d\pi_0(\sigma) + \lambda(\gamma) - \phi(\gamma(0)) - \psi(\gamma(1)) = 0
\]

moreover, \(\lambda \equiv 0 \) in the support of \(\pi \).
If π_0 is a minimizer, define the effective cost

$$c_{\pi_0}(\gamma) = c(\gamma) + \int_{\Omega} U(\gamma, \sigma) d\pi(\sigma)$$

and the corresponding endpoint cost

$$c_{e,\pi_0}(x, y) := \inf\{c_{\pi_0}(\gamma) \mid \gamma(0) = x, \gamma(1) = y\}$$
Theorem (Cabrera, 2021)

If \(\pi_0 \) solves the OT+interaction problem, then

1. \(\pi_0 \) is supported in the set of \(c_{\pi_0} \)-minimal paths
2. The joint probability measure

\[(e_0, e_1) \# \pi_0\]

solves the Kantorovich problem for \(\mu_0, \mu_1 \) and cost \(c_{e,\pi_0}(x, y) \).

This theorem opens the door to using the rich OT theory to understand minimizers of the problem with interaction.
Benamou-Brenier with interaction effects

Theorem (with Cabrera and Homerosky, 2023)

The min value for the OT+interaction problem = the infimum of

$$
\int_0^1 \int_{\mathbb{R}^d} \frac{1}{2} |v(x, t)|^2 \, d\rho_t(x) \, dt + \int_0^1 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} K(x - y) \, d\rho_t(x) \, d\rho_t(y) \, dt
$$

here the infimum is taken over all pairs (ρ, v) such that

$$\partial_t \rho + \text{div}(\rho v) = 0, \ \rho_0 = \mu_0, \ \rho_1 = \mu_1$$
Benamou-Brenier with interaction effects

Basics of the proof

As done since Benamou-Brenier, one can do a change variables

$$(\rho, v) \rightarrow (\rho, E)$$

where $E = v\rho$

and obtain a convex functional in (ρ, E)

$$\int_0^1 \int_{\mathbb{R}^d} \frac{|E|^2}{\rho_t(x)} dx dt + \int_0^1 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} K(x - y)\rho_t(x)\rho_t(y) dxdydy$$

This convexity of the functional allows us to work with smooth approximations.
In terms of the variables \((\rho, E)\) we can regularize via convolutions

\[\rho^{(\varepsilon)} := \rho \ast \eta_\varepsilon, \quad E^{(\varepsilon)} := E \ast \eta_\varepsilon, \quad v^{(\varepsilon)} := \frac{E_\varepsilon}{\rho^\varepsilon} \]

and obtain smooth approximations to \((\rho, v)/(\rho, E)\) that still solve the transport equation

\[\partial_t \rho^{(\varepsilon)} + \text{div} (\rho^{(\varepsilon)} v^{(\varepsilon)}) = 0 \]
Benamou-Brenier with interaction effects
Basics of the proof

Take a smooth vector field \(v(x, t) \).
The flow of \(v \), \(\Gamma : \mathbb{R}^n \times [0, 1] \rightarrow \mathbb{R}^n \) is characterized by
\[
\partial_t \Gamma_t(x) = v(\Gamma_t(x), t), \quad \Gamma_0(x) = x \forall x.
\]
Equivalently, the flow defines a map \(\Gamma : \mathbb{R}^n \rightarrow \Omega \).

