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Boolean tensor factorization: introduction

• A tensor of order N is an N -dimensional array. Factorizations of high-order
tensors, i.e., N ≥ 3, as products of low-rank matrices, have applications
in signal processing, numerical linear algebra, computer vision, data mining,
neuroscience, and elsewhere.

• We consider the problem of factorizing a high-order tensor with binary entries,
referred to as a binary tensor.

• In Boolean tensor factorization (BTF), the binary tensor is approximated by
products of low rank binary matrices using Boolean algebra.

• Applications include neuro-imaging, recommendation systems, topic modeling,
and sensor network localization

• BTF is NP-hard in general; all existing methods rely on heuristics without any
guarantee on the quality of the solution.
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Boolean tensor factorization: problem statement

• For simplicity, we focus on tensors of order three.

• The (Boolean) rank of a binary tensor G is the smallest integer r such that
there exist 3r binary vectors xp, yp, zp, for p ∈ [r], with

G =
r
∨

p=1

(xp ⊗ yp ⊗ zp),

where ∨ denotes the component-wise “or” operation, and ⊗ denotes the vector
outer product.

• The rank-r BTF is the problem of finding the closest rank-r binary tensor to
a binary tensor. Given a n ×m × l binary tensor G and an integer r, find 3r
binary vectors xp ∈ {0, 1}n, yp ∈ {0, 1}m, zp ∈ {0, 1}l, for all p ∈ [r], that
minimize

∥

∥

∥
G −

r
∨

p=1

xp ⊗ yp ⊗ zp
∥

∥

∥

2

,

where the Frobenius norm of G is defined as ‖G‖ :=
√

∑

i,j,kw
2
ijk.
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Rank-one Boolean tensor factorization

• Rank-one BTF: the simplest case of BTF with r = 1:

min
∥

∥

∥
G − x⊗ y ⊗ z

∥

∥

∥
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s.t. x ∈ {0, 1}n, y ∈ {0, 1}m, z ∈ {0, 1}l.

• Rank-one BTF is NP-hard and no algorithm with theoretical guarantees is
known for this problem.

• Define S0 := {(i, j, k) ∈ [n] × [m] × [l] : gijk = 0}, S1 := {(i, j, k) ∈ [n] ×
[m]× [l] : gijk = 1}, and wijk := xiyjzk, for i ∈ [n], j ∈ [m], k ∈ [l].

• Rank-one BTF can be written, in an extended space, as the problem of
minimizing a linear function over a highly structured multilinear set:

min
∑

(i,j,k)∈S0

wijk +
∑

(i,j,k)∈S1

(1− wijk)

s.t. wijk = xiyjzk, ∀i ∈ [n], j ∈ [m], k ∈ [l]

x ∈ {0, 1}n, y ∈ {0, 1}m, z ∈ {0, 1}l.
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Multilinear sets and polytopes
• With any hypergraph G = (V,E), we associate a Multilinear set SG defined as:

SG = {(u,w) ∈ {0, 1}|V | × {0, 1}|E| : we =
∏

v∈e

uv, e ∈ E},

and the Multilinear polytope MPG is the convex hull of SG.

w12 = u1u2

w24 = u2u4

w123 = u1u2u3

w134 = u1u3u4

1

2

3
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• For quadratic sets, we obtain the graph representation of the Boolean quadric
polytope (Padberg, 89)

w12 = u1u2

w24 = u2u4

w34 = u3u4

1

2

3

4

• There are interesting connections between the complexity of MPG and the
acyclicity degree of its hypergraph.
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Standard linearization of Rank-one BTF

• A simple LP relaxation of Rank-one BTF can be obtained by replacing each
multilinear term wijk = xiyjzk, xi, yj, zk ∈ {0, 1}, by its convex hull:

min
∑

(i,j,k)∈S0

wijk +
∑

(i,j,k)∈S1

(1− wijk) (sLP)

s.t. wijk ≤ xi, wijk ≤ yj, wijk ≤ zk, ∀(i, j, k) ∈ S1

wijk ≥ 0, wijk ≥ xi + yj + zk − 2, ∀(i, j, k) ∈ S0

(x, y, z) ∈ [0, 1]n+m+l.

