Many Processors, Little Time: MCMC for Partitions via Optimal Transport Couplings

Tamara Broderick
Associate Professor, MIT

With Tin Nguyen, Brian Trippe
Clustering, many processors, little time
Clustering, many processors, little time

- Clustering is widely used: e.g. to discover cell types in genetics or to check for gerrymandering in politics

Clustering, many processors, little time

- Clustering is widely used: e.g. to discover cell types in genetics or to check for gerrymandering in politics
- In clustering/partitioning, often interested in computing an expectation: e.g. a Bayesian estimate of the proportion of data in the biggest cluster or co-clustering probability
Clustering, many processors, little time

- Clustering is widely used: e.g. to discover cell types in genetics or to check for gerrymandering in politics

- In clustering/partitioning, often interested in computing an expectation: e.g. a Bayesian estimate of the proportion of data in the biggest cluster or co-clustering probability

- Markov chain Monte Carlo is widely used (e.g. to approximate Bayesian inference), but can be slow
Clustering, many processors, little time

- Clustering is widely used: e.g. to discover cell types in genetics or to check for gerrymandering in politics [Prabhakaran et al 2016, DeFord et al 2021]
- In clustering/partitioning, often interested in computing an expectation: e.g. a Bayesian estimate of the proportion of data in the biggest cluster or co-clustering probability
- Markov chain Monte Carlo is widely used (e.g. to approximate Bayesian inference), but can be slow
- Naive parallel processing reduces variance but not bias
Clustering, many processors, little time

- Clustering is widely used: e.g. to discover cell types in genetics or to check for gerrymandering in politics [Prabhakaran et al 2016, DeFord et al 2021]
- In clustering/partitioning, often interested in computing an expectation: e.g. a Bayesian estimate of the proportion of data in the biggest cluster or co-clustering probability
- Markov chain Monte Carlo is widely used (e.g. to approximate Bayesian inference), but can be slow
- Naive parallel processing reduces variance but not bias
- We find naive “coupling” fails, due to “label switching” [Jacob et al 2020, Xu et al 2021]
Clustering, many processors, little time

• Clustering is widely used: e.g. to discover cell types in genetics or to check for gerrymandering in politics
• In clustering/partitioning, often interested in computing an expectation: e.g. a Bayesian estimate of the proportion of data in the biggest cluster or co-clustering probability
• Markov chain Monte Carlo is widely used (e.g. to approximate Bayesian inference), but can be slow
• Naive parallel processing reduces variance but not bias
• We find naive “coupling” fails, due to “label switching”
 [Jacob et al 2020, Xu et al 2021]
• We develop: “optimal transport couplings” for partition models to remove bias at a single processor
Clustering, many processors, little time

- Clustering is widely used: e.g. to discover cell types in genetics or to check for gerrymandering in politics
- In clustering/partitioning, often interested in computing an expectation: e.g. a Bayesian estimate of the proportion of data in the biggest cluster or co-clustering probability
- Markov chain Monte Carlo is widely used (e.g. to approximate Bayesian inference), but can be slow
- Naive parallel processing reduces variance but not bias
- We find naive “coupling” fails, due to “label switching”
 [Jacob et al 2020, Xu et al 2021]
- We develop: “optimal transport couplings” for partition models to remove bias at a single processor
- In the time-limited, highly parallel regime, we show: substantial accuracy benefits of our method over naive parallelism and naive use of existing coupling ideas
Roadmap
Roadmap

• Setup for learning partitions with many processors
Roadmap

• Setup for learning partitions with many processors
• Couplings for removing bias from MCMC
Roadmap

• Setup for learning partitions with many processors
• Couplings for removing bias from MCMC
• The challenges of couplings with partitions
Roadmap

- Setup for learning partitions with many processors
- Couplings for removing bias from MCMC
- The challenges of couplings with partitions
- Our proposal for couplings with partitions
Roadmap

• Setup for learning partitions with many processors
• Couplings for removing bias from MCMC
• The challenges of couplings with partitions
• Our proposal for couplings with partitions
• Theory that our method is unbiased and fast
Roadmap