\(x \rightarrow \gamma(t) = \Gamma_t(x) \)
Benamou-Brenier with interaction effects

Basics of the proof

With Γ and μ_0, we can create measures

$$\pi := \Gamma \# \mu_0, \quad \rho_t := (e_t) \# \pi$$

Then, observe

$$\int_\Omega c(\gamma) \, d\pi(\gamma) = \int_\Omega \int_0^1 \frac{1}{2} |\dot{\gamma}(t)|^2 \, dt \, d\pi(\gamma)$$

$$= \frac{1}{2} \int_{\mathbb{R}^n} \int_0^1 |\partial_t \Gamma_t(x)|^2 \, dt \, d\rho_0(x)$$

$$= \frac{1}{2} \int_0^1 \int_{\mathbb{R}^n} |v(\Gamma_t(x), t)|^2 \, d\rho_0(x) \, dt$$

$$= \frac{1}{2} \int_0^1 \int_{\mathbb{R}^n} |v(y, t)|^2 \, d\rho_t(y) \, dt$$
Benamou-Brenier with interaction effects
Basics of the proof

On the other hand,

\[
\int_{\Omega} \int_{\Omega} U(\gamma_1, \gamma_2) \, d\pi(\gamma_1) d\pi(\gamma_2)
\]

\[
= \int_{\Omega} \int_{\Omega} \int_{0}^{1} K(\gamma_1(t) - \gamma_2(t)) \, dt \, d\pi(\gamma_1) d\pi(\gamma_2)
\]

\[
= \int_{0}^{1} \left(\int_{\Omega} \int_{\Omega} K(\gamma_1(t) - \gamma_2(t)) \, d\pi(\gamma_1) d\pi(\gamma_2) \right) dt
\]

\[
= \int_{0}^{1} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} K(x - y) \, d\rho_t(x) d\rho_t(y) dt
\]
Therefore, for $\pi = \Gamma \# \mu_0$ and $\rho_t = (e_t) \# \pi$,

$$
\int_\Omega c(\gamma) \, d\pi + \int_\Omega \int_\Omega U(\gamma, \sigma) d\pi(\gamma) d\pi(\sigma) \\
= \frac{1}{2} \int_0^2 \int_\Omega |v(x, t)|^2 \rho_t(\, dx) \, dt + \int_0^1 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} K(x - y) \, d\rho_t(x) d\rho_t(y) \, dt
$$
Benamou-Brenier with interaction effects
Hamilton-Jacobi equation

As in the interaction-free case, the minimizer ρ, v yields a solution to a HJ equation, in fact:

There is a $\phi(x, t)$ such that $v = -\nabla \phi$, and (ρ, ϕ) solves

$$
\partial_t \rho = \text{div}(\rho \nabla \phi)
$$

$$
\partial_t \phi = \frac{1}{2}|\nabla \phi|^2 - K * \rho
$$
A numerical experiment
A numerical experiment
An artistic rendering!
A two-phase problem

We have begun studying the problem of minimizing

\[
E(\rho^{(1)}, \rho^{(2)}, v^{(1)}, v^{(2)})
\]

\[
:= \frac{1}{2} \int_0^1 \int_{\mathbb{R}^d} |v^{(1)}(x, t)| d\rho_t^{(1)}(x) dt
\]

\[
+ \frac{1}{2} \int_0^1 \int_{\mathbb{R}^d} |v^{(2)}(x, t)| d\rho_t^{(2)}(x) dt
\]

\[
+ \int_0^1 \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} K(x - y) \ d\rho_t^{(1)}(x) d\rho_t^{(2)}(y) dt
\]

constrained to initial/final time constraints and

\[
\partial_t \rho^{(i)} + \text{div}(\rho^{(i)} v^{(i)}) = 0 \text{ for } i = 0, 1.
\]
Problems

1. Build a dedicated solver (we used CVXPY)
2. How smooth is the Brenier map?
3. Kinetic version ⇒ build solutions to Vlasov-Poisson?
4. Are there interesting extensions to other functions

\[\mathcal{U} : \mathcal{P}(\Omega) \rightarrow \mathbb{R} \]

which are “lifted” from functions \(\mathcal{P}(\mathbb{R}^n) \rightarrow \mathbb{R} \)?
5. (serious question!) What else is this hammer good for?
\[\ddot{r} = -\nabla V(r) \]

Thank you!

Questions / Comments / Suggestions:
nestor@txstate.edu