MITSTATISTICS LABORATORY FOR
DATASCIENCE oot +LDS

EEEEEE

VMany Processors, Little Time;:
MCMC for Partitions via
Optimal Transport Couplings

Tamara Broderick




Clustering, many processors, little time



Clustering, many processors, little time

e Clustering is widely used: e.g. to discover cell types in
genetics or to check for gerrymandering in politics

[Prabhakaran et al 2016, DeFord et al 2021]



Clustering, many processors, little time

genetics or to check for gerrymandering in politics

[Prabhakaran et al 2016,

Clustering is widely used: e.g. to discover cell types in

DeFord et al 2021]

* |n clustering/partitioning, often mterested in computing an

expectation: e.g. a Bayesian estimate of the propo

rtion of

data in the biggest cluster or co-clustering probabi

ity



Clustering, many processors, little time

e Clustering is widely used: e.g. to discover cell types in

genetics or to check for gerrymandering in politics

[Prabhakaran et al 2016,

DeFord et al 2021]

* |n clustering/partitioning, often mterested in computing an

expectation: e.g. a Bayesian estimate of the propo

rtion of

data in the biggest cluster or co-clustering probabi

 Markov chain Monte Carlo is widely used (e.g. to
approximate Bayesian inference), but can be slow

ity



Clustering, many processors, little time

e Clustering is widely used: e.g. to discover cell types in
genetics or to check for gerrymandering in politics

[Prabhakaran et al 2016, DeFord et al 2021]

* |n clustering/partitioning, often mterested in computing an
expectation: e.g. a Bayesian estimate of the proportion of
data in the biggest cluster or co-clustering probability

 Markov chain Monte Carlo is widely used (e.g. to
approximate Bayesian inference), but can be slow

* Nalve parallel processing reduces variance but not bias




Clustering, many processors, little time

Clustering is widely used: e.g. to discover cell types in

genetics orto c
In clustering/pa

expectation: e.g. a Bayesian estimate of the propo
data in the biggest cluster or co-clustering probabi

neck for gerrymandering in politics

[Prabhakaran et al 2016,

titioning, often mterested INn compL

DeFord et al 2021]

ting an
rtion Of

Markov chain Monte Carlo is widely used (e.g. to
approximate Bayesian inference), but can be slow

Nailve parallel processing reduces variance but not bias
We find naive “coupling” fails, due to “label switchi

[Jacob et al 2020, Xu et al 2021

ity

ng”



Clustering, many processors, little time

Clustering is widely used: e.g. to discover cell types in

genetics or to C
In clustering/pa

expectation: e.g. a Bayesian estimate of the propo
data in the biggest cluster or co-clustering probabi

neck for gerrymandering in politics

[Prabhakaran et al 2016,

titioning, often mterested INn compL

DeFord et al 2021]

ting an
rtion Of

Markov chain Monte Carlo is widely used (e.g. to
approximate Bayesian inference), but can be slow

Nailve parallel processing reduces variance but not bias

We find naive “coupling” fails, due to “label switch

[Jacob et al 2020, Xu et al 2021

We develop: ophmal transport couplings” for par

models to remove bias at a single processor

ng
1tion

ity



Clustering, many processors, little time

Clustering is widely used: e.g. to discover cell types in

genetics orto c
In clustering/pa

data in the biggest cluster or co-clustering probabi

neck for gerrymandering in politics

[Prabhakaran et al 2016,

DeFord et al 2021]

titioning, often mterested IN computing an
expectation: e.g. a Bayesian estimate of the propo

rtion of

Markov chain Monte Carlo is widely used (e.g. to
approximate Bayesian inference), but can be slow

Nailve parallel processing reduces variance but not bias

We find naive “coupling” fails, due to “label switchi

[Jacob et al 2020, Xu et al 2021

We develop: ophmal transport couplings” for par
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* Couplings for removing bias from MCMC

* The challenges of couplings with partitions

e Our proposal for couplings with partitions

e Theory that our method is unbiased and fast

* Experiments: our method gives good estimates and
confidence intervals
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» We use: network simplex method in Python Optimal Transport

0 [Flamary et al 2021]
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