- Setup for learning partitions with many processors
- Couplings for removing bias from MCMC
- The challenges of couplings with partitions
- Our proposal for couplings with partitions
- Theory that our method is unbiased and fast
- Experiments: our method gives good estimates and confidence intervals
Roadmap

• Setup for learning partitions with many processors
 • Couplings for removing bias from MCMC
 • The challenges of couplings with partitions
 • Our proposal for coupling with partitions
 • Theory that our method is unbiased and fast
 • Experiments: our method gives good estimates and confidence intervals
Setup
Setup

• A partition Π assigns the data to mutually exclusive & exhaustive groups
Setup

• A partition \(\Pi \) assigns the data to mutually exclusive & exhaustive groups
Setup

- A partition Π assigns the data to mutually exclusive & exhaustive groups
Setup

- A partition Π assigns the data to mutually exclusive & exhaustive groups
Setup

- A partition Π assigns the data to mutually exclusive & exhaustive groups
- Example problem: find a Bayesian estimate of the largest-cluster proportion
• A partition Π assigns the data to mutually exclusive & exhaustive groups
• Example problem: find a Bayesian estimate of the largest-cluster proportion
 • Let $h(\Pi)$ return proportion of data in the largest cluster
Setup

- A partition Π assigns the data to mutually exclusive & exhaustive groups
- Example problem: find a Bayesian estimate of the largest-cluster proportion
 - Let $h(\Pi)$ return proportion of data in the largest cluster
 - Let p_{Π} be the posterior on Π after observing the data
Setup

• A partition Π assigns the data to mutually exclusive & exhaustive groups

• Example problem: find a Bayesian estimate of the largest-cluster proportion

• Let $h(\Pi)$ return proportion of data in the largest cluster

• Let p_{Π} be the posterior on Π after observing the data

$$H^* = \int h(\Pi)p_{\Pi}(\Pi)\,d\Pi$$
Setup

- A partition Π assigns the data to mutually exclusive & exhaustive groups
- Example problem: find a Bayesian estimate of the largest-cluster proportion
 - Let $h(\Pi)$ return proportion of data in the largest cluster
 - Let p_Π be the posterior on Π after observing the data
 - Our general goal is to report: $H^* = \int h(\Pi)p_\Pi(\Pi)d\Pi$
Setup

- A partition Π assigns the data to mutually exclusive & exhaustive groups
- Example problem: find a Bayesian estimate of the largest-cluster proportion
 - Let $h(\Pi)$ return proportion of data in the largest cluster
 - Let p_Π be the posterior on Π after observing the data
 - Our general goal is to report: $H^* = \int h(\Pi)p_\Pi(\Pi)d\Pi$
 - We often need to use a (random) approximation \hat{H} for H^*
Setup

- A partition Π assigns the data to mutually exclusive & exhaustive groups.
- Example problem: find a Bayesian estimate of the largest-cluster proportion.
 - Let $h(\Pi)$ return proportion of data in the largest cluster.
 - Let p_{Π} be the posterior on Π after observing the data.
- Our general goal is to report: $H^* = \int h(\Pi) p_{\Pi}(\Pi) d\Pi$.
- We often need to use a (random) approximation \hat{H} for H^*.
- Mean squared error (of the approx):
 $$\mathbb{E}[(\hat{H} - H^*)^2]$$
Setup

- A partition Π assigns the data to mutually exclusive & exhaustive groups
- Example problem: find a Bayesian estimate of the largest-cluster proportion
 - Let $h(\Pi)$ return proportion of data in the largest cluster
 - Let p_Π be the posterior on Π after observing the data
- Our general goal is to report: $H^* = \int h(\Pi)p_\Pi(\Pi)d\Pi$
- We often need to use a (random) approximation \hat{H} for H^*
- Mean squared error (of the approx) = bias2 + variance
 $$\mathbb{E}[(\hat{H} - H^*)^2] = (\mathbb{E}\hat{H} - H^*)^2 + \text{Var}(\hat{H})$$
Setup

