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Something Completely 
Different

(plugging an IPAM workshop and a review article)



IPAM Workshop: “Mathematical 
Approaches for Connectome Analysis”

´February 12–16, 2024, IPAM (on UCLA campus)

´https://www.ipam.ucla.edu/programs/workshops/m
athematical-approaches-for-connectome-analysis/

´Applications received by 12/12/23 receive full 
consideration



Review Article: “Oscillatory Networks: 
Insights from Piecewise-Linear 
Modeling”

´ Authors: Stephen Coombes, Mustafa Sayli, Rüdiger Thul, 
Rachel Nicks, Mason A. Porter, and Yi Ming Lai

´ Available at arXiv:2308.09655



Multilayer Networks

(Note: Not the machine-learning use of the term.)



Review Articles and a Book

´ M. Kivelä, A. Arenas, M. Barthelemy, J. P. Gleeson, Y. Moreno, & MAP [2014], 
“Multilayer Networks”, Journal of Complex Networks, 2(3): 203–271

´ MAP [2018], “WHAT IS… A Multilayer Network”, Notices of the American 
Mathematical Society, 65(11): 1419–1423

´ Manlio De Domenico [2022], “Multilayer Networks: Analysis and Visualization: 
Introduction to muxViz with R”, Springer International Publishing, Cham, 
Switzerland

´ Michael Vaiana & Sarah Feldt Muldoon [2020], “Multilayer Brain Networks”, 
Journal of Nonlinear Science, 30: 2147–2169



Multilayer Networks



Example: Node-Colored Network

´ Node-colored network: also known as interconnected network, network of networks, etc.

´ Figure: three alternative representations



Example: Multiplex Network

• Traditional setting: Different types of relationships in different layers
• An old idea from the social-networks literature
• Simplest situation: an edge-colored multigraph



Structural Neuronal Network coupled 
to Functional Neuronal Network
[Figure 1 of Vaiana & Muldoon]



Example: Cognitive Social Structure

(conceptual idea from David Krackhardt, 1987)



General Form of a 
Multilayer Network

• Definition of a multilayer network M
– M = (VM, EM, V, L)

• V: set of nodes (“entities”)
– As in ordinary graphs

• L: sequence of sets of possible layers
– One set for each additional “aspect” d ≥ 0 beyond an ordinary network 

(example: d = 1 in schematic on this page)
• VM: set of tuples that represent node-layers
• EM: multilayer edge set that connects these tuples

• Note 1: Allow weighted multilayer networks by mapping edges to 
real numbers with w: EMèR

• Note 2: The case d = 0 yields the usual single-layer (“monolayer”) 
networks



A Few Possible Constraints
• 1. Node-aligned (or fully interconnected): All layers include all nodes
• 2. Layer disjoint: Each node exists in at most one layer
• 3. Equal size: Each layer has the same number of nodes (but they need not be the 

same ones)
• 4. Diagonal coupling: Interlayer edges can exist only between nodes and their

counterparts
• 5. Layer coupling: coupling between layers is independent of node identity

– Note: this is a special case of “diagonal coupling”
• 6. Categorical coupling: diagonal couplings in which interlayer edges can be 

present between any pair of layers

• Example 1: Most (but not all) multiplex networks that have been studied in the 
literature satisfy (1,3,4,5,6) and include d = 1 aspects
– Note: Many important situations need (1,3) to be relaxed.  (E.g. Some people have

Facebook accounts but not Twitter accounts.)
– Property (4) is the key defining feature of a multiplex network as a special type of 

multilayer network

• Example 2: The networks of networks that have been investigated typically satisfy
(3) and have additional constraints (which can be relaxed)



Tensorial Representation

• Adjacency tensor for unweighted case:

• Elements of adjacency tensor: 
– Auvαβ = Auvα1β1 … αdβd = 1 if and only if ((u,α), (v,β)) is an 

element of EM (otherwise, Auvαβ = 0)

• Note: ‘padding’ layers with empty nodes
– One needs to distinguish between a node not present in a 

layer and nodes existing but edges not present (use a 
supplementary tensor with labels for edges that could
exist), as this is important for normalization in many
quantities.
– “Missing edges” versus “forbidden edges”



“Flattened” Multilayer Networks
(supra-adjacency representation)

´ Schematic from M. Bazzi, MAP, S. Williams, M. McDonald, D. 
J. Fenn, & S. D. Howison [2016] Multiscale Modeling and Simulation: A 
SIAM Interdisciplinary Journal, 14(1): 1–41 
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Fig. 3.1. Example of (left) a multilayer network with unweighted intra-layer connections (solid
lines) and uniformly weighted inter-layer connections (dashed curves) and (right) its corresponding
adjacency matrix. (The adjacency matrix that corresponds to a multilayer network is sometimes
called a “supra-adjacency matrix” in the network-science literature [39].)

