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es synaptic strengths, characterized by the amplitudes of minia-
ture excitatory postsynaptic currents (mEPSCs), to increase in a
multiplicative manner (Fig. 1). Conversely, enhancing activity by
blocking inhibition scales down mEPSC amplitudes (Fig. 1).

Some biophysical mechanisms responsible for the bidirection-
al and multiplicative properties of synaptic scaling are understood.
Direct application of glutamate4 and fluorescent labeling of recep-
tors5,6 show that synaptic scaling is due to a postsynaptic change
in the number of functional glutamate receptors. Furthermore,
increasing synaptic strength during reduced activity is associated
with a decrease in the turnover rate of synaptic AMPA-type glu-
tamate receptors6. If receptor insertion and removal rates are dif-
ferentially scaled by activity, this can produce multiplicative changes
in synaptic strength7.

Synaptic scaling in combination with LTP and LTD seems to
generate something similar to a synaptic modification rule analyzed
by Oja8 that illustrates the power of stable, competitive Hebbian
plasticity (see Math Box). The Oja rule combines Hebbian plastic-
ity with a term that multiplicatively decreases the efficacy of all
synapses at a rate proportional to the square of the postsynaptic fir-
ing rate. In simple neuron models, this generates an interesting
form of input selectivity, related to a statistical method called prin-
cipal component analysis, in which neurons become selective to
the linear combination of their inputs with the maximum variance.
This is, in some sense, the most interesting and informative com-
bination of inputs to which the neuron can become responsive.

Activity manipulations scale both AMPA- and NMDA-receptor-
mediated forms of glutamatergic synaptic transmission9. Scaling
of the NMDA receptor component has implications for Hebbian
plasticity, because LTP and LTD are produced by calcium entry
through NMDA receptors. The standard view is that large amounts
of calcium entry induce LTP, whereas smaller amounts cause
LTD10. If neurons scale down NMDA receptor currents in response

to enhanced activity, this may make it more difficult to evoke LTP
and easier to induce LTD. Thus, in addition to multiplicatively
adjusting synaptic strengths, synaptic scaling may modify Heb-
bian plasticity in a manner functionally similar to the BCM model’s
sliding threshold.

Spike-timing dependent synaptic plasticity
Synaptic scaling is a non-Hebbian form of plasticity because it acts
across many synapses and seems to depend primarily on the post-
synaptic firing rate rather than on correlations between pre- and
postsynaptic activity. Purely Hebbian forms of plasticity can also
be used to regulate total levels of synaptic drive, but this requires a
delicate balance between LTP and LTD. The sensitivity of synap-
tic plasticity to the timing of postsynaptic action potentials (STDP)
can provide a mechanism for establishing and maintaining this
balance.

It has long been known that presynaptic activity that precedes
postsynaptic firing or depolarization can induce LTP, whereas
reversing this temporal order causes LTD11–13. Recent experimen-
tal results have expanded our knowledge of the effects of spike tim-
ing on LTP and LTD induction14–21. Although the mechanisms
that make synaptic plasticity sensitive to spike timing are not fully
understood, STDP seems to depend on an interplay between the
dynamics of NMDA receptor activation and the timing of action
potentials backpropagating through the dendrites of the postsy-
naptic neuron15,22,23.

The type and amount of long-term synaptic modification
induced by repeated pairing of pre- and postsynaptic action poten-
tials as a function of their relative timing varies in different prepa-
rations (Fig. 2). In general, synaptic modification is maximal for

Fig. 1. Synaptic scaling is
multiplicative. Quantal ampli-
tudes of miniature EPSCs
recorded from cortical pyra-
midal neurons in cultures that
experience normal levels of
spontaneous activity (control
amplitude) are rank ordered
and plotted against ampli-
tudes recorded in sister cul-
tures in which activity was
either blocked with the
sodium channel blocker
tetrototoxin (TTX) or
enhanced by blocking inhibition with bicuculline (BIC) for two days.
Activity blockade scales up mEPSC amplitude, whereas activity enhance-
ment scales it down. The plots are well fit by straight lines, indicating that
in both cases the scaling is multiplicative. Adapted from ref. 4.
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Fig. 2. The amount and type of synaptic modification (STDP) evoked by
repeated pairing of pre- and postsynaptic action potentials in different
preparations. The horizontal axis is the difference tpre – tpost between the
times of these spikes. The numerical labels on this axis are approximate
and are only intended to give an idea of the general scale. Results are
shown for slice recordings of neocortex layer 5 and layer 2/3 pyramidal
neurons14,21 and layer 4 spiny stellate cells20, in vivo recordings of retino-
tectal synapses in Xenopus tadpoles19, in vitro recordings of excitatory and
inhibitory synapses from hippocampal neurons11–13,15,17,18 (Ganguly et al.,
Soc. Neurosci. Abstr. 25, 291.6, 1999) and recordings from the electrosen-
sory lobe (ELL), a cerebellum-like structure in mormyrid electric fish16.
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in synaptic strength7.

Synaptic scaling in combination with LTP and LTD seems to
generate something similar to a synaptic modification rule analyzed
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ity with a term that multiplicatively decreases the efficacy of all
synapses at a rate proportional to the square of the postsynaptic fir-
ing rate. In simple neuron models, this generates an interesting
form of input selectivity, related to a statistical method called prin-
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the linear combination of their inputs with the maximum variance.
This is, in some sense, the most interesting and informative com-
bination of inputs to which the neuron can become responsive.
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mediated forms of glutamatergic synaptic transmission9. Scaling
of the NMDA receptor component has implications for Hebbian
plasticity, because LTP and LTD are produced by calcium entry
through NMDA receptors. The standard view is that large amounts
of calcium entry induce LTP, whereas smaller amounts cause
LTD10. If neurons scale down NMDA receptor currents in response

to enhanced activity, this may make it more difficult to evoke LTP
and easier to induce LTD. Thus, in addition to multiplicatively
adjusting synaptic strengths, synaptic scaling may modify Heb-
bian plasticity in a manner functionally similar to the BCM model’s
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synaptic firing rate rather than on correlations between pre- and
postsynaptic activity. Purely Hebbian forms of plasticity can also
be used to regulate total levels of synaptic drive, but this requires a
delicate balance between LTP and LTD. The sensitivity of synap-
tic plasticity to the timing of postsynaptic action potentials (STDP)
can provide a mechanism for establishing and maintaining this
balance.

