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Overview

Theorem (Benamou-Brenier)
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2 d⇢t(x)dt

The infimum being over all pairs (⇢, v) such that

@t⇢+ div(⇢v) = 0, ⇢|t=0 = µ0, ⇢|t=1 = µ1



Overview

Question:
Modify Benamou-Brenier by adding an interaction energy term
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Then: is there a corresponding Monge-Kantorovich problem?



Overview
Main points

1. Introducing a “lifting” of the OT problem to the path space

2. Lifted problem naturally allows for interaction e↵ects

3. Existence of minimizers, duality, and relation to standard OT

4. Problem formulation à la Benamou-Brenier



Optimal transport + paths

Setup (1/2)
We will be working with the space of all paths

⌦ := {� : I ! Rn | � is absolutely continuous }

For each t 2 [0, 1] we have the evaluation map et,

et : ⌦ ! Rn, et(�) := �(t), t 2 [0, 1].
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Optimal transport + paths

Setup (2/2)
We will also fix an energy / cost functional

c : ⌦ ! R

Clr tf 18 it Pdt
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Optimal transport + paths
Dynamic transport plans

Consider: µ0, µ1 = prob. measures in Rn + finite second moment

A dynamic transport plan is a measure ⇡ 2 P(⌦) such that

(e0)#⇡ = µ0, (e1)#⇡ = µ1

If
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Optimal transport + paths

The OT+paths problem

Minimize ⇡ 7!
Z

⌦
c(�) d⇡(�)

subject to: ⇡ � 0

(e0)#⇡ = µ0

(e1)#⇡ = µ1



Optimal transport + paths

If � appears in an optimal plan �, then one would expect that

c(�) = ce(�(0), �(1))

Here ce denotes what we shall call “the end-point cost”

ce(x, y) := inf{c(�) | �(0) = x, �(1) = y}

Such paths will be said to be c-minimal.

If



Optimal transport + paths

Theorem

If ⇡ solves the OT+paths problem, then

(1) ⇡ is supported in the set of c-minimal paths

(2) The joint probability measure

(e0, e1)#⇡ 2 P(Rd ⇥ Rd)

solves the Kantorovich Problem for µ0, µ1 and cost ce.

(A proof of this theorem can be found in Cabrera’s thesis)



Optimal transport + paths + interactions

Consider an interaction kernel (even and positive definite)

K : Rd ! R

This includes the Gaussian

KG(z) = �e��|z|2 , �,� > 0

and the Coulomb potential

KC(z) = �|z|2�d, � > 0, d � 3



Optimal transport + paths + interactions

Such a K gives rise to an interaction function U : ⌦⇥ ⌦ ! R

U(�1, �2) =

Z 1

0
K(�1(t)� �2(t)) dt

As K is positive definite, this gives rise to a convex functional

⇡ 7!
Z

⌦

Z

⌦
U(�1, �2) d⇡(�1)d⇡(�2)
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Optimal transport + paths + interactions

The OT+interaction problem

Minimize ⇡ 7!
Z

⌦
c(�) d⇡(�)

subject to: ⇡ � 0

(e0)#⇡ = µ0

(e1)#⇡ = µ1



Optimal transport + paths + interactions

The OT+interaction problem

Minimize ⇡ 7!
Z

⌦
c(�) d⇡(�) +

Z

⌦

Z

⌦
U(�1, �2) d⇡(�1)d⇡(�2)

subject to: ⇡ � 0

(e0)#⇡ = µ0

(e1)#⇡ = µ1
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Optimal transport + paths + interactions

(In what follows, c(�) =
R 1
0

1
2 |�̇|

2 � V (�(t)) dt for a fixed V , the
measures µ0, µ1 have compact support)

Theorem (Cabrera 2021)

The OT+path problem has at least one minimizer ⇡0.



Optimal transport + paths + interactions
Characterization of minimizers

Lemma (Cabrera 2021)

The measure ⇡0 is a minimizer for the OT+interaction problem

,

9 �, : Rd ! R such that:

�(�(0)) +  (�(1))  c(�) +

Z
U(�,�) d⇡0(�) 8 � 2 ⌦

�(�(0)) +  (�(1)) = c(�) +

Z
U(�,�) d⇡0(�) for ⇡0-a.e.�E



Optimal transport + paths + interactions
Characterization of minimizers

[Sketch of the proof]

⇤(⇡,�, ,�) :=
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Optimal transport + paths + interactions
Characterization of minimizers

[Sketch of the proof]

⇤(⇡,�, ,�) =

Z
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c(�) d⇡(�) +
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Z
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Optimal transport + paths + interactions
Characterization of minimizers

[Sketch of the proof]

d

ds |s=0
⇤(⇡(s),�, ,�) =

Z

⌦
c(�) d⇡̇(�) + 2

Z

⌦

Z

⌦
U(�,�)d⇡0(�)d⇡̇(�)

+

Z

⌦
�(�)� �(�(0))�  (�(1)) d⇡̇(�)

Minimality means there must be �, ,� (� � 0) such that

c(�) + 2

Z

⌦
U(�,�)d⇡0(�) + �(�)� �(�(0))�  (�(1)) = 0

moreover, � ⌘ 0 in the support of ⇡.

