Rank-one Boolean tensor factorization and the multilinear polytope

Jan 2023

Aida Khajavirad
Lehigh University

Joint work with Alberto Del Pia (University of Wisconsin-Madison)
Boolean tensor factorization: introduction

- A tensor of order N is an N-dimensional array. Factorizations of high-order tensors, i.e., $N \geq 3$, as products of low-rank matrices, have applications in signal processing, numerical linear algebra, computer vision, data mining, neuroscience, and elsewhere.

- We consider the problem of factorizing a high-order tensor with binary entries, referred to as a binary tensor.

- In Boolean tensor factorization (BTF), the binary tensor is approximated by products of low rank binary matrices using Boolean algebra.

- Applications include neuro-imaging, recommendation systems, topic modeling, and sensor network localization.

- BTF is NP-hard in general; all existing methods rely on heuristics without any guarantee on the quality of the solution.
Boolean tensor factorization: problem statement

• For simplicity, we focus on tensors of order three.

• The (Boolean) rank of a binary tensor G is the smallest integer r such that there exist $3r$ binary vectors x^p, y^p, z^p, for $p \in [r]$, with

$$G = \bigvee_{p=1}^{r} (x^p \otimes y^p \otimes z^p),$$

where \bigvee denotes the component-wise “or” operation, and \otimes denotes the vector outer product.

• The rank-r BTF is the problem of finding the closest rank-r binary tensor to a binary tensor. Given a $n \times m \times l$ binary tensor G and an integer r, find $3r$ binary vectors $x^p \in \{0, 1\}^n$, $y^p \in \{0, 1\}^m$, $z^p \in \{0, 1\}^l$, for all $p \in [r]$, that minimize

$$\|G - \bigvee_{p=1}^{r} x^p \otimes y^p \otimes z^p\|^2,$$

where the Frobenius norm of G is defined as $\|G\| := \sqrt{\sum_{i,j,k} w_{ijk}^2}$.
Rank-one Boolean tensor factorization

- **Rank-one BTF**: the simplest case of BTF with $r = 1$:

 $$\min \left\| G - x \otimes y \otimes z \right\|^2$$

 s.t. $x \in \{0, 1\}^n$, $y \in \{0, 1\}^m$, $z \in \{0, 1\}^l$.

- Rank-one BTF is **NP-hard** and no algorithm with theoretical guarantees is known for this problem.

- Define $S_0 := \{(i, j, k) \in [n] \times [m] \times [l] : g_{ijk} = 0\}$, $S_1 := \{(i, j, k) \in [n] \times [m] \times [l] : g_{ijk} = 1\}$, and $w_{ijk} := x_i y_j z_k$, for $i \in [n]$, $j \in [m]$, $k \in [l]$.

- Rank-one BTF can be written, in an extended space, as the problem of minimizing a linear function over a highly structured multilinear set:

 $$\min \sum_{(i,j,k) \in S_0} w_{ijk} + \sum_{(i,j,k) \in S_1} (1 - w_{ijk})$$

 s.t. $w_{ijk} = x_i y_j z_k$, $\forall i \in [n], j \in [m], k \in [l]$,

 $x \in \{0, 1\}^n$, $y \in \{0, 1\}^m$, $z \in \{0, 1\}^l$.
Multilinear sets and polytopes

- With any hypergraph \(G = (V, E) \), we associate a Multilinear set \(S_G \) defined as:

\[
S_G = \{ (u, w) \in \{0, 1\}^{|V|} \times \{0, 1\}^{|E|} : w_e = \prod_{v \in e} u_v, \ e \in E \},
\]

and the Multilinear polytope \(MP_G \) is the convex hull of \(S_G \).

\[
\begin{align*}
 w_{12} &= u_1 u_2 \\
 w_{24} &= u_2 u_4 \\
 w_{123} &= u_1 u_2 u_3 \\
 w_{134} &= u_1 u_3 u_4
\end{align*}
\]

- For quadratic sets, we obtain the graph representation of the Boolean quadric polytope (Padberg, 89)

\[
\begin{align*}
 w_{12} &= u_1 u_2 \\
 w_{24} &= u_2 u_4 \\
 w_{34} &= u_3 u_4
\end{align*}
\]

- There are interesting connections between the complexity of \(MP_G \) and the acyclicity degree of its hypergraph.
Standard linearization of Rank-one BTF