It has long been known that presynaptic activity that precedes
postsynaptic firing or depolarization can induce LTP, whereas
reversing this temporal order causes LTD11–13. Recent experimen-
tal results have expanded our knowledge of the effects of spike tim-
ing on LTP and LTD induction14–21. Although the mechanisms
that make synaptic plasticity sensitive to spike timing are not fully
understood, STDP seems to depend on an interplay between the
dynamics of NMDA receptor activation and the timing of action
potentials backpropagating through the dendrites of the postsy-
naptic neuron15,22,23.
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Fig. 2. The amount and type of synaptic modification (STDP) evoked by
repeated pairing of pre- and postsynaptic action potentials in different
preparations. The horizontal axis is the difference tpre – tpost between the
times of these spikes. The numerical labels on this axis are approximate
and are only intended to give an idea of the general scale. Results are
shown for slice recordings of neocortex layer 5 and layer 2/3 pyramidal
neurons14,21 and layer 4 spiny stellate cells20, in vivo recordings of retino-
tectal synapses in Xenopus tadpoles19, in vitro recordings of excitatory and
inhibitory synapses from hippocampal neurons11–13,15,17,18 (Ganguly et al.,
Soc. Neurosci. Abstr. 25, 291.6, 1999) and recordings from the electrosen-
sory lobe (ELL), a cerebellum-like structure in mormyrid electric fish16.
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repeated pairing of pre- and postsynaptic action potentials in different
preparations. The horizontal axis is the difference tpre – tpost between the
times of these spikes. The numerical labels on this axis are approximate
and are only intended to give an idea of the general scale. Results are
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repeated pairing of pre- and postsynaptic action potentials in different
preparations. The horizontal axis is the difference tpre – tpost between the
times of these spikes. The numerical labels on this axis are approximate
and are only intended to give an idea of the general scale. Results are
shown for slice recordings of neocortex layer 5 and layer 2/3 pyramidal
neurons14,21 and layer 4 spiny stellate cells20, in vivo recordings of retino-
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inhibitory synapses from hippocampal neurons11–13,15,17,18 (Ganguly et al.,
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with reversal potentials VE = 0 mV and V I =
−80 mVand time constants tE = 5 ms, and tI =
10 ms for excitation and inhibition, respective-
ly [see supporting online material (SOM)]. The
strength of the inhibitory synapses was initially
weak but could change according to a spike-
timing–dependent plasticity rule, in which near-
coincident pre- and postsynaptic spikes induce
potentiation of the synapse (17–19). Additional-
ly, every presynaptic spike leads to synaptic
depression (17, 18) (Fig. 1C). This learning rule
can be summarized as

Dw = h(pre × post – r0 × pre)

where ∆w denotes the change in synaptic effi-
cacy, pre and post are the pre- and postsynaptic
activity, h is the learning rate, and r0 is a con-
stant that acts as a target rate for the postsynaptic
neuron (see SOM Sec. 2 for a mathematical
analysis).

Whereas inhibitory synapses were plastic, the
efficacies of the excitatory model synapses were
fixed at the beginning of a simulation and left
unchanged unless otherwise noted. Analogous to
frequency- or orientation-tuned sensory neurons,
excitatory synapses were tuned to have a pre-
ferred signal (Fig. 1E). Because all excitatory

synapses were set to nonzero strengths, the post-
synaptic neuron fired at high rates when the in-
hibitory synapses were weak at the beginning of
a simulation (Fig. 1, D and E, top, and F). The
resulting high number of pairs of pre- and post-
synaptic spikes led to relatively indiscriminate
strengthening of all inhibitory synapses (Fig. 1, D
and E, middle) until excitatory and inhibitory
membrane currents became approximately ba-
lanced and the postsynaptic firing rate was dra-
matically reduced (Fig. 1F). In this globally
balanced state, only unbalanced excitatory sig-
nals led to coincident pairs of pre- and postsynaptic
spikes, consequently strengthening underpowered
inhibitory synapses. Those inhibitory synapses that
were stronger than their excitatory counterparts
kept the postsynaptic side unresponsive and
were thus weakened (because of sole presynaptic
firing) until they allowed postsynaptic spiking
again. Over time, this led to a precise, detailed
balance of excitatory and inhibitory synaptic
weights for each channel (Fig. 1, D and E, bot-
tom). In agreement with the mathematical anal-
ysis, the postsynaptic firing rate was determined
mainly by the depression factor, r0, but not by the
average input firing rate to the postsynaptic neu-
ron (Fig. 1G). The mechanism was robust to
plausible delays of several milliseconds. Howev-

er, because detailed balance requires a correlation
between excitatory and inhibitory synaptic in-
puts, the balance deteriorated when the delay be-
tween excitation and inhibition increased to values
larger than the autocorrelation time of the input
signals and the coincidence time of the Hebbian
learning rule, but global balance still persisted
(fig. S2).

To investigate how the state of the balance
affects the neuron’s response properties, we pres-
ented a fixed stimulus sequence to the neuron
(Fig. 2A) and compared the spiking response
over 50 trials to the input rates of each signal.
In the globally balanced state (Fig. 2B, top) in
which inhibitory synapses were distributed so
that excitation and inhibition were balanced only
on average across all channels, the peristimulus
time histogram (PSTH) faithfully reproduced the
firing rates of the preferred signals. The other, non-
preferred input signals evoked more inhibition
than excitation and thus had no impact on the cell’s
firing behavior. An additional steplike input rate
protocol, in which 100-ms-long pulses of various
step sizes (Fig. 2C) were presented to one channel
at a time, revealed that spiking responses are
largely insensitive to stimulus intensity and indeed
narrowly tuned to the preferred stimulus, giving
rise to an all-or-none response (Fig. 2, D and E).

ð1Þ

Fig. 1. Inhibitory synaptic plas-
ticity balances excitation and
inhibition. (A) Feedforward inhi-
bition: Excitatory input reaches a
target region through both direct
excitation and indirect disynaptic
inhibition. (B) Feedforward inhi-
bition for a single postsynaptic
cell: Eight groups of 100 excit-
atory and 25 inhibitory synapses
each deliver spikes to a single
postsynaptic cell. Spiking prob-
abilities are homogeneous with-
in the groups but vary in time,
simulating eight separate (color-
coded) signal channels that reach
the cell simultaneously through
excitatory and inhibitory synaps-
es. (C) Spike-timing–dependent
learning rule: Near-coincident pre-
and postsynaptic spikes poten-
tiate inhibitory synapses [marked
with * in (A) and (B)], whereas
every presynaptic spike causes
synaptic depression. (D) Total ex-
citatory (black), inhibitory (gray),
and net (green) membrane cur-
rents before, during, and after
inhibitory synaptic plasticity.
The resulting spikes are indi-
cated as dots underneath each
current plot. (E) Excitatory and
inhibitory membrane currents (black and white symbols, respectively) evoked
by each signal channel, averaged over 4 s, before, during, and after inhibitory
synaptic plasticity (top, middle, and bottom, respectively). (F) Temporal evo-
lution of the postsynaptic firing rate (solid line) and the average synaptic
weights of the inhibitory synapses associated with three representative sig-

nals (dotted lines).★, #, and ◊ indicate the times at which the top, middle,
and bottom graphs of (D) and (E) were recorded. (G) Average firing rate of the
postsynaptic neuron after learning, plotted for different values of target firing
rate r0 (left) and different input rates (right). The dashed lines in both graphs
show the analytical predictions.
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Inhibitory Plasticity

Vogels, et al 2011 
Hennequin, et al 2017



Can we extend the mean-field theory of 
balanced networks to include plasticity?


Can the theory predict when a balanced 
state is preserved?




Network Model

Akil, Rosenbaum and Josić, PLoS Comp Bio 2021
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Correlated Balanced State

rx

cx

Baker, et al. 2019

Spike count covariance matrix in window Twin



Correlated Balanced State
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Spike count covariance matrix in window Twin

If , then C remains O(1), and the network is 

in a correlated state. 

cx ≠ 0
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Example: Classical Hebbian plasticity
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Plasticity Rules with up to Second Order 
Interactions 
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Plasticity Rules with up to Second Order 
Interactions 

STDP Rule Coefficients Equation
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Table 1. Examples of STDP rules. A number of different plasticity rules can be
obtained as special cases of the general form given in Eq. (4).