or an adjacency matrix to represent a multilayer network.) The generalization in [49]
consists of applying the function in (2.16) to the N |T |-node multilayer network:

r̂(C, t) =

N |T |X

i,j=1

✓
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⇥
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⇤
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where C is now a multilayer partition (i.e., a partition of an N |T |-node multilayer
network), ⇤ is the N |T | ⇥N |T | diagonal matrix with the rates of the exponentially
distributed waiting times at each node of each layer on its diagonal, M (with en-
tries Mij := Aij/

P
j Aij) is the N |T | ⇥ N |T | transition matrix for the N |T |-node

multilayer network with adjacency matrix A, ⇡i is the corresponding stationary dis-
tribution (with the strength of a node and the total edge weight now computed from
the multilayer adjacency matrix A), and ⇢i|j is the probability of jumping from node
i to node j at stationarity in one step conditional on the structure of the network
within and between layers. The authors’ choice of ⇢i|j , which accounts for the “spar-
sity pattern”10 of inter-layer edges in the multilayer adjacency matrix, motivates the
multilayer modularity-maximization problem

max
C2C

N |T |X

i,j=1

Bij�(ci, cj) , (3.2)

which we can also write as maxC2C Q(C|B), where B is the multilayer modularity

matrix
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10The sparsity pattern of a matrix X is a matrix Y with entries Yij = 1 when Xij 6= 0 and
Yij = 0 when Xij = 0.



“Diagonal” Multilayer Networks: 
Ordinal and Categorical Coupling

´ Ordinal coupling: diagonal interlayer 
edges among consecutive layers (e.g., 
multilayer representation of a temporal 
network)

´ Categorical coupling: diagonal interlayer 
edges between all pairs of edges

´ Both can be present in a multilayer 
network, and both can be generalized

Schematic from P. J. Mucha, T. Richardson, K. Macon, MAP, & J.-P. Onnela [2010], 
“Community Structure in Time-Dependent, Multiscale, and Multiplex Networks”, 
Science, Vol. 328, No. 5980: 876–878  



A Few Notes on Data and 
Practicalities

´ Lots of reliable data on intralayer relations (i.e., the usual kind of edges)
´ It is often more challenging to collect reliable data for interlayer edges (e.g., how to 

determine edge weights?)
´ Determining interlayer edges as a problem in trying to reconcile node identities 

across networks.  
´ Example: Can you figure out that a Twitter account and Facebook account 

belong to the same person?
´ Layers can have different numbers of entities, but one needs to normalize properly 

when developing network diagnostics (e.g., transitivity and clustering coefficients; 
Cozzo et al., New J. Phys., 2015).

´ Questions: In various neuroscience applications, what are the intralayer edges 
and what are the interlayer edges? How easy is it to determine or infer edge 
weights for each type of edge?



Multilayer Networks in 
Neuroscience

(a few examples)



Constructing a Multilayer 
Frequency Network
[Figure 4 of Vaiana & Muldoon]



Multilayer Frequency-Based 
Brain Networks

´ J. M. Buldú & MAP [2018], “Frequency-based brain networks: From a multiplex 
framework to a full multilayer description”, Network Neuroscience, 2(4): 418–441

´ How do results differ depending on whether or not one includes cross-frequency 
coupling between two different brain regions (i.e., “non-diagonal” interlayer edges, in 
our multilayer-networks language)?
´ I.e., including edges of types {1,2,3} versus including only edges of types {1,2} 

´ The latter is what it means for a multilayer network to be of the special case “multiplex”

´ Three types of edges
´ 1: intralayer edges: quantify coordination between different brain regions at the same 

frequency band
´ 2: “diagonal” interlayer edges: couple the activity of the same brain region at different 

frequency bands
´ 3: “non-diagonal” interlayer edges: quantifies cross-frequency coupling (CFC) between different 

brain regions







Community Structure in Time-
Dependent Functional Brain Networks

´ D. S. Bassett, N. F. Wymbs, MAP, P. J. Mucha, J. M. 
Carlson, & S. T. Grafton [2011], “Dynamic 
Reconfiguration of Human Brain Networks During 
Learning”, Proceedings of the National Academy of 
Sciences of the United States of America, Vol. 108, No. 
18: 7641–7646 



Experiments



Constructing Time-Dependent 
Functional Brain Networks



Detect Communities by Optimizing a 
Multilayer Modularity Objective Function

´ Assign node-layers to communities to maximize Q

´ Recall: Node x in layer r is a different node-layer from node x in layer s

´ We derived this function in Mucha et al. (2010) by linearizing Laplacian dynamics



Example: Zachary Karate Club

Figure from Mucha et al. (2010)