- A partition Π assigns the data to mutually exclusive & exhaustive groups
- Example problem: find a Bayesian estimate of the largest-cluster proportion
 - Let $h(\Pi)$ return proportion of data in the largest cluster
 - Let p_Π be the posterior on Π after observing the data
- Our general goal is to report: $H^* = \int h(\Pi)p_\Pi(\Pi)d\Pi$
- We often need to use a (random) approximation \hat{H} for H^*
- Mean squared error (of the approx) = bias2 + variance
 \[\mathbb{E}[(\hat{H} - H^*)^2] = (\mathbb{E}\hat{H} - H^*)^2 + \text{Var}(\hat{H}) \]
- Naive parallelism: replace \hat{H} with an empirical average over many iid replicates \rightarrow can reduce variance, not bias
Setup

• A partition Π assigns the data to mutually exclusive & exhaustive groups
• Example problem: find a Bayesian estimate of the largest-cluster proportion
 • Let $h(\Pi)$ return proportion of data in the largest cluster
 • Let p_Π be the posterior on Π after observing the data
• Our general goal is to report: $H^* = \int h(\Pi)p_\Pi(\Pi)d\Pi$
• We often need to use a (random) approximation \hat{H} for H^*
• Mean squared error (of the approx) = bias$^2 +$ variance
 $$\mathbb{E}[(\hat{H} - H^*)^2] = (\mathbb{E}\hat{H} - H^*)^2 + \text{Var}(\hat{H})$$
• Naive parallelism: replace \hat{H} with an empirical average over many iid replicates \rightarrow can reduce variance, not bias
 • If \hat{H} unbiased, can reach any small error with more cores
Setup

- A partition Π assigns the data to mutually exclusive & exhaustive groups
- Example problem: find a Bayesian estimate of the largest-cluster proportion
 - Let $h(\Pi)$ return proportion of data in the largest cluster
 - Let p_Π be the posterior on Π after observing the data
- Our general goal is to report: $H^* = \int h(\Pi)p_\Pi(\Pi)d\Pi$
- We often need to use a (random) approximation \hat{H} for H^*
- Mean squared error (of the approx) = bias2 + variance
 \[\mathbb{E}[(\hat{H} - H^*)^2] = (\mathbb{E}\hat{H} - H^*)^2 + \text{Var}(\hat{H}) \]
- Naive parallelism: replace \hat{H} with an empirical average over many iid replicates → can reduce variance, not bias
 - If \hat{H} unbiased, can reach any small error with more cores
 - Historical aside: unbiasedness → bias is fine → unbiasedness
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X) dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo:
Coupling for removing bias

• Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)\,dX$

• Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion

• Monte Carlo:
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Monte Carlo:

\[
\hat{H} \approx H^* = \int h(X)p_X(X)dX
\]
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo:

\[
\hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)
\]
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X) p_X(X) dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Monte Carlo: unbiased but infeasible \(\hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t) \)
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X) dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Monte Carlo: unbiased but infeasible \(\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t) \)
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Monte Carlo: unbiased but infeasible \(\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t) \)
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X) dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Monte Carlo: unbiased but infeasible \(\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t) \)
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X) dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Monte Carlo: unbiased but infeasible \(\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t) \)
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X) dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)\,dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X) p_X(X) dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X) dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\longrightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\mapsto \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X) dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Monte Carlo: unbiased but infeasible \(\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t) \)
- Markov chain Monte Carlo
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible
- Markov chain Monte Carlo

$$\hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$$

Diagram: Sampling paths $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow x_3 \rightarrow x_4 \rightarrow x_5 \rightarrow \cdots$ from the distribution $p_X(X)$.
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Monte Carlo: unbiased but infeasible \(\hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t) \)
- Markov chain Monte Carlo: biased in finite time
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)\,dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains

\[p_X(X) \]

\[x_0 \quad x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \]
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)\,dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Monte Carlo: unbiased but infeasible \(\hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t) \)
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible
 \[\hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t) \]
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)\,dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X) dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly
Coupling for removing bias

• Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
• Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
• Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
• Markov chain Monte Carlo: biased in finite time
• Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other [Glynn, Rhee 2014]
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X) dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other [Glynn, Rhee 2014]

$H^* = \lim_{t \to \infty} \mathbb{E} h(x_t)$
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X) dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other [Glynn, Rhee 2014]

$$H^* = \mathbb{E}h(x_i) + \sum_{t=i+1}^{\infty} [\mathbb{E}h(x_t) - \mathbb{E}h(x_{t-1})]$$
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dx$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other [Glynn, Rhee 2014]