Dynamics of mean synaptic weights in balanced networks 117

To understand how the dynamics of the network, and synaptic weights co–evolve we 118

derived effective equations for the firing rates, spike count covariances, and synaptic 119

weights using Eqs. (1–2). The following is an outline, and details can be found in S2 120

Appendix. 121

We assumed that changes in synaptic weights occur on longer timescales than the 122

dynamics of the eligibility traces and the correlation timescale, i.e. 1/⌘ab � Twin 123

[15, 50–54]. Let �T be a time increment larger than the timescale of eligibility traces, 124

⌧STDP, and Twin, but smaller than 1/⌘ab, so that the difference quotient of the weights 125

and time is given by [15]: 126
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The difference in timescales allows us to assume that the firing rates and covariances are 127

in quasi–equilibrium. Replacing the terms on the right hand side of Eq. (5), with their 128

averages over time, and over different network subpopulations, we obtain the following 129

mean–field equation for the weights: 130
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Averaging synaptic weight dynamics
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Average in time, and over different network realizations
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Closing Equations using Quasi 
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Dynamics of mean synaptic weights in balanced networks 117

To understand how the dynamics of the network, and synaptic weights co–evolve we 118

derived effective equations for the firing rates, spike count covariances, and synaptic 119

weights using Eqs. (1–2). The following is an outline, and details can be found in S2 120

Appendix. 121

We assumed that changes in synaptic weights occur on longer timescales than the 122

dynamics of the eligibility traces and the correlation timescale, i.e. 1/⌘ab � Twin 123

[15, 50–54]. Let �T be a time increment larger than the timescale of eligibility traces, 124

⌧STDP, and Twin, but smaller than 1/⌘ab, so that the difference quotient of the weights 125

and time is given by [15]: 126
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⌧STDP, and Twin, but smaller than 1/⌘ab, so that the difference quotient of the weights 125

and time is given by [15]: 126

�J
ab
jk

�T
=

⌘ab

�T

Z �T

0

h
A0 +

X

↵={a,j},{b,k}

A↵S↵ +
X

↵,�={a,j},{b,k}

B↵,�x↵S�

i
dt. (5)

The difference in timescales allows us to assume that the firing rates and covariances are 127

in quasi–equilibrium. Replacing the terms on the right hand side of Eq. (5), with their 128

averages over time, and over different network subpopulations, we obtain the following 129

mean–field equation for the weights: 130

dJab

dt
= ⌘ab

✓
A0 +

X

↵,�={a,b}

Rate↵,� +Cov↵,�

◆
, (6)

where 131

Rate↵,� = A↵r↵/2 +B↵,�⌧STDP r↵r� ,

Cov↵,� = B↵,�

Z 1

�1
eK(f)hS↵, S�i(f)df,
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Loss of Stability with Kohonen’s Rule 



Correlations have a small impact

See also Graupner, et al, 2016, Ocker and Doiron, 2015

dJab

dt
= ηab (A0 + Aara + Ratea,b + Cova,b)



Can we extend the mean-field theory of 
balanced networks to include plasticity?


Can the theory predict when the balanced 
state is preserved?




Can we extend the mean-field theory of 
balanced networks to include plasticity?


Can the theory predict when the balanced 
state is preserved?


Yes - We can get a closed set of equations that 

describe the evolving dynamics of the network


Multiple forms of plasticity acting together 



Homeostatic Plasticity and Optogenetic Stimulation?
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Homeostatic Plasticity and Optogenetic Stimulation?
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Correlation changes are heterogeneous
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Model with Homeostatic Inhibitory Plasticity
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Model Shows Small Effect During Rest

Vyazovkiy, et al 2008, 

Johansen, et al 2010



Putative IE Synapses are Potentiated

ChR2-expressing

rx = 10Hz

cx = 0.1

Pconnect = 10%

Narrow spiking units
Broad spiking units

Narrow
cell

Broad
cell

Broad pairs

1 4 6 8 10

10

100

1000

1 4 6 8 10
Potentiation index

10

20

30

40

P
ai

r c
ou

nt

PotentiatedDepressed

C
oi

nc
id

en
t s

pi
ke

s

Potentiation 
index (“PI”)

AUC late trials

AUC early trials
=

A CB

D

Time lag (ms)

E F

G H I

J

Potentiation index

K L

M O

-100 -50 0 50 1000

5

10

-100 -50 0 50 1000

5

10

Early control trials

Late control trials

Trial block 1
Trial block 10
Trial block 40

“Awake” network
“Resting” network

Tr
ia

l b
lo

ck
Tr

ia
l b

lo
ck

“Awake” network

“Resting” network

N
Awake Rest

Jrest = f × Jawake

Trial block 1
Trial block 10
Trial block 40

PI = 1.55

Tr
ia

l b
lo

ck

Excitatory Inhibitory

Laser ON Laser ON

IE
 w

ei
gh

t

IE
 w

ei
gh

t (
%

 c
ha

ng
e)

0.996 1.677 *

∆ Correlations (Laser - Control)

C
or

re
la

tio
ns

 (b
as

el
in

e 
su

b.
)

∆ 
C

or
re

la
tio

ns
 (L

-C
)

∆ 
C

or
re

la
tio

ns
 (L

-C
)

∆ 
C

or
re

la
tio

ns
 (L

-C
)

C
or

re
la

tio
ns

 (b
as

el
in

e 
su

b.
)

s



Putative IE Synapses are Potentiated

ChR2-expressing

rx = 10Hz

cx = 0.1

Pconnect = 10%

Narrow spiking units
Broad spiking units

Narrow
cell

Broad
cell

Broad pairs

1 4 6 8 10

10

100

1000

1 4 6 8 10
Potentiation index

10

20

30

40

P
ai

r c
ou

nt

PotentiatedDepressed

C
oi

nc
id

en
t s

pi
ke

s

Potentiation 
index (“PI”)

AUC late trials

AUC early trials
=

A CB

D

Time lag (ms)

E F

G H I

J

Potentiation index

K L

M O

-100 -50 0 50 1000

5

10

-100 -50 0 50 1000

5

10

Early control trials

Late control trials

Trial block 1
Trial block 10
Trial block 40

“Awake” network
“Resting” network

Tr
ia

l b
lo

ck
Tr

ia
l b

lo
ck

“Awake” network

“Resting” network

N
Awake Rest

Jrest = f × Jawake

Trial block 1
Trial block 10
Trial block 40

PI = 1.55

Tr
ia

l b
lo

ck

Excitatory Inhibitory

Laser ON Laser ON

IE
 w

ei
gh

t

IE
 w

ei
gh

t (
%

 c
ha

ng
e)

0.996 1.677 *

∆ Correlations (Laser - Control)

C
or

re
la

tio
ns

 (b
as

el
in

e 
su

b.
)

∆ 
C

or
re

la
tio

ns
 (L

-C
)

∆ 
C

or
re

la
tio

ns
 (L

-C
)