- A simple LP relaxation of Rank-one BTF can be obtained by replacing each multilinear term \(w_{ijk} = x_i y_j z_k, \ x_i, y_j, z_k \in \{0, 1\} \), by its convex hull:

\[
\begin{align*}
\min & \quad \sum_{(i,j,k) \in S_0} w_{ijk} + \sum_{(i,j,k) \in S_1} (1 - w_{ijk}) \\
\text{s.t.} & \quad w_{ijk} \leq x_i, \ w_{ijk} \leq y_j, \ w_{ijk} \leq z_k, \quad \forall (i, j, k) \in S_1 \\
& \quad w_{ijk} \geq 0, \ w_{ijk} \geq x_i + y_j + z_k - 2, \quad \forall (i, j, k) \in S_0 \\
& \quad (x, y, z) \in [0, 1]^{n+m+l}.
\end{align*}
\]

- Stronger LP relaxations can be obtained by convexifying multiple multilinear terms at a time.

\[
\tilde{G} = (\tilde{V}, \tilde{E})
\]

\[
\tilde{V} = \{v_1, v_2, v_3, v_4, v_5, v_6\}
\]

\[
\tilde{E} = \{e_0, e_1, e_2, e_3\}
\]
Rank-one BTF and the multilinear polytope

- **Proposition:** The facet description of $\text{MP}_{\tilde{G}}$ is given by:

$$w_e \leq u_v, \quad \forall e \in \tilde{E}, \forall v \in e$$

$$w_e \geq 0, \quad \sum_{v \in e} u_v - w_e \leq 2, \quad \forall e \in \tilde{E}$$

$$u_v \leq 1, \quad \forall v \in \tilde{V}$$

$$u_{e_0 \backslash e} + w_e - w_{e_0} \leq 1, \quad \forall e \in \tilde{E} \backslash \{e_0\}$$

$$u_{e \backslash e_0} - w_e + w_{e_0} \leq 1, \quad \forall e \in \tilde{E} \backslash \{e_0\}$$

$$-u_{e \cap e'} + w_e + w_{e'} - w_{e_0} \leq 0, \quad \forall e \neq e' \in \tilde{E} \backslash \{e_0\}$$

$$\sum_{v \in V} u_v - \sum_{e \in \tilde{E} \backslash \{e_0\}} w_e + w_{e_0} \leq 4.$$

- **Proposition:** All inequalities defining facets of $\text{MP}_{\tilde{G}}$ are facet-defining for the multilinear polytope of rank-one BTF, once we associate u_{v_1}, u_{v_2} to any two x variables, u_{v_3}, u_{v_4} to any two y variables, and u_{v_5}, u_{v_6} to any two z variables.
LP relaxations for Rank-one BTF

- A stronger LP relaxation of Rank-one BTF is given by

\[
\begin{align*}
\min & \quad \sum_{(i,j,k)\in S_0} w_{ijk} + \sum_{(i,j,k)\in S_1} (1 - w_{ijk}) \\
\text{s.t.} & \quad w_{ijk} \leq x_i, \quad w_{ijk} \leq y_j, \quad w_{ijk} \leq z_k, \quad \forall (i,j,k) \in S_1 \\
& \quad w_{ijk} \geq 0, \quad w_{ijk} \geq x_i + y_j + z_k - 2, \quad \forall (i,j,k) \in S_0 \\
& \quad w_{i'jk} - w_{ijk} \leq 1 - x_i, \quad \forall (i,j,k) \in S_0, (i',j,k) \in S_1 \\
& \quad w_{i'jk} - w_{ijk} \leq 1 - y_j, \quad \forall (i,j,k) \in S_0, (i',j,k) \in S_1 \\
& \quad w_{ijk'} - w_{ijk} \leq 1 - z_k, \quad \forall (i,j,k) \in S_0, (i,j,k') \in S_1 \\
& \quad w_{i'k} + w_{ijk'} - w_{ijk} \leq x_i, \quad \forall (i,j,k) \in S_0, (i',j,k) \in S_1, (i,j,k') \in S_1 \\
& \quad w_{i'jk} + w_{ijk'} - w_{ijk} \leq y_j, \quad \forall (i,j,k) \in S_0, (i',j,k) \in S_1, (i,j,k') \in S_1 \\
& \quad w_{i'jk} + w_{ijk'} - w_{ijk} \leq z_k, \quad \forall (i,j,k) \in S_0, (i',j,k) \in S_1, (i,j,k') \in S_1 \\
& \quad x_i + x_i' + y_j + y_j' + z_k + z_k' + w_{ijk} - w_{i'jk} - w_{ijk'} \leq 4, \\
& \quad \forall (i',j,k) \in S_0, (i,j,k') \in S_0, (i,j,k) \in S_1 \\
& \quad (x,y,z) \in [0,1]^{n+m+l}.
\end{align*}
\]