$H^* = \mathbb{E}h(x_i) + \sum_{t=i+1}^{\infty} [\mathbb{E}h(x_t) - \mathbb{E}h(x_{t-1})]$
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other [Glynn, Rhee 2014]

$$H^* = \mathbb{E}h(x_i) + \sum_{t=i+1}^{\infty} [\mathbb{E}h(x_t) - \mathbb{E}h(x'_{t-1})]$$
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other [Glynn, Rhee 2014]

$$H^* = \mathbb{E}h(x_i) + \sum_{t=i+1}^{\infty} \mathbb{E}[h(x_t) - h(x'_{t-1})]$$
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X) p_X(X) dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other [Glynn, Rhee 2014]

$H^* = \mathbb{E} \left\{ h(x_i) + \sum_{t=i+1}^{\infty} [h(x_t) - h(x'_{t-1})] \right\}$
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)\,dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other [Glynn, Rhee 2014]

$$H^* = \mathbb{E} \left\{ h(x_i) + \sum_{t=i+1}^{\infty} [h(x_t) - h(x'_{t-1})] \right\}$$
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)\,dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other [Glynn, Rhee 2014]

$$H^* = \mathbb{E} \left\{ h(x_i) + \sum_{t=i+1}^{\tau} [h(x_t) - h(x'_t)] \right\}$$
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)\,dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Monte Carlo: unbiased but infeasible
 \[\hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t) \]
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other

\[H^* = \mathbb{E} \left\{ h(x_i) + \sum_{t=i+1}^{T} [h(x_t) - h(x'_{t-1})] \right\} \]
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\longrightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other [Glynn, Rhee 2014]

$\hat{H} = h(x_i) + \sum_{t=i+1}^{\tau}[h(x_t) - h(x'_{t-1})]$
Coupling for removing bias

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Monte Carlo: unbiased but infeasible $\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t)$
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other [Glynn, Rhee 2014]

$$\hat{H} = h(x_i) + \sum_{t=i+1}^{\tau} [h(x_t) - h(x'_{t-1})]$$

How can they meet?
Coupling for removing bias

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)\,dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Monte Carlo: unbiased but infeasible \(\Rightarrow \hat{H} = \frac{1}{T} \sum_{t=1}^{T} h(x_t) \)
- Markov chain Monte Carlo: biased in finite time
- Coupling [Jacob et al 2020]: make two MCMC chains; set up joint dynamics so chains meet exactly & quickly; then subtract out the bias of one using the other
 \[\hat{H} = h(x_i) + \sum_{t=i+1}^{T} [h(x_t) - h(x'_{t-1})] \]

+ bells and whistles
• Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
• Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
Coupling for partitions: the challenge

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$

- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
Coupling for partitions: the challenge

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Coupling for partitions for unbiased MCMC approximation: not done in past work
Coupling for partitions: the challenge

• Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$

• Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion

• Coupling for partitions for unbiased MCMC approximation: not done in past work

• Couplings made for other purposes [Jerrum 1998, Gibbs 2004] could be used here, but they are on the label space \rightarrow slow to meet
Coupling for partitions: the challenge

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X) dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Coupling for partitions for unbiased MCMC approximation: not done in past work
- Couplings made for other purposes \cite{Jerrum1998, Gibbs2004} could be used here, but they are on the label space \rightarrow slow to meet
Coupling for partitions: the challenge

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Coupling for partitions for unbiased MCMC approximation: not done in past work
- Couplings made for other purposes \([\text{Jerrum 1998, Gibbs 2004}]\) could be used here, but they are on the label space \(\rightarrow \) slow to meet
Coupling for partitions: the challenge

• Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
• Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
• Coupling for partitions for unbiased MCMC approximation: not done in past work
• Couplings made for other purposes could be used here, but they are on the label space → slow to meet

$\hat{H} \approx H^* = \int h(X)p_X(X)dX$

cluster “2”
center

cluster “1”
center

single data dimension
Coupling for partitions: the challenge

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X) p_X(X) dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Coupling for partitions for unbiased MCMC approximation: not done in past work
- Couplings made for other purposes could be used here, but they are on the label space → slow to meet

\[\hat{H} \approx H^* = \int h(X) p_X(X) dX \]