∆ 
C

or
re

la
tio

ns
 (L

-C
)

C
or

re
la

tio
ns

 (b
as

el
in

e 
su

b.
)



C. Elegans ~300 neurons (1986)


Larval MB ~300 neurons (2020)


Drosophila Hemibrain, ~22,000 neurons (2020)


Platinum Mouse ~80,000 neurons (2022)


Human brain by Lichtman’s lab (2021…)


Drosophila Brain, ~130,00 neurons  (2023)


Synapse-level dense reconstructions

Enormous Efforts to Reconstruct the Brain
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Synapse-level dense reconstructions

Enormous Efforts to Reconstruct the Brain

Analysis requires new tools and methods
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Computational complexity and practical implementation. !e most computationally complex and 
time consuming steps of the RenEEL scheme are those that use a base algorithm to "nd an ensemble of partitions. 
!ese steps are colored in red in the #owchart in Fig. 2. Assuming that the size of the ensembles (  and ′(  are 

Figure 1. Construction of a reduced network. (a) An example network showing seven core groups of nodes. 
!e nodes of the same color belong to the same core group. !e nodes inside each of the "ve circles are 
collapsed to single nodes in the reduced network, and the two isolated nodes also become nodes in the reduced 
network. (b) !e reduced network a%er collapsing the core groups into single nodes. !e nodes in the reduced 
network are colored according to the core group nodes in the original network and thickness of each link is 
proportional to its weight.

Figure 2. !e RenEEL scheme. (a) !e steps of an e&cient ensemble learning scheme to "nd the network 
partition that maximizes modularity Q are shown in this #ow chart. In the two steps shown in red a base 
algorithm is used to obtain an ensemble of partitions. !e step shown in purple collapses the core groups to "nd 
the reduced network. !e ensemble (  gets updated with extremal criteria in the step shown in blue and is 
described in (b). !e step shown in green guarantees algorithmic termination in a "nite network. (b) !e 
procedure of the extremal updating of ensemble ( .

Guo et al, 2019
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Community Detection

RenEEL algorithm (Guo et al 2019)  
Input: weighted undirected graph, control  parameter  
Output: list of communities  maximizing 
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1. Complement what fly physiologists have discovered about 
the anatomy of the Drosophila brain.


2. Discover potentially meaningful structures that fly 
physiologists may not know about yet. 

Why apply community detection to 

the connectome?
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Clonal Units

Results

Visualization of Cell Lineage-Dependent Clonal Units in the
Adult Drosophila Brain
To visualize clonal units, we labeled the progeny of single neu-
roblasts, using the mosaic analysis with a repressible cell
marker (MARCM) technique [20]. We used actin-GAL4 or elav-
GAL4 to drive expression in all the neurons and induced flip-
pase-mediated chromosomal recombination with mild heat
shock in late embryos or early first-instar larvae to label all the
neurons of the secondary lineages. To estimate the direction
of information in the labeled neurons, we visualized neural
fibers andpresynaptic sites usingcombinationsof cytoplasmic
reporters (DsRed or GFP) and synaptic vesicle-targeted fusion
reporters (neuronal synaptobrevin [n-Syb]::GFP or synapto-
tagmin [Syt]::HA). Considering the potential cell-specific vari-
ability in the labeling intensity and flipping frequency, we
used various combinations of drivers, reporters, and locations
of recombination targets to reveal a wider variety of clones.

We analyzed in total about 5,000 brain samples, and the
labeled clones that share locations of cell bodies and charac-
teristic projection patterns were classified (Figure 1). We
sometimes found clone samples that visualize characteristic
subsets of arborizations observed in other samples. Given
that this could happen either because flippase-mediated
recombination would have occurred later during development
or because of the variety of expression-driver activity among
cells, we determined that these samples were labeling the
same clone.

We identified 80 groups of neuroblast clones with a single
cluster of cell bodies. In addition, we found 14 groups of cells
that feature two or three clusters of cell bodies in different
parts of the brain. Because these clusters are colabeled repro-
ducibly in all the samples examined, including those in the
companion study by Yu et al. in this issue of Current Biology
[21], it is highly likely that the labeled neurons belong to a single
neuroblast clone despite their distant locations. Most of the
two-cell clones, labeled by the flippase activity in the GMCs,
showed projection patterns that are subsets of the above
clones. However, we found two notable exceptions whose
arborization patterns do not match with any of the above.
Because their lineage identity is not yet resolved, we treated
them as visualizing projections of potentially distinct neuro-
blast clones (see Supplemental Discussion available online).
Thus, we identified in total 96 clonal units (94 clearly identified
and two potential clones) (Figure S1 and Table S1). Three-
dimensional (3D) confocal serial section data of the clones
are available via the FLYBRAIN Neuron Database (http://ndb.
flybrain.org).
The 3D data of the clones acquired from different samples

were put into a standard template [16], using linear and
nonlinear registration methods [22, 23], and overlaid for
comparison (Figure 3A; Movie S1). Arborizations of the
clones together covered nearly the entire volume of the cere-
brum. The opposite hemisphere was also covered exten-
sively, because 51 of the identified clones project also to
the contralateral brain. The ventralmost part of the cerebrum
was covered less extensively, because the current study
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Figure 1. Examples of Clonal Units in the Adult Drosophila Brain

Anterior view of 3D reconstructions. Cell bodies and neuronal fibers (magenta), distributions of presynaptic sites (white), and the entire neuropil of
the template brain (gray) are shown. Arrowheads indicate the location of cell-body clusters, with the letters ‘‘A’’ and ‘‘P’’ denoting their positions in the
anterior or posterior brain, respectively. Images of the entire set of the identified clones are shown in Figure S1. See Table S2A for the names of
neuropils. Scale bar represents 50 mm. Genotypes: elavc155-Gal4 hs-FLP/UAS-DsRed; FRTG13 tub-GAL80/FRTG13; UAS-nSyb::GFP, elavc155-Gal4 hs-
FLP/UAS-Syt::HA; FRTG13 tub-GAL80/FRTG13 UAS-GFP; UAS-mCD8::GFP/+, hs-FLP tub-GAL80 FRT19A/UAS-DsRed FRT19A; actin-Gal4/ +; UAS-n-
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Visualization of Cell Lineage-Dependent Clonal Units in the
Adult Drosophila Brain
To visualize clonal units, we labeled the progeny of single neu-
roblasts, using the mosaic analysis with a repressible cell
marker (MARCM) technique [20]. We used actin-GAL4 or elav-
GAL4 to drive expression in all the neurons and induced flip-
pase-mediated chromosomal recombination with mild heat
shock in late embryos or early first-instar larvae to label all the
neurons of the secondary lineages. To estimate the direction
of information in the labeled neurons, we visualized neural
fibers andpresynaptic sites usingcombinationsof cytoplasmic
reporters (DsRed or GFP) and synaptic vesicle-targeted fusion
reporters (neuronal synaptobrevin [n-Syb]::GFP or synapto-
tagmin [Syt]::HA). Considering the potential cell-specific vari-
ability in the labeling intensity and flipping frequency, we
used various combinations of drivers, reporters, and locations
of recombination targets to reveal a wider variety of clones.