(cLP)
LP relaxations for Rank-one BTF

- We analyze the theoretical performance of the following relaxation of Problem (cLP):

\[
\begin{align*}
\min & \quad \sum_{(i, j, k) \in S_0} w_{ijk} + \sum_{(i, j, k) \in S_1} (1 - w_{ijk}) \\
\text{s.t.} & \quad w_{ijk} \leq x_i, \quad w_{ijk} \leq y_j, \quad w_{ijk} \leq z_k, \quad \forall (i, j, k) \in S_1 \\
& \quad w_{ijk} \geq 0, \quad w_{ijk} \geq x_i + y_j + z_k - 2, \quad \forall (i, j, k) \in S_0 \\
& \quad w_{ij'k} - w_{ijk} \leq 1 - x_i, \quad \forall (i, j, k) \in S_0, (i', j, k) \in S_1 \\
& \quad w_{ij'k} - w_{ijk} \leq 1 - y_j, \quad \forall (i, j, k) \in S_0, (i, j', k) \in S_1 \\
& \quad w_{ijk'} - w_{ijk} \leq 1 - z_k, \quad \forall (i, j, k) \in S_0, (i, j, k') \in S_1 \\
& \quad (x, y, z) \in [0, 1]^{n+m+l}.
\end{align*}
\]
Recovery under random models

- Given an LP relaxation of Rank-one BTF and a random model for noise in the input tensor, what is the maximum level of noise under which the relaxation recovers the ground truth with high probability? (probability tending to 1 as $n, m, l \to \infty$.)

- Random corruption model for rank-one BTF: consider binary vectors $\bar{x} \in \{0, 1\}^n$, $\bar{y} \in \{0, 1\}^m$, $\bar{z} \in \{0, 1\}^l$ and define the ground truth rank-one tensor $\bar{W} = (w_{ijk}) := \bar{x} \otimes \bar{y} \otimes \bar{z}$. Given $p \in [0, 1]$, the noisy tensor G is as follows: for each $(i, j, k) \in [n] \times [m] \times [l]$, g_{ijk} is corrupted with probability p, i.e., $g_{ijk} := 1 - \bar{x}_i\bar{y}_j\bar{z}_k$, and g_{ijk} is not corrupted with probability $1 - p$, i.e., $g_{ijk} := \bar{x}_i\bar{y}_j\bar{z}_k$. We focus on the case where p is a constant.

- Denote by $r_{\bar{x}}$ (resp. $r_{\bar{y}}, r_{\bar{z}}$) the ratio of ones in \bar{x} (resp. \bar{y}, \bar{z}) to the number of elements in \bar{x} (resp. \bar{y}, \bar{z}). Assume that $r_{\bar{x}}, r_{\bar{y}}, r_{\bar{z}}$ are positive constants and let $r_{\bar{w}} := r_{\bar{x}}r_{\bar{y}}r_{\bar{z}}$.
Information theoretic limits

• What is the corruption range, in terms of p, for which any algorithm, regardless of its computational complexity, can recover the ground truth with high probability.

• Theorem (Information theoretic lower bound): If $p \geq 1/2$, then the probability that rank-one BTF recovers the ground truth is at most $1/2$. Furthermore, if $r_{\bar{x}}, r_{\bar{y}}, r_{\bar{z}}, p$ are positive constants and $p > 1/2$, then with high probability rank-one BTF does not recover the ground truth.

• Theorem (Information theoretic upper bound): Assume that $r_{\bar{x}}, r_{\bar{y}}, r_{\bar{z}}$ are positive constants and

$$\lim_{n,m,l \to \infty} \frac{n + m + l}{\min\{nm, nl, ml\}} = 0.$$

If p is a constant satisfying $p < 1/2$, then rank-one BTF recovers the ground truth with high probability.
Recovery guarantees for LP relaxations

• **Theorem:** Assume that, as $n, m, l \to \infty$, we have $n \exp(-m), n \exp(-l), m \exp(-n), m \exp(-l), l \exp(-n), l \exp(-m) \to 0$. If p is a constant satisfying $p < \frac{r \bar{w}}{2(1 + r \bar{w})}$, then Problem (sLP) recovers the ground truth with high probability.

• **Theorem:** Assume that, as $n, m, l \to \infty$, we have $nml \exp(-n), nml \exp(-m), nml \exp(-l) \to 0$. If p is a constant satisfying $p < \frac{r \bar{w}}{1 + 2r \bar{w}}$, then Problem (fLP) recovers the ground truth with high probability.
Numerical experiments

(a) Standard LP

(b) Flower LP

(c) Complete LP