0 T

DO



Optimal transport + paths + interactions
Characterization of minimizers

If ⇡0 is a minimizer, define the e↵ective cost

c⇡0(�) = c(�) +

Z

⌦
U(�,�)d⇡(�)

and the corresponding endpoint cost

ce,⇡0(x, y) := inf{c⇡0(�) | �(0) = x, �(1) = y}

o



Optimal transport + paths + interactions
Characterization of minimizers

Theorem (Cabrera, 2021)

If ⇡0 solves the OT+interaction roblem, then

(1) ⇡0 is supported in the set of c⇡0-minimal paths

(2) The joint probability measure

(e0, e1)#⇡0

solves the Kantorovich problem for µ0, µ1 and cost ce,⇡0(x, y).

This theorem opens the door to using the rich OT theory to
understand minimizers of the problem with interaction.



Benamou-Brenier with interaction e↵ects

Theorem (with Cabrera and Homerosky, 2023)

The min value for the OT+interaction problem = the infimum of

Z 1
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Rd

1
2 |v(x, t)|

2 d⇢t(x)dt+

Z 1

0

Z

Rd

Z

Rd
K(x� y) d⇢t(x)d⇢t(y)dt

here the infimum is taken over all pairs (⇢, v) such that

@t⇢+ div(⇢v) = 0, ⇢0 = µ0, ⇢1 = µ1



Benamou-Brenier with interaction e↵ects
Basics of the proof

As done since Benamou-Brenier, one can do a change variables

(⇢, v) ! (⇢, E) where E = v⇢

and obtain a convex functional in (⇢, E)

Z 1

0

Z

Rd

|E|2

⇢t(x)
dxdt+

Z 1

0

Z

Rd

Z

Rd
K(x� y)⇢t(x)⇢t(y)dxdydy

This convexity of the functional allows us to work with smooth
approximations.



Benamou-Brenier with interaction e↵ects
Basics of the proof

In terms of the variables (⇢, E) we can regularize via convolutions

⇢(") := ⇢ ⇤ ⌘", E(") := E ⇤ ⌘", v(") :=
E"

⇢"

and obtain smooth approximations to (⇢, v)/(⇢, E) that still
solve the transport equation

@t⇢
(") + div(⇢(")v(")) = 0



Benamou-Brenier with interaction e↵ects
Basics of the proof

Take a smooth vector field v(x, t).
The flow of v, � : Rn ⇥ [0, 1] ! Rn is characterized by

@t�t(x) = v(�t(x), t), �0(x) = x 8 x.

Equivalently, the flow defines a map � : Rn ! ⌦.
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Benamou-Brenier with interaction e↵ects
Basics of the proof

With � and µ0, we can create measures

⇡ := �#µ0, ⇢t := (et)#⇡

Then, observe
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⌦
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|v(y, t)|2d⇢t(y)dt

do 87 IT

M CeD It

so

y't
CIM

y A

d



Benamou-Brenier with interaction e↵ects
Basics of the proof

On the other hand,
Z

⌦

Z

⌦
U(�1, �2) d⇡(�1)d⇡(�2)
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Benamou-Brenier with interaction e↵ects
Basics of the proof

Therefore, for ⇡ = �#µ0 and ⇢t = (et)#⇡,
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Benamou-Brenier with interaction e↵ects
Hamilton-Jacobi equation

As in the interaction-free case, the minimizer ⇢, v yields a
solution to a HJ equation, in fact:

There is a �(x, t) such that v = �r�, and (⇢,�) solves

@t⇢ = div(⇢r�)
@t� = 1

2 |r�|
2 �K ⇤ ⇢



A numerical experiment



A numerical experiment
An artistic renderingmung



A two-phase problem

We have begun studying the problem of minimizing

E(⇢(1), ⇢(2), v(1), v(2))

:=
1

2

Z 1

0

Z

Rd
|v(1)(x, t)|d⇢(1)t (x)dt

+
1

2
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|v(2)(x, t)|d⇢(2)t (x)dt

+

Z 1

0

Z

Rd

Z

Rd
K(x� y) d⇢(1)t (x)d⇢(2)t (y)dt

constrained to initial/final time constraints and

@t⇢
(i) + div(⇢(i)v(i)) = 0 for i = 0, 1.



Problems

1. Build a dedicated solver (we used CVXPY)

2. How smooth is the Brenier map?

3. Kinetic version ) build solutions to Vlasov-Poisson?

4. Are there interesting extensions to other functions

U : P(⌦) ! R

which are “lifted” from functions P(Rn) ! R?
5. (serious question!) What else is this hammer good for?



Thank you!

Questions / Comments / Suggestions:
nestor@txstate.edu
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