• Stronger LP relaxations can be obtained by convexifying multiple multilinear
terms at a time.
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Rank-one BTF and the multilinear polytope

• Proposition: The facet description of MPG̃ is given by:

we ≤ uv, ∀e ∈ Ẽ, ∀v ∈ e

we ≥ 0,
∑

v∈e

uv − we ≤ 2, ∀e ∈ Ẽ

uv ≤ 1, ∀v ∈ Ṽ

ue0\e
+ we − we0 ≤ 1, ∀e ∈ Ẽ \ {e0}

ue\e0
− we + we0 ≤ 1, ∀e ∈ Ẽ \ {e0}

−ue∩e′ + we + we′ − we0 ≤ 0, ∀e 6= e
′
∈ Ẽ \ {e0}

∑

v∈V

uv −
∑

e∈Ẽ\{e0}

we + we0 ≤ 4.

• Proposition: All inequalities defining facets of MPG̃ are facet-defining for the
multilinear polytope of rank-one BTF, once we associate uv1, uv2 to any two x
variables, uv3, uv4 to any two y variables, and uv5, uv6 to any two z variables
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LP relaxations for Rank-one BTF

• A stronger LP relaxation of Rank-one BTF is given by

min
∑

(i,j,k)∈S0

wijk +
∑

(i,j,k)∈S1

(1 − wijk) (cLP)

s.t. wijk ≤ xi, wijk ≤ yj, wijk ≤ zk, ∀(i, j, k) ∈ S1

wijk ≥ 0, wijk ≥ xi + yj + zk − 2, ∀(i, j, k) ∈ S0

wi′jk − wijk ≤ 1 − xi, ∀(i, j, k) ∈ S0, (i
′
, j, k) ∈ S1

wij′k − wijk ≤ 1 − yj, ∀(i, j, k) ∈ S0, (i, j
′
, k) ∈ S1

wijk′ − wijk ≤ 1 − zk, ∀(i, j, k) ∈ S0, (i, j, k′) ∈ S1

wij′k + wijk′ − wijk ≤ xi, ∀(i, j, k) ∈ S0, (i, j′, k) ∈ S1, (i, j, k′) ∈ S1

wi′jk + wijk′ − wijk ≤ yj, (i, j, k) ∈ S0, ∀(i
′
, j, k) ∈ S1, (i, j, k

′
) ∈ S1

wi′jk + wij′k − wijk ≤ zk, ∀(i, j, k) ∈ S0, (i
′
, j, k) ∈ S1, (i, j

′
, k) ∈ S1

xi + xi′ + yj + yj′ + zk + zk′ + wijk − wi′jk − wij′k − wijk′ ≤ 4,

∀(i′, j, k) ∈ S0, (i, j′, k) ∈ S0, (i, j, k′) ∈ S0, (i, j, k) ∈ S1

(x, y, z) ∈ [0, 1]
n+m+l

.
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LP relaxations for Rank-one BTF

• We analyze the theoretical performance of the following relaxation of
Problem (cLP):

min
∑

(i,j,k)∈S0

wijk +
∑

(i,j,k)∈S1

(1 − wijk) (fLP)

s.t. wijk ≤ xi, wijk ≤ yj, wijk ≤ zk, ∀(i, j, k) ∈ S1

wijk ≥ 0, wijk ≥ xi + yj + zk − 2, ∀(i, j, k) ∈ S0

wi′jk − wijk ≤ 1 − xi, ∀(i, j, k) ∈ S0, (i
′
, j, k) ∈ S1

wij′k − wijk ≤ 1 − yj, ∀(i, j, k) ∈ S0, (i, j
′
, k) ∈ S1

wijk′ − wijk ≤ 1 − zk, ∀(i, j, k) ∈ S0, (i, j, k′) ∈ S1

(x, y, z) ∈ [0, 1]n+m+l
.
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Recovery under random models

• Given an LP relaxation of Rank-one BTF and a random model for noise in the
input tensor, what is the maximum level of noise under which the relaxation
recovers the ground truth with high probability? (probability tending to 1 as
n,m, l → ∞.)

• Random corruption model for rank-one BTF: consider binary vectors x̄ ∈
{0, 1}n, ȳ ∈ {0, 1}m, z̄ ∈ {0, 1}l and define the ground truth rank-one tensor
W̄ = (wijk) := x̄ ⊗ ȳ ⊗ z̄. Given p ∈ [0, 1], the noisy tensor G is as follows:
for each (i, j, k) ∈ [n] × [m] × [l], gijk is corrupted with probability p, i.e.,
gijk := 1 − x̄iȳj z̄k, and gijk is not corrupted with probability 1 − p, i.e.,
gijk := x̄iȳjz̄k. we focus on the case where p is a constant.

• Denote by rx̄ (resp. rȳ, rz̄) the ratio of ones in x̄ (resp. ȳ, z̄) to the number
of elements in x̄ (resