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A non-parametric generative model for conditional sampling 

Ricardo Baptista, California Institute of Technology 

 

Sampling conditional distributions is a fundamental task for Bayesian inference and density 

estimation. Generative models, such as normalizing flows and generative adversarial networks, 

characterize conditional distributions by learning a transformation that transports a simple 

reference (e.g., a standard Gaussian) to a target distribution. While these approaches can 

successfully describe many non-Gaussian problems, their performance is constrained by 

parametric bias and the reliability of (possibly adversarial) gradient-based optimizers to learn 

these transformations. This work proposes a non-parametric generative model, with naturally 

adaptive complexity, that iteratively maps samples between the reference and target 

distributions. Our formulation solves the optimal transport problem by minimizing a weighted 

cost function that yields block-triangular transport maps, thereby extending the approach in 

(Tabak and Trigila, 2014) to sampling conditionals. In this presentation, I will relate the 

approach to gradient flows on probability space and demonstrate the performance of the 

algorithm for parameter inference problems with nonlinear ODEs. 

 

 

Variant of Paulsen's Problem in mathematical signal process: from probabilistic frames 

and optimal transport perspective 

Dongwei Chen, Clemson University 

 

The Paulsen problem is a basic problem in frame theory claiming that every $\epsilon$-nearly 

equal norm Parseval frame in $d$ dimension is within squared distance $O(\epsilon d^2)$ of an 

equal norm Parseval frame. A variant of Paulsen Problem is that the closest Parseval frame to a 

given frame is the canonical dual Parseval frame. In this work, we will focus on a similar variant 

of Paulsen Problem for probabilistic frame, which is a probability measure on $\mathbb{R}^d$ 

with an invertible second-moment matrix. We show that there exists a unique closest tight 

probabilistic frame with unit norm to a given probabilistic frame, where the distance is quantified 

by the 2-Wasserstein metric in optimal transport. 

 

 

Identification of diverse trajectories and prediction of early differential gene expression in 

EMT by optimal-transport analysis of single-cell RNA sequencing 

Yu-Chen Cheng, Dana-Farber Cancer Institute/Harvard University 

 

Epithelial-mesenchymal transition (EMT) is a complex biological process involving multiple 

steps and changes in gene expression. Recent single-cell RNA sequencing studies have shown 

that EMT signaling pathways are activated sequentially along the trajectory from epithelial to 



mesenchymal features, resulting in cellular heterogeneity over time. However, the heterogeneity 

across divergent trajectories and cell fates is not yet fully understood. In this study, we used 

optimal-transport analysis to infer ancestor distributions of different cell fates and recover their 

most probable past trajectories. Our analysis identified three distinct temporal processes - failed 

EMT, partial EMT, and full EMT - each with unique cellular signatures of stemness, 

proliferation, and metabolism. By extending differential gene expression analysis from the end of 

EMT to all early time points, we identified a list of early differentially expressed genes that 

strongly predict the progression towards partial EMT with an increase in stemness. To validate 

our predictions, we found downregulation of EED and EZH2 genes in the early phase of the 

partial EMT trajectory, which is consistent with a recent CRISPR-associated knock-out 

screening study. We also found that fn1, KRT8, and POSTN were highly expressed in the very 

early phase, one day after TGF-beta treatment, of the partial EMT trajectory. The role of these 

genes in this phase had not been fully characterized previously, suggesting their potential as 

novel regulators of this process. Our study provides insights into the dynamic nature of EMT and 

offers a framework for identifying key regulators in the early phase of EMT. These findings have 

important implications for understanding the role of EMT in cancer progression and developing 

new cancer prevention strategies. 

 

 

A constrained unbalanced optimal transport problem 

Yuqing Dai, Duke University 

 

The unbalanced optimal transport problem is a minimization problem of the total transport cost 

of transporting an initial mass to a target mass such that their values are not necessarily equal. 

Compared with the balanced optimal transport, unbalanced optimal transport allows the 

transporting mass to be changed, giving a smaller total transportation cost value. In this poster, I 

will introduce a modified dynamic formulation of Hellinger-Kantorovich problem with a non-

negative constraint such that the transporting mass is non-decreasing during transportation. I will 

present some properties of this problem, its equivalent formulations, and some numerical 

experiments. 

 

 

Aggregation Methods for Computing Steady States 

Gabriel Earle, University of Massachusetts Amherst 

 

In this work, we present a new estimate for the asymptotic rate of convergence of a multigrid 

method known as iterative aggregation-disaggregation (IAD) for computing the steady-state of 

Markov chains. This method is potentially useful in molecular dynamics and statistical physics, 

as it is well suited to systems which are both highly metastable and nonequilibrium. We show 

that IAD effectively accelerates the rate of sampling of such processes, with implications for its 

potential applications. 