We analyzed in total about 5,000 brain samples, and the
labeled clones that share locations of cell bodies and charac-
teristic projection patterns were classified (Figure 1). We
sometimes found clone samples that visualize characteristic
subsets of arborizations observed in other samples. Given
that this could happen either because flippase-mediated
recombination would have occurred later during development
or because of the variety of expression-driver activity among
cells, we determined that these samples were labeling the
same clone.

We identified 80 groups of neuroblast clones with a single
cluster of cell bodies. In addition, we found 14 groups of cells
that feature two or three clusters of cell bodies in different
parts of the brain. Because these clusters are colabeled repro-
ducibly in all the samples examined, including those in the
companion study by Yu et al. in this issue of Current Biology
[21], it is highly likely that the labeled neurons belong to a single
neuroblast clone despite their distant locations. Most of the
two-cell clones, labeled by the flippase activity in the GMCs,
showed projection patterns that are subsets of the above
clones. However, we found two notable exceptions whose
arborization patterns do not match with any of the above.
Because their lineage identity is not yet resolved, we treated
them as visualizing projections of potentially distinct neuro-
blast clones (see Supplemental Discussion available online).
Thus, we identified in total 96 clonal units (94 clearly identified
and two potential clones) (Figure S1 and Table S1). Three-
dimensional (3D) confocal serial section data of the clones
are available via the FLYBRAIN Neuron Database (http://ndb.
flybrain.org).
The 3D data of the clones acquired from different samples

were put into a standard template [16], using linear and
nonlinear registration methods [22, 23], and overlaid for
comparison (Figure 3A; Movie S1). Arborizations of the
clones together covered nearly the entire volume of the cere-
brum. The opposite hemisphere was also covered exten-
sively, because 51 of the identified clones project also to
the contralateral brain. The ventralmost part of the cerebrum
was covered less extensively, because the current study
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Figure 1. Examples of Clonal Units in the Adult Drosophila Brain

Anterior view of 3D reconstructions. Cell bodies and neuronal fibers (magenta), distributions of presynaptic sites (white), and the entire neuropil of
the template brain (gray) are shown. Arrowheads indicate the location of cell-body clusters, with the letters ‘‘A’’ and ‘‘P’’ denoting their positions in the
anterior or posterior brain, respectively. Images of the entire set of the identified clones are shown in Figure S1. See Table S2A for the names of
neuropils. Scale bar represents 50 mm. Genotypes: elavc155-Gal4 hs-FLP/UAS-DsRed; FRTG13 tub-GAL80/FRTG13; UAS-nSyb::GFP, elavc155-Gal4 hs-
FLP/UAS-Syt::HA; FRTG13 tub-GAL80/FRTG13 UAS-GFP; UAS-mCD8::GFP/+, hs-FLP tub-GAL80 FRT19A/UAS-DsRed FRT19A; actin-Gal4/ +; UAS-n-
Syb::GFP/+.
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Visualization of Cell Lineage-Dependent Clonal Units in the
Adult Drosophila Brain
To visualize clonal units, we labeled the progeny of single neu-
roblasts, using the mosaic analysis with a repressible cell
marker (MARCM) technique [20]. We used actin-GAL4 or elav-
GAL4 to drive expression in all the neurons and induced flip-
pase-mediated chromosomal recombination with mild heat
shock in late embryos or early first-instar larvae to label all the
neurons of the secondary lineages. To estimate the direction
of information in the labeled neurons, we visualized neural
fibers andpresynaptic sites usingcombinationsof cytoplasmic
reporters (DsRed or GFP) and synaptic vesicle-targeted fusion
reporters (neuronal synaptobrevin [n-Syb]::GFP or synapto-
tagmin [Syt]::HA). Considering the potential cell-specific vari-
ability in the labeling intensity and flipping frequency, we
used various combinations of drivers, reporters, and locations
of recombination targets to reveal a wider variety of clones.

We analyzed in total about 5,000 brain samples, and the
labeled clones that share locations of cell bodies and charac-
teristic projection patterns were classified (Figure 1). We
sometimes found clone samples that visualize characteristic
subsets of arborizations observed in other samples. Given
that this could happen either because flippase-mediated
recombination would have occurred later during development
or because of the variety of expression-driver activity among
cells, we determined that these samples were labeling the
same clone.

We identified 80 groups of neuroblast clones with a single
cluster of cell bodies. In addition, we found 14 groups of cells
that feature two or three clusters of cell bodies in different
parts of the brain. Because these clusters are colabeled repro-
ducibly in all the samples examined, including those in the
companion study by Yu et al. in this issue of Current Biology
[21], it is highly likely that the labeled neurons belong to a single
neuroblast clone despite their distant locations. Most of the
two-cell clones, labeled by the flippase activity in the GMCs,
showed projection patterns that are subsets of the above
clones. However, we found two notable exceptions whose
arborization patterns do not match with any of the above.
Because their lineage identity is not yet resolved, we treated
them as visualizing projections of potentially distinct neuro-
blast clones (see Supplemental Discussion available online).
Thus, we identified in total 96 clonal units (94 clearly identified
and two potential clones) (Figure S1 and Table S1). Three-
dimensional (3D) confocal serial section data of the clones
are available via the FLYBRAIN Neuron Database (http://ndb.
flybrain.org).
The 3D data of the clones acquired from different samples

were put into a standard template [16], using linear and
nonlinear registration methods [22, 23], and overlaid for
comparison (Figure 3A; Movie S1). Arborizations of the
clones together covered nearly the entire volume of the cere-
brum. The opposite hemisphere was also covered exten-
sively, because 51 of the identified clones project also to
the contralateral brain. The ventralmost part of the cerebrum
was covered less extensively, because the current study
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Figure 1. Examples of Clonal Units in the Adult Drosophila Brain

Anterior view of 3D reconstructions. Cell bodies and neuronal fibers (magenta), distributions of presynaptic sites (white), and the entire neuropil of
the template brain (gray) are shown. Arrowheads indicate the location of cell-body clusters, with the letters ‘‘A’’ and ‘‘P’’ denoting their positions in the
anterior or posterior brain, respectively. Images of the entire set of the identified clones are shown in Figure S1. See Table S2A for the names of
neuropils. Scale bar represents 50 mm. Genotypes: elavc155-Gal4 hs-FLP/UAS-DsRed; FRTG13 tub-GAL80/FRTG13; UAS-nSyb::GFP, elavc155-Gal4 hs-
FLP/UAS-Syt::HA; FRTG13 tub-GAL80/FRTG13 UAS-GFP; UAS-mCD8::GFP/+, hs-FLP tub-GAL80 FRT19A/UAS-DsRed FRT19A; actin-Gal4/ +; UAS-n-
Syb::GFP/+.
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Visualization of Cell Lineage-Dependent Clonal Units in the
Adult Drosophila Brain
To visualize clonal units, we labeled the progeny of single neu-
roblasts, using the mosaic analysis with a repressible cell
marker (MARCM) technique [20]. We used actin-GAL4 or elav-
GAL4 to drive expression in all the neurons and induced flip-
pase-mediated chromosomal recombination with mild heat
shock in late embryos or early first-instar larvae to label all the
neurons of the secondary lineages. To estimate the direction
of information in the labeled neurons, we visualized neural
fibers andpresynaptic sites usingcombinationsof cytoplasmic
reporters (DsRed or GFP) and synaptic vesicle-targeted fusion
reporters (neuronal synaptobrevin [n-Syb]::GFP or synapto-
tagmin [Syt]::HA). Considering the potential cell-specific vari-
ability in the labeling intensity and flipping frequency, we
used various combinations of drivers, reporters, and locations
of recombination targets to reveal a wider variety of clones.