[Jerrum 1998, Gibbs 2004]
Coupling for partitions: the challenge

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)dx \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Coupling for partitions for unbiased MCMC approximation: not done in past work
- Couplings made for other purposes \([Jerrum 1998, Gibbs 2004]\) could be used here, but they are on the label space \(\rightarrow \) slow to meet
Coupling for partitions: the challenge

• Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$

• Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion

• Coupling for partitions for unbiased MCMC approximation: not done in past work

• Couplings made for other purposes [Jerrum 1998, Gibbs 2004] could be used here, but they are on the label space \rightarrow slow to meet
Coupling for partitions: the challenge

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Coupling for partitions for unbiased MCMC approximation: not done in past work
- Couplings made for other purposes could be used here, but they are on the label space \rightarrow slow to meet

[Jerrum 1998, Gibbs 2004]
Coupling for partitions: the challenge

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Coupling for partitions for unbiased MCMC approximation: not done in past work
- Couplings made for other purposes \cite{Jerrum1998, Gibbs2004} could be used here, but they are on the label space \rightarrow slow to meet
Coupling for partitions: the challenge

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)dX \)

- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion

- Coupling for partitions for unbiased MCMC approximation: not done in past work

- Couplings made for other purposes \cite{Jerrum1998, Gibbs2004} could be used here, but they are on the label space \(\rightarrow \) slow to meet
Coupling for partitions: the challenge

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Coupling for partitions for unbiased MCMC approximation: not done in past work
- Couplings made for other purposes [Jerrum 1998, Gibbs 2004] could be used here, but they are on the label space → slow to meet
Coupling for partitions: the challenge

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Coupling for partitions for unbiased MCMC approximation: not done in past work
- Couplings made for other purposes [Jerrum 1998, Gibbs 2004] could be used here, but they are on the label space → slow to meet
Coupling for partitions: the challenge

• Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dx$

• Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion

• Coupling for partitions for unbiased MCMC approximation: not done in past work

• Couplings made for other purposes \cite{Jerrum1998, Gibbs2004} could be used here, but they are on the label space \rightarrow slow to meet
Coupling for partitions: the challenge

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)\,dX \)
- Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- Coupling for partitions for unbiased MCMC approximation: not done in past work
- Couplings made for other purposes [Jerrum 1998, Gibbs 2004] could be used here, but they are on the label space → slow to meet
Coupling for partitions: the challenge

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- Coupling for partitions for unbiased MCMC approximation: not done in past work
- Couplings made for other purposes \[\text{[Jerrum 1998, Gibbs 2004]}\] could be used here, but they are on the label space \rightarrow slow to meet
- Note: to switch labels, all the cluster assignments have to flip too
• Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)dX \)
• Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
Coupling for partitions: our proposal

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X) p_X(X) dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
Coupling for partitions: our proposal

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- We propose to work directly in the partition space
Coupling for partitions: our proposal

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- We propose to work directly in the partition space
- Given current partition, next is distributed:
 - 1st chain: $\sum_{k=1}^{K} a_k \delta_{\pi_k}$
Coupling for partitions: our proposal

- Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X)p_X(X)dX \)
 - Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion
- We propose to work directly in the partition space
- Given current partition, next is distributed:
 - 1st chain: \(\sum_{k=1}^{K} a_k \delta_{\pi_k} \)
 - 2nd chain: \(\sum_{k'=1}^{K'} b_{k'} \delta_{\nu_{k'}} \)
Coupling for partitions: our proposal

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- We propose to work directly in the partition space
- Given current partition, next is distributed:
 - 1st chain: $\sum_{k=1}^{K} a_k \delta_{\pi_k}$
 - 2nd chain: $\sum_{k'=1}^{K'} b_{k'} \delta_{\nu_{k'}}$
- Let coupling $\gamma = \sum_k \sum_{k'} u_{k,k'} \delta_{(\pi_k,\nu_{k'})}$ have marginals:
 $\sum_k u_{k,k'} = b_{k'}$ & $\sum_{k'} u_{k,k'} = a_k$
Coupling for partitions: our proposal

• Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X) p_X(X) dX$

• Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion

• We propose to work directly in the partition space

• Given current partition, next is distributed:
 • 1st chain: $\sum_{k=1}^{K} a_k \delta_{\pi_k}$
 • 2nd chain: $\sum_{k'=1}^{K'} b_{k'} \delta_{\nu_{k'}}$

• Let coupling $\gamma = \sum_{k} \sum_{k'} u_{k,k'} \delta(\pi_k, \nu_{k'})$ have marginals:
 $$\sum_{k} u_{k,k'} = b_{k'} \quad \& \quad \sum_{k'} u_{k,k'} = a_k$$

• For a metric d on partitions, we choose the “best” (optimal transport) coupling for this step of the joint chain
 $$\phi^{\text{OT}} = \arg\min_{\text{couplings } \gamma} \sum_{k} \sum_{k'} u_{k,k'} d(\pi_k, \nu_{k'})$$
Coupling for partitions: our proposal

- Want: quickly compute unbiased $\hat{H} \approx H^* = \int h(X)p_X(X)dX$
- Our case: $X = \Pi$ & e.g. $h(\Pi)$ is largest-cluster proportion
- We propose to work directly in the partition space
- Given current partition, next is distributed:
 - 1st chain: $\sum_{k=1}^{K} a_k \delta_{\pi_k}$ • 2nd chain: $\sum_{k'=1}^{K'} b_{k'} \delta_{\nu_{k'}}$
- Let coupling $\gamma = \sum_{k} \sum_{k'} u_{k,k'} \delta_{(\pi_k,\nu_{k'})}$ have marginals:
 $\sum_{k} u_{k,k'} = b_{k'}$ & $\sum_{k'} u_{k,k'} = a_k$
- For a metric d on partitions, we choose the “best” (optimal transport) coupling for this step of the joint chain
 $\phi^{\text{OT}} = \arg \min_{\text{couplings } \gamma} \sum_{k} \sum_{k'} u_{k,k'} d(\pi_k,\nu_{k'})$ with
 $d(\pi,\nu) = \sum_{A \in \pi} |A|^2 + \sum_{B \in \nu} |B|^2 - 2 \sum_{A \in \pi, B \in \nu} |A \cap B|^2$
 [Mirkin, Chernyi 1970; Rand 1971]
Coupling for partitions: our proposal

• Want: quickly compute unbiased \(\hat{H} \approx H^* = \int h(X) p_X(X) dX \)

• Our case: \(X = \Pi \) & e.g. \(h(\Pi) \) is largest-cluster proportion

• We propose to work directly in the partition space

• Given current partition, next is distributed:

 • 1st chain: \(\sum_{k=1}^{K} a_k \delta_{\pi_k} \)
 • 2nd chain: \(\sum_{k'=1}^{K'} b_{k'} \delta_{\nu_{k'}} \)

• Let coupling \(\gamma = \sum_k \sum_{k'} u_{k,k'} \delta_{(\pi_k, \nu_{k'})} \) have marginals:

\[
\sum_k u_{k,k'} = b_{k'} \quad \text{&} \quad \sum_{k'} u_{k,k'} = a_k
\]

• For a metric \(d \) on partitions, we choose the “best” (optimal transport) coupling for this step of the joint chain

\[
\phi^{\text{OT}} = \arg\min_{\gamma} \sum_k \sum_{k'} u_{k,k'} \delta_{(\pi_k, \nu_{k'})}
\]

with

\[
d(\pi, \nu) = \sum_{A \in \pi} |A|^2 + \sum_{B \in \nu} |B|^2 - 2 \sum_{A \in \pi, B \in \nu} |A \cap B|^2
\]

[Mirkin, Chernyi 1970; Rand 1971]

• We use: network simplex method in Python Optimal Transport

[Flamary et al 2021]
Theory for our coupling proposal
Theory for our coupling proposal

- We focus on a Bayesian model: Dirichlet process (DP) mixture prior on the partition and Gaussian components
Theory for our coupling proposal

• We focus on a Bayesian model: Dirichlet process (DP) mixture prior on the partition and Gaussian components
• We focus on Gibbs sampling (and variants like split-merge)
Theory for our coupling proposal