 

Joint Work with Brian Van Koten (UMass Amherst) 

 

 

Lipschitz regularized f-divergences flows and generative particles algorithm 



Hyemin Gu, UMass Amherst 

 

We constructed gradient flows which minimize Lipschitz regularized f-divergences which are 

written in variational formulation. Variational formulation enables to approximate a function of 

likelihood ratio dP/dQ between two empirical distributions obtained by samples. In case of KL-

divergence, this function is the log likelihood ratio. We allow flexibility in choosing f depending 

on the probability distribution to learn, so that heavy-tailed distributions can be fitted using alpha 

divergences, instead of the KL divergence. On the other hand, Lipschitz regularization leads to 

the f-divergences bounded even between non-absolutely continuous distributions. 

In terms of the transport equation of probability distributions in the Wasserstein space, the 

gradient flow evolves the empirical distribution in direction of the gradients of the function of 

likelihood ratio that are learned from data. This function is parametrized by neural networks, and 

its gradients give us the particle dynamics. Hence we transport the particles through the ODEs 

and generate more samples from the particles trajectory. 

Moreover, in order to reduce the dimensions, we developed our particle transportation algorithm 

in latent spaces and applied to high dimensional problems such as image generation and gene 

expression data merging. 

 

 

Linearized Wasserstein dimensionality reduction with approximation guarantees 

Varun Khurana, University of California, San Diego 

 

We introduce LOT Wassmap, a computationally feasible algorithm to uncover low-dimensional 

structures in the Wasserstein space. The algorithm is motivated by the observation that many 

datasets are naturally interpreted as probability measures rather than points in $\mathbb{R}^n$, 

and that finding low-dimensional descriptions of such datasets requires manifold learning 

algorithms in the Wasserstein space. Most available algorithms are based on computing the 

pairwise Wasserstein distance matrix, which can be computationally challenging for large 

datasets in high dimensions. Our algorithm leverages approximation schemes such as Sinkhorn 

distances and linearized optimal transport to speed-up computations, and in particular, avoids 

computing a pairwise distance matrix. We provide guarantees on the embedding quality under 

such approximations, including when explicit descriptions of the probability measures are not 

available and one must deal with finite samples instead. Experiments demonstrate that LOT 

Wassmap attains correct embeddings and that the quality improves with increased sample size. 

We also show how LOT Wassmap significantly reduces the computational cost when compared 

to algorithms that depend on pairwise distance computations. 

 

 

Transport subspace models and invariance encoding 

Shiying Li, University of North Carolina - Chapel Hill 

 

Transport-based metrics and related embeddings have recently been used to model data classes 

where nonlinear structures or variations are present. We will describe several transport 

transforms and their mathematical properties related to convexification under various algebraic 

generative modeling assumptions, enabling efficient modeling of data classes as subspaces in the 

transform domain. Such modeling also gives rise to simple machine learning algorithms with the 



ability to incorporate meaningful invariances, which are robust to out-of-distribution samples 

(generalizability). We will show applications in time series classification and face recognition 

under varying illumination conditions.  

 

This poster is based on joint work with Akram Aldroubi, Yan Zhuang, Hasnat Rubaiyat, Gustavo 

Rohde, M Shifat Rabbi, and Xuwang Yin. 

 

 

Multispecies Optimal Transport and its Linearization 

Dorde Nikolic, University of California Santa Barbara 

 

The discovery of linear optimal transport by Wang et al., in 2013 improved the computational 

efficiency of optimal transport algorithms for grayscale image classification. Our main goal is to 

classify special kinds of multicolor images, arising in collider events. We will introduce the 

basics of optimal transport theory, linear optimal transport and the multispecies distance. I will 

discuss similarities of the multispecies case with the Hellinger-Kantorovich distance, which was 

linearized in 2021 by Cai et al., via its Riemannian structure. This is a work in progress with 

Katy Craig and Nicolás García Trillos. 

 

Entropic regularized Wasserstein distances between infinite-dimensional Gaussian 

measures and Gaussian processes 

Minh Ha Quang, RIKEN 

 

Optimal transport (OT) has been attracting much research attention in various fields, in particular 

machine learning and statistics. 

It is well-known that the exact OT distances are generally computationally demanding and suffer 

from the curse of dimensionality. 