Dynamic Reconfiguration of Human 
Brain Networks During Learning

´ fMRI data: network from coherences of the time 
series in regions of the brain parcellation

´ Examine role of modularity in human learning by 
identifying dynamic changes in modular 
organization over multiple time scales

´ Main result: Flexibility, as measured by 
allegiance of nodes to communities, in one 
session predicts amount of learning in 
subsequent session

´ Much subsequent work on this in the last decade





Stationarity and Flexibility

´Community stationarity ζ (autocorrelation over time of 
community membership):

´Node flexibility:
´ fi = number of times node i changed communities 

divided by total number of possible changes 
´ flexibility f = <fi>





Dynamic Community Structure
(different types of randomization)

´ Investigating community structure in 
a multilayer framework requires 
consideration of new null models

´ Many more details!
´ E.g., robustness of results to choice of 

size of time window, size of interlayer 
coupling, particular definition of 
flexibility, complicated modularity 
landscape, choice of how one calculates 
the ‘similarity’ of the time series, etc.



Which Brain Regions are “Flexible”?

´ D. S. Bassett, N. F. Wymbs, M. P. Rombach, 
MAP, P. J. Mucha, & S. T. Grafton [2013], 
PLoS Comput. Bio. 9(9): 1003171
´ Experimental protocol and notion of 

“learning” a bit different than in the 2011 
paper

´ Flexible nodes are consistently in a 
“periphery” in time-indepenent networks 
across different time windows  

´ Nodes that are not flexible (call them 
“stiff”) are consistently in a structural core 
in these time-independent networks

´ Methodology for computing core–periphery 
structure:
´ M. P. Rombach, MAP, J. H. Fowler, & P. J. 

Mucha [2014], SIAM J. App. Math., Vol. 74, 
No. 1: 167–190

´ The 2017 ‘reboot’ of this paper in SIAM 
Review has extra material with subsequent 
development of methods for core–periphery 
detection



Development of Null Models for 
Multilayer Networks

• D. S. Bassett, MAP, N. F. Wymbs, S. T. Grafton, J. M. 
Carlson, & P. J. Mucha [2013], Chaos, 23(1): 013142

• Additional structure in adjacency tensors gives more 
freedom (and responsibility) for choosing null models.

• Null models that incorporate information about a system
• E.g., chain null model fixes network topology but randomizes 

network “geometry” (edge weights) 
• Also: Examine null models from shuffling time series 

directly (before turning into a network)
• Structural (γ) versus temporal resolution parameter (ω)

• More generally, how to choose interlayer terms Cjrs



Functional Networks from Time-
Series Output of Dynamical Systems
(also in D. S. Bassett et al., Chaos, 2013)

• Multilayer community detection 
doesn’t care whether the time series 
come from experimental 
measurements or output from 
dynamical systems.

• Leverage knowledge of well-known 
dynamical systems to help with 
methodological development, 
validation, explore ideas, perhaps 
obtained insights on the dynamical 
systems themselves, etc.



Constructing a Multilayer Network to 
Study Motor Chunking

´ N. F. Wymbs, D. S. Bassett, 
P. J. Mucha, MAP, & S. T. 
Grafton [2012], 
“Differential recruitment of 
the sensorimotor putamen 
and frontoparietal cortex 
during motor chunking in 
humans”, Neuron, 74(5): 
936–946



Challenges and Conclusions



Some Challenges
(some hinted at earlier)

´ Too many choices for how to do things
´ Choices of parameter values, such as for interlayer coupling
´ Different choices for what layers encode

´ Approach to methods like community detection
´ Modularity maximization is old-fashioned and not statistically 

principled, but statistically principled methods like inference using 
stochastic block models require assumptions on probability distributions 
of edge weights
´Need more mathematical studies of random-graph models with edge 

weights

´ Development of random-graph null models and analysis of these 
models



Some More Challenges
(some hinted at earlier)

´ How do to multilayer core–periphery detection?
´ A current project of my PhD student Theo Faust

´ Dynamical processes on multilayer networks
´ E.g., oscillations coupled to blood flow, such as in a couple of papers by 

Alex Arenas and collaborators on a Kuramoto model (i.e., a toy 
coupled-oscillator model) coupled to a random walk (as a toy model for 
diffusion of blood)

´ How do we define “learning” in the neuroscience experiments?
´ E.g., short-term versus medium-term versus long-term

´ I’m sure that many of you see difficulties in these approaches 
that would be good to think more about and improve.



Summary

´ Multilayer network analysis is a flexible framework to study 
many systems

´ There is a rich literature on multilayer network analysis in 
neuroscience

´ The flexibility of multilayer networks is both beneficial and a 
source of many challenges
´ Including in data analysis, mathematical modeling, and mathematical 

problems of intrinsic interest (i.e., even if the applications didn’t exist)