• We focus on a Bayesian model: Dirichlet process (DP) mixture prior on the partition and Gaussian components
• We focus on Gibbs sampling (and variants like split-merge)
• **Theorem sketch (unbiasedness)**. The estimator \hat{H} that arises from our optimal transport coupling is unbiased for H^*.
Theory for our coupling proposal

• We focus on a Bayesian model: Dirichlet process (DP) mixture prior on the partition and Gaussian components
• We focus on Gibbs sampling (and variants like split-merge)
• **Theorem sketch (unbiasedness).** The estimator \(\hat{H} \) that arises from our optimal transport coupling is unbiased for \(H^* \)
• **Proof sketch.** Check conditions from Jacob et al 2020: joint sampler is valid, meeting time has subgeometric tails, chains are faithful once they meet
Theory for our coupling proposal

- We focus on a Bayesian model: Dirichlet process (DP) mixture prior on the partition and Gaussian components
- We focus on Gibbs sampling (and variants like split-merge)
- **Theorem sketch (unbiasedness).** The estimator \hat{H} that arises from our optimal transport coupling is unbiased for H^*
 - **Proof sketch.** Check conditions from Jacob et al 2020: joint sampler is valid, meeting time has subgeometric tails, chains are faithful once they meet
- Take $N =$ data cardinality, $D =$ data dimension, $K =$ largest number of partition components encountered
Theory for our coupling proposal

- We focus on a Bayesian model: Dirichlet process (DP) mixture prior on the partition and Gaussian components
- We focus on Gibbs sampling (and variants like split-merge)
- **Theorem sketch (unbiasedness).** The estimator \hat{H} that arises from our optimal transport coupling is unbiased for H^*
 - **Proof sketch.** Check conditions from Jacob et al 2020: joint sampler is valid, meeting time has subgeometric tails, chains are faithful once they meet
- Take $N = \text{data cardinality}$, $D = \text{data dimension}$, $K = \text{largest number of partition components encountered}$
- **Theorem sketch (time cost).** A standard Gibbs step is $O(ND + KD^3)$. Computing our coupling costs 2 times a Gibbs step + optimal transport cost $O(K^3\log K)$ (or K^2 or K^5)
 - In DP, we expect $\# \text{clusters} = O(\log N)$

[Orlin 1993] [Bonneel et al 2011] [Kelly, O'Neill 1991, Sec 3.6]
Theory for our coupling proposal

• We focus on a Bayesian model: Dirichlet process (DP) mixture prior on the partition and Gaussian components

• We focus on Gibbs sampling (and variants like split-merge)

• **Theorem sketch (unbiasedness).** The estimator \hat{H} that arises from our optimal transport coupling is unbiased for H^*

• *Proof sketch.* Check conditions from Jacob et al 2020: joint sampler is valid, meeting time has subgeometric tails, chains are faithful once they meet

• Take $N = $ data cardinality, $D = $ data dimension, $K = $ largest number of partition components encountered

• **Theorem sketch (time cost).** A standard Gibbs step is $O(ND + KD^3)$. Computing our coupling costs 2 times a Gibbs step + optimal transport cost $O(K^3 \log K)$ (or K^2 or K^5) [Orlin 1993] [Bonneel et al 2011] [Kelly, O’Neill 1991, Sec 3.6]

• In DP, we expect # clusters = $O(\log N)$

• cf. meeting time
Experiments: estimator accuracy
Experiments: estimator accuracy

- When aggregating across processors, can either use a traditional mean or a trimmed mean.
Experiments: estimator accuracy

- When aggregating across processors, can either use a traditional mean or a trimmed mean. We compute % error.
Experiments: estimator accuracy

• When aggregating across processors, can either use a traditional mean or a trimmed mean. We compute % error.
• Ground truth: MCMC run for really long
Experiments: estimator accuracy

- When aggregating across processors, can either use a traditional mean or a trimmed mean. We compute % error.
- Ground truth: MCMC run for really long
- Methods get same budget at each core (cf. cloud $)
Experiments: estimator accuracy

- When aggregating across processors, can either use a traditional mean or a trimmed mean. We compute % error.
- Ground truth: MCMC run for really long
- Methods get same budget at each core (cf. cloud $)
- We repeat whole procedure many times (unlike in practice) to assess variability & report 20, 50, 80% quantiles
Experiments: estimator accuracy