One approach to alleviate these problems is via regularization. In this work, we present recent 

results on the entropic regularization of OT in the setting of Gaussian measures on Euclidean 

space and their generalization to the infinite-dimensional setting of Gaussian measures on Hilbert 

space and Gaussian processes. In these settings, the entropic regularized Wasserstein distances 

admit closed form expressions, which satisfy many favorable theoretical properties, especially in 

comparison with the exact distance.  In particular, we show that the infinite-dimensional 

regularized distances can be consistently estimated from the finite-dimensional versions, with 

dimension-independent sample complexities. The methodology of reproducing kernel Hilbert 

spaces (RKHS) plays a crucial role in the theoretical analysis. The mathematical formulation will 

be illustrated with numerical experiments on Gaussian processes. 
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Wasserstein Graph Metric Computes Graph Laplacian Kernel and Geodesics 

Michael Rawson, PNNL 

 

We explore metrics and stabilities in labeled graph spaces. Graphs are used to describe and 

model many systems. Often, stable regions of this space can inform expected behavior of such 

systems. We use regularized Wasserstein (Wass) graph metrics to calculate stabilities, that is, 

unit balls. Wass gives a metric between labeled graphs. Wass unit balls encode the geometry of a 

graph. We show that degenerate dimensions correspond to clusters of vertices. This calculation is 

faster than known methods like graph traversal. It is also accurate in many cases where spectral 

methods or Fiedler vector clustering fails. 

 

Error control in target measure diffusion maps and applications to transition path theory 

Shashank Sule, University of Maryland, College Park 

 

We prove strong pointwise consistency estimates for target measure diffusion map (TMD map), 

a recently proposed algorithm for approximating generators of non-degenerate Ito diffusions on 

high-dimensional pointclouds with arbitrary sampling densities. Our contributions include the 

computation of variance error and bias errors of the algorithm up to explicit formulae for the 

prefactors. We show that approximating the committor function--an important reaction 

coordinate in molecular dynamics--with a uniform sampling density causes several terms in the 

bias error prefactor to cancel. This enables us to use TMD map with a postprocessed sampling 

density for the numerical computation of the committor function in high dimensions. Our work 

thus justifies why TMD map is particularly well-suited for the committor problem and opens the 

door for transport based post-processing techniques for accuracy-boosting sampling of 

manifolds. 

 

 

A mean-field games laboratory for generative modeling 

Benjamin Zhang, University of Massachusetts Amherst 

 

We demonstrate the versatility of mean-field games (MFGs) as a mathematical framework for 

explaining, enhancing, and designing generative models. There is a pervasive sense in the 

generative modeling community that the various flow and diffusion-based generative models 

have some foundational common structure and interrelationships. We establish connections 

between MFGs and major classes of flow and diffusion-based generative models including 

continuous-time normalizing flows, score-based models, and Wasserstein gradient flows. We 

derive these three classes of generative models through different choices of particle dynamics 

and cost functions. Furthermore, we study the mathematical structure and properties of each 

generative model by studying their associated MFG's optimality condition, which is a set of 

coupled nonlinear partial differential equations (PDEs). The theory of MFGs, therefore, enables 

https://epubs.siam.org/doi/abs/10.1137/21M1410488


the study of generative models through the theory of nonlinear PDEs. Through this perspective, 

we investigate the well-posedness and structure of normalizing flows, unravel the mathematical 

structure of score-based generative modeling, and derive a mean-field game formulation of the 

Wasserstein gradient flow. From an algorithmic perspective, the optimality conditions of MFGs 

also allow us to introduce HJB regularizers for enhanced training a broader class of generative 

models. We present this framework as an MFG laboratory which serves as a platform for 

revealing new avenues of experimentation and invention of generative models. This laboratory 

will give rise to a multitude of well-posed generative modeling formulations, providing a 

consistent theoretical framework upon which numerical and algorithmic tools may be developed.  

 

 

Efficient and Exact Multimarginal Optimal Transport with Pairwise Costs 

Bohan Zhou, Dartmouth College 

 

Optimal transport has profound and wide applications since its introduction in 1781 by Monge. 

Thanks to the Benamou-Brenier formulation, it provides a meaningful functional in the image 

science like image and shape registrations. However, exact computation through LP or PDE is in 

general not practical in large scale, while the popular entropy-regularized method introduces 

additional diffusion noise, deteriorating shapes and boundaries. Until the recent work [Jacobs 

and Leger, A Fast Approach to Optimal Transport: the back-and-forth method, Numerische 

Mathematik, 2020], solving OT in a both accurate and fast fashion finally becomes possible. 

Multi-marginal optimal transport is a natural extension from OT but has its own interest, and is 

in general more computationally expensive. The entropy method suffers from both diffusion 

noise and high dimensional computational issues. In this work with Matthew Parno, we extend 

from two marginals to multiple marginals, on a wide class of cost functions in the form of 

summed pairwise costs. This new method is fast and does not introduce diffusion. As a result, 

the new proposed method can be used in many fields those require accurate approach to MMOT. 

 