We analyzed in total about 5,000 brain samples, and the
labeled clones that share locations of cell bodies and charac-
teristic projection patterns were classified (Figure 1). We
sometimes found clone samples that visualize characteristic
subsets of arborizations observed in other samples. Given
that this could happen either because flippase-mediated
recombination would have occurred later during development
or because of the variety of expression-driver activity among
cells, we determined that these samples were labeling the
same clone.

We identified 80 groups of neuroblast clones with a single
cluster of cell bodies. In addition, we found 14 groups of cells
that feature two or three clusters of cell bodies in different
parts of the brain. Because these clusters are colabeled repro-
ducibly in all the samples examined, including those in the
companion study by Yu et al. in this issue of Current Biology
[21], it is highly likely that the labeled neurons belong to a single
neuroblast clone despite their distant locations. Most of the
two-cell clones, labeled by the flippase activity in the GMCs,
showed projection patterns that are subsets of the above
clones. However, we found two notable exceptions whose
arborization patterns do not match with any of the above.
Because their lineage identity is not yet resolved, we treated
them as visualizing projections of potentially distinct neuro-
blast clones (see Supplemental Discussion available online).
Thus, we identified in total 96 clonal units (94 clearly identified
and two potential clones) (Figure S1 and Table S1). Three-
dimensional (3D) confocal serial section data of the clones
are available via the FLYBRAIN Neuron Database (http://ndb.
flybrain.org).
The 3D data of the clones acquired from different samples

were put into a standard template [16], using linear and
nonlinear registration methods [22, 23], and overlaid for
comparison (Figure 3A; Movie S1). Arborizations of the
clones together covered nearly the entire volume of the cere-
brum. The opposite hemisphere was also covered exten-
sively, because 51 of the identified clones project also to
the contralateral brain. The ventralmost part of the cerebrum
was covered less extensively, because the current study
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Figure 1. Examples of Clonal Units in the Adult Drosophila Brain

Anterior view of 3D reconstructions. Cell bodies and neuronal fibers (magenta), distributions of presynaptic sites (white), and the entire neuropil of
the template brain (gray) are shown. Arrowheads indicate the location of cell-body clusters, with the letters ‘‘A’’ and ‘‘P’’ denoting their positions in the
anterior or posterior brain, respectively. Images of the entire set of the identified clones are shown in Figure S1. See Table S2A for the names of
neuropils. Scale bar represents 50 mm. Genotypes: elavc155-Gal4 hs-FLP/UAS-DsRed; FRTG13 tub-GAL80/FRTG13; UAS-nSyb::GFP, elavc155-Gal4 hs-
FLP/UAS-Syt::HA; FRTG13 tub-GAL80/FRTG13 UAS-GFP; UAS-mCD8::GFP/+, hs-FLP tub-GAL80 FRT19A/UAS-DsRed FRT19A; actin-Gal4/ +; UAS-n-
Syb::GFP/+.
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Visualization of Cell Lineage-Dependent Clonal Units in the
Adult Drosophila Brain
To visualize clonal units, we labeled the progeny of single neu-
roblasts, using the mosaic analysis with a repressible cell
marker (MARCM) technique [20]. We used actin-GAL4 or elav-
GAL4 to drive expression in all the neurons and induced flip-
pase-mediated chromosomal recombination with mild heat
shock in late embryos or early first-instar larvae to label all the
neurons of the secondary lineages. To estimate the direction
of information in the labeled neurons, we visualized neural
fibers andpresynaptic sites usingcombinationsof cytoplasmic
reporters (DsRed or GFP) and synaptic vesicle-targeted fusion
reporters (neuronal synaptobrevin [n-Syb]::GFP or synapto-
tagmin [Syt]::HA). Considering the potential cell-specific vari-
ability in the labeling intensity and flipping frequency, we
used various combinations of drivers, reporters, and locations
of recombination targets to reveal a wider variety of clones.

We analyzed in total about 5,000 brain samples, and the
labeled clones that share locations of cell bodies and charac-
teristic projection patterns were classified (Figure 1). We
sometimes found clone samples that visualize characteristic
subsets of arborizations observed in other samples. Given
that this could happen either because flippase-mediated
recombination would have occurred later during development
or because of the variety of expression-driver activity among
cells, we determined that these samples were labeling the
same clone.

We identified 80 groups of neuroblast clones with a single
cluster of cell bodies. In addition, we found 14 groups of cells
that feature two or three clusters of cell bodies in different
parts of the brain. Because these clusters are colabeled repro-
ducibly in all the samples examined, including those in the
companion study by Yu et al. in this issue of Current Biology
[21], it is highly likely that the labeled neurons belong to a single
neuroblast clone despite their distant locations. Most of the
two-cell clones, labeled by the flippase activity in the GMCs,
showed projection patterns that are subsets of the above
clones. However, we found two notable exceptions whose
arborization patterns do not match with any of the above.
Because their lineage identity is not yet resolved, we treated
them as visualizing projections of potentially distinct neuro-
blast clones (see Supplemental Discussion available online).
Thus, we identified in total 96 clonal units (94 clearly identified
and two potential clones) (Figure S1 and Table S1). Three-
dimensional (3D) confocal serial section data of the clones
are available via the FLYBRAIN Neuron Database (http://ndb.
flybrain.org).
The 3D data of the clones acquired from different samples

were put into a standard template [16], using linear and
nonlinear registration methods [22, 23], and overlaid for
comparison (Figure 3A; Movie S1). Arborizations of the
clones together covered nearly the entire volume of the cere-
brum. The opposite hemisphere was also covered exten-
sively, because 51 of the identified clones project also to
the contralateral brain. The ventralmost part of the cerebrum
was covered less extensively, because the current study
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Figure 1. Examples of Clonal Units in the Adult Drosophila Brain

Anterior view of 3D reconstructions. Cell bodies and neuronal fibers (magenta), distributions of presynaptic sites (white), and the entire neuropil of
the template brain (gray) are shown. Arrowheads indicate the location of cell-body clusters, with the letters ‘‘A’’ and ‘‘P’’ denoting their positions in the
anterior or posterior brain, respectively. Images of the entire set of the identified clones are shown in Figure S1. See Table S2A for the names of
neuropils. Scale bar represents 50 mm. Genotypes: elavc155-Gal4 hs-FLP/UAS-DsRed; FRTG13 tub-GAL80/FRTG13; UAS-nSyb::GFP, elavc155-Gal4 hs-
FLP/UAS-Syt::HA; FRTG13 tub-GAL80/FRTG13 UAS-GFP; UAS-mCD8::GFP/+, hs-FLP tub-GAL80 FRT19A/UAS-DsRed FRT19A; actin-Gal4/ +; UAS-n-
Syb::GFP/+.
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Visualization of Cell Lineage-Dependent Clonal Units in the
Adult Drosophila Brain
To visualize clonal units, we labeled the progeny of single neu-
roblasts, using the mosaic analysis with a repressible cell
marker (MARCM) technique [20]. We used actin-GAL4 or elav-
GAL4 to drive expression in all the neurons and induced flip-
pase-mediated chromosomal recombination with mild heat
shock in late embryos or early first-instar larvae to label all the
neurons of the secondary lineages. To estimate the direction
of information in the labeled neurons, we visualized neural
fibers andpresynaptic sites usingcombinationsof cytoplasmic
reporters (DsRed or GFP) and synaptic vesicle-targeted fusion
reporters (neuronal synaptobrevin [n-Syb]::GFP or synapto-
tagmin [Syt]::HA). Considering the potential cell-specific vari-
ability in the labeling intensity and flipping frequency, we
used various combinations of drivers, reporters, and locations
of recombination targets to reveal a wider variety of clones.