- When aggregating across processors, can either use a traditional mean or a trimmed mean. We compute % error.
- Ground truth: MCMC run for really long
- Methods get same budget at each core (cf. cloud $)
- We repeat whole procedure many times (unlike in practice) to assess variability & report 20, 50, 80% quantiles
- Single-cell RNA seq data, $h=$largest component proportion

[Prabhakaran et al 2016]
Experiments: estimator accuracy

- When aggregating across processors, can either use a traditional mean or a trimmed mean. We compute % error.
- Ground truth: MCMC run for really long
- Methods get same budget at each core (cf. cloud $)
- We repeat whole procedure many times (unlike in practice) to assess variability & report 20, 50, 80% quantiles
- Single-cell RNA seq data, h=largest component proportion

[Prabhakaran et al 2016]
Experiments: estimator accuracy

• When aggregating across processors, can either use a traditional mean or a trimmed mean. We compute % error.
• Ground truth: MCMC run for really long
• Methods get same budget at each core (cf. cloud $)
• We repeat whole procedure many times (unlike in practice) to assess variability & report 20, 50, 80% quantiles
Experiments: estimator accuracy

- When aggregating across processors, can either use a traditional mean or a trimmed mean. We compute % error.
- Ground truth: MCMC run for really long
- Methods get same budget at each core (cf. cloud $)
- We repeat whole procedure many times (unlike in practice) to assess variability & report 20, 50, 80% quantiles
- Graph colorings, $h=$co-clustering probability
Experiments: estimator accuracy

- When aggregating across processors, can either use a traditional mean or a trimmed mean. We compute % error.
- Ground truth: MCMC run for really long
- Methods get same budget at each core (cf. cloud $)
- We repeat whole procedure many times (unlike in practice) to assess variability & report 20, 50, 80% quantiles
- Graph colorings, $h=$co-clustering probability
Experiments

• Want to assess the quality of confidence intervals (formed from one run of the algorithm, as we would in practice)
Experiments

- Want to assess the quality of confidence intervals (formed from one run of the algorithm, as we would in practice)

gene

- [Graph showing gene expression levels]

graph

- [Graph showing graph metrics]

- Our method
- Naive parallel
- Ground truth
Experiments

• Want to assess the quality of confidence intervals (formed from one run of the algorithm, as we would in practice)

![Gene graph](image1)

• Label-based couplings don’t meet in the time budget of our experiments, so we didn’t compare with them above

![Graph](image2)
Experiments

• Want to assess the quality of confidence intervals (formed from one run of the algorithm, as we would in practice)

• Label-based couplings don’t meet in the time budget of our experiments, so we didn’t compare with them above.
Experiments

• Want to assess the quality of confidence intervals (formed from one run of the algorithm, as we would in practice)

• Label-based couplings don’t meet in the time budget of our experiments, so we didn’t compare with them above

same behavior in abalone, seed, and synthetic
Conclusions

• We provide an optimal transport coupling for partitions
• In the highly parallel regime, we show our coupling can provide accurate estimates with limited wall time

• **Code**: https://github.com/tinnguyen96/partition-coupling
Conclusions

- We provide an optimal transport coupling for partitions
- In the highly parallel regime, we show our coupling can provide accurate estimates with limited wall time

Code: https://github.com/tinnguyen96/partition-coupling

- Additional thoughts:
Conclusions

• We provide an optimal transport coupling for partitions
 • In the highly parallel regime, we show our coupling can provide accurate estimates with limited wall time

• **Code**: https://github.com/tinnguyen96/partition-coupling

• Additional thoughts:
 • Expect ideas to extend to pretty generic clustering but also other unsupervised learning: topic/feature models, trait models, etc.
Conclusions

- We provide an optimal transport coupling for partitions
 - In the highly parallel regime, we show our coupling can provide accurate estimates with limited wall time

- **Code**: https://github.com/tinnguyen96/partition-coupling

- Additional thoughts:
 - Expect ideas to extend to pretty generic clustering but also other unsupervised learning: topic/feature models, trait models, etc.
 - Optimal transport for couplings in continuous problems: Xu et al “Couplings for multinomial Hamiltonian Monte Carlo” *AISTATS* 2021