We analyzed in total about 5,000 brain samples, and the
labeled clones that share locations of cell bodies and charac-
teristic projection patterns were classified (Figure 1). We
sometimes found clone samples that visualize characteristic
subsets of arborizations observed in other samples. Given
that this could happen either because flippase-mediated
recombination would have occurred later during development
or because of the variety of expression-driver activity among
cells, we determined that these samples were labeling the
same clone.

We identified 80 groups of neuroblast clones with a single
cluster of cell bodies. In addition, we found 14 groups of cells
that feature two or three clusters of cell bodies in different
parts of the brain. Because these clusters are colabeled repro-
ducibly in all the samples examined, including those in the
companion study by Yu et al. in this issue of Current Biology
[21], it is highly likely that the labeled neurons belong to a single
neuroblast clone despite their distant locations. Most of the
two-cell clones, labeled by the flippase activity in the GMCs,
showed projection patterns that are subsets of the above
clones. However, we found two notable exceptions whose
arborization patterns do not match with any of the above.
Because their lineage identity is not yet resolved, we treated
them as visualizing projections of potentially distinct neuro-
blast clones (see Supplemental Discussion available online).
Thus, we identified in total 96 clonal units (94 clearly identified
and two potential clones) (Figure S1 and Table S1). Three-
dimensional (3D) confocal serial section data of the clones
are available via the FLYBRAIN Neuron Database (http://ndb.
flybrain.org).
The 3D data of the clones acquired from different samples

were put into a standard template [16], using linear and
nonlinear registration methods [22, 23], and overlaid for
comparison (Figure 3A; Movie S1). Arborizations of the
clones together covered nearly the entire volume of the cere-
brum. The opposite hemisphere was also covered exten-
sively, because 51 of the identified clones project also to
the contralateral brain. The ventralmost part of the cerebrum
was covered less extensively, because the current study
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Anterior view of 3D reconstructions. Cell bodies and neuronal fibers (magenta), distributions of presynaptic sites (white), and the entire neuropil of
the template brain (gray) are shown. Arrowheads indicate the location of cell-body clusters, with the letters ‘‘A’’ and ‘‘P’’ denoting their positions in the
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Visualization of Cell Lineage-Dependent Clonal Units in the
Adult Drosophila Brain
To visualize clonal units, we labeled the progeny of single neu-
roblasts, using the mosaic analysis with a repressible cell
marker (MARCM) technique [20]. We used actin-GAL4 or elav-
GAL4 to drive expression in all the neurons and induced flip-
pase-mediated chromosomal recombination with mild heat
shock in late embryos or early first-instar larvae to label all the
neurons of the secondary lineages. To estimate the direction
of information in the labeled neurons, we visualized neural
fibers andpresynaptic sites usingcombinationsof cytoplasmic
reporters (DsRed or GFP) and synaptic vesicle-targeted fusion
reporters (neuronal synaptobrevin [n-Syb]::GFP or synapto-
tagmin [Syt]::HA). Considering the potential cell-specific vari-
ability in the labeling intensity and flipping frequency, we
used various combinations of drivers, reporters, and locations
of recombination targets to reveal a wider variety of clones.

We analyzed in total about 5,000 brain samples, and the
labeled clones that share locations of cell bodies and charac-
teristic projection patterns were classified (Figure 1). We
sometimes found clone samples that visualize characteristic
subsets of arborizations observed in other samples. Given
that this could happen either because flippase-mediated
recombination would have occurred later during development
or because of the variety of expression-driver activity among
cells, we determined that these samples were labeling the
same clone.

We identified 80 groups of neuroblast clones with a single
cluster of cell bodies. In addition, we found 14 groups of cells
that feature two or three clusters of cell bodies in different
parts of the brain. Because these clusters are colabeled repro-
ducibly in all the samples examined, including those in the
companion study by Yu et al. in this issue of Current Biology
[21], it is highly likely that the labeled neurons belong to a single
neuroblast clone despite their distant locations. Most of the
two-cell clones, labeled by the flippase activity in the GMCs,
showed projection patterns that are subsets of the above
clones. However, we found two notable exceptions whose
arborization patterns do not match with any of the above.
Because their lineage identity is not yet resolved, we treated
them as visualizing projections of potentially distinct neuro-
blast clones (see Supplemental Discussion available online).
Thus, we identified in total 96 clonal units (94 clearly identified
and two potential clones) (Figure S1 and Table S1). Three-
dimensional (3D) confocal serial section data of the clones
are available via the FLYBRAIN Neuron Database (http://ndb.
flybrain.org).
The 3D data of the clones acquired from different samples

were put into a standard template [16], using linear and
nonlinear registration methods [22, 23], and overlaid for
comparison (Figure 3A; Movie S1). Arborizations of the
clones together covered nearly the entire volume of the cere-
brum. The opposite hemisphere was also covered exten-
sively, because 51 of the identified clones project also to
the contralateral brain. The ventralmost part of the cerebrum
was covered less extensively, because the current study
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Anterior view of 3D reconstructions. Cell bodies and neuronal fibers (magenta), distributions of presynaptic sites (white), and the entire neuropil of
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Visualization of Cell Lineage-Dependent Clonal Units in the
Adult Drosophila Brain
To visualize clonal units, we labeled the progeny of single neu-
roblasts, using the mosaic analysis with a repressible cell
marker (MARCM) technique [20]. We used actin-GAL4 or elav-
GAL4 to drive expression in all the neurons and induced flip-
pase-mediated chromosomal recombination with mild heat
shock in late embryos or early first-instar larvae to label all the
neurons of the secondary lineages. To estimate the direction
of information in the labeled neurons, we visualized neural
fibers andpresynaptic sites usingcombinationsof cytoplasmic
reporters (DsRed or GFP) and synaptic vesicle-targeted fusion
reporters (neuronal synaptobrevin [n-Syb]::GFP or synapto-
tagmin [Syt]::HA). Considering the potential cell-specific vari-
ability in the labeling intensity and flipping frequency, we
used various combinations of drivers, reporters, and locations
of recombination targets to reveal a wider variety of clones.

We analyzed in total about 5,000 brain samples, and the
labeled clones that share locations of cell bodies and charac-
teristic projection patterns were classified (Figure 1). We
sometimes found clone samples that visualize characteristic
subsets of arborizations observed in other samples. Given
that this could happen either because flippase-mediated
recombination would have occurred later during development
or because of the variety of expression-driver activity among
cells, we determined that these samples were labeling the
same clone.

We identified 80 groups of neuroblast clones with a single
cluster of cell bodies. In addition, we found 14 groups of cells
that feature two or three clusters of cell bodies in different
parts of the brain. Because these clusters are colabeled repro-
ducibly in all the samples examined, including those in the
companion study by Yu et al. in this issue of Current Biology
[21], it is highly likely that the labeled neurons belong to a single
neuroblast clone despite their distant locations. Most of the
two-cell clones, labeled by the flippase activity in the GMCs,
showed projection patterns that are subsets of the above
clones. However, we found two notable exceptions whose
arborization patterns do not match with any of the above.
Because their lineage identity is not yet resolved, we treated
them as visualizing projections of potentially distinct neuro-
blast clones (see Supplemental Discussion available online).
Thus, we identified in total 96 clonal units (94 clearly identified
and two potential clones) (Figure S1 and Table S1). Three-
dimensional (3D) confocal serial section data of the clones
are available via the FLYBRAIN Neuron Database (http://ndb.
flybrain.org).
The 3D data of the clones acquired from different samples

were put into a standard template [16], using linear and
nonlinear registration methods [22, 23], and overlaid for
comparison (Figure 3A; Movie S1). Arborizations of the
clones together covered nearly the entire volume of the cere-
brum. The opposite hemisphere was also covered exten-
sively, because 51 of the identified clones project also to
the contralateral brain. The ventralmost part of the cerebrum
was covered less extensively, because the current study
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anterior or posterior brain, respectively. Images of the entire set of the identified clones are shown in Figure S1. See Table S2A for the names of
neuropils. Scale bar represents 50 mm. Genotypes: elavc155-Gal4 hs-FLP/UAS-DsRed; FRTG13 tub-GAL80/FRTG13; UAS-nSyb::GFP, elavc155-Gal4 hs-
FLP/UAS-Syt::HA; FRTG13 tub-GAL80/FRTG13 UAS-GFP; UAS-mCD8::GFP/+, hs-FLP tub-GAL80 FRT19A/UAS-DsRed FRT19A; actin-Gal4/ +; UAS-n-
Syb::GFP/+.

Clonal Architecture of the Drosophila Brain
645

Ito, M., et al (2013). Current Biology, 23(8), 644–655.



Clonal Units

Results

Visualization of Cell Lineage-Dependent Clonal Units in the
Adult Drosophila Brain
To visualize clonal units, we labeled the progeny of single neu-
roblasts, using the mosaic analysis with a repressible cell
marker (MARCM) technique [20]. We used actin-GAL4 or elav-
GAL4 to drive expression in all the neurons and induced flip-
pase-mediated chromosomal recombination with mild heat
shock in late embryos or early first-instar larvae to label all the
neurons of the secondary lineages. To estimate the direction
of information in the labeled neurons, we visualized neural
fibers andpresynaptic sites usingcombinationsof cytoplasmic
reporters (DsRed or GFP) and synaptic vesicle-targeted fusion
reporters (neuronal synaptobrevin [n-Syb]::GFP or synapto-
tagmin [Syt]::HA). Considering the potential cell-specific vari-
ability in the labeling intensity and flipping frequency, we
used various combinations of drivers, reporters, and locations
of recombination targets to reveal a wider variety of clones.

We analyzed in total about 5,000 brain samples, and the
labeled clones that share locations of cell bodies and charac-
teristic projection patterns were classified (Figure 1). We
sometimes found clone samples that visualize characteristic
subsets of arborizations observed in other samples. Given
that this could happen either because flippase-mediated
recombination would have occurred later during development
or because of the variety of expression-driver activity among
cells, we determined that these samples were labeling the
same clone.

We identified 80 groups of neuroblast clones with a single
cluster of cell bodies. In addition, we found 14 groups of cells
that feature two or three clusters of cell bodies in different
parts of the brain. Because these clusters are colabeled repro-
ducibly in all the samples examined, including those in the
companion study by Yu et al. in this issue of Current Biology
[21], it is highly likely that the labeled neurons belong to a single
neuroblast clone despite their distant locations. Most of the
two-cell clones, labeled by the flippase activity in the GMCs,
showed projection patterns that are subsets of the above
clones. However, we found two notable exceptions whose
arborization patterns do not match with any of the above.
Because their lineage identity is not yet resolved, we treated
them as visualizing projections of potentially distinct neuro-
blast clones (see Supplemental Discussion available online).
Thus, we identified in total 96 clonal units (94 clearly identified
and two potential clones) (Figure S1 and Table S1). Three-
dimensional (3D) confocal serial section data of the clones
are available via the FLYBRAIN Neuron Database (http://ndb.
flybrain.org).
The 3D data of the clones acquired from different samples

were put into a standard template [16], using linear and
nonlinear registration methods [22, 23], and overlaid for
comparison (Figure 3A; Movie S1). Arborizations of the
clones together covered nearly the entire volume of the cere-
brum. The opposite hemisphere was also covered exten-
sively, because 51 of the identified clones project also to
the contralateral brain. The ventralmost part of the cerebrum
was covered less extensively, because the current study
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Anterior view of 3D reconstructions. Cell bodies and neuronal fibers (magenta), distributions of presynaptic sites (white), and the entire neuropil of
the template brain (gray) are shown. Arrowheads indicate the location of cell-body clusters, with the letters ‘‘A’’ and ‘‘P’’ denoting their positions in the
anterior or posterior brain, respectively. Images of the entire set of the identified clones are shown in Figure S1. See Table S2A for the names of
neuropils. Scale bar represents 50 mm. Genotypes: elavc155-Gal4 hs-FLP/UAS-DsRed; FRTG13 tub-GAL80/FRTG13; UAS-nSyb::GFP, elavc155-Gal4 hs-
FLP/UAS-Syt::HA; FRTG13 tub-GAL80/FRTG13 UAS-GFP; UAS-mCD8::GFP/+, hs-FLP tub-GAL80 FRT19A/UAS-DsRed FRT19A; actin-Gal4/ +; UAS-n-
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•A general framework to model the effects of STDP on network dynamics. It 
predicts the state of the network, and average quantities.


•Does not capture higher order interactions (eg triplets) which are important in 
some rules. 


•Homeostatic processes observed in waking and resting state can be explained 
using fast changes in inhibitory synapses.


•Automated detection of the large scale organization of neuronal networks can 
provide experimentally testable hypotheses.


• The reconstructed connectome is noisy.  We need new statistical methods to 
make inferences about structures, both small and large.

Conclusion and Outlook
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The average input to the two cell types
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Correlated Balanced State
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Spike count covariance matrix in window Twin
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Spike count covariance matrix in window Twin

If , then C remains O(1), and the network is 

in a correlated state. 

cx ≠ 0

C ⇡ TwincxrxW
�1

W xW
T
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Correlated Balanced State

rx

cx

Baker, et al. 2019

Spike count covariance matrix in window Twin

Covariance in the balanced state

If , then the network is in a 

correlated state 

cx ≠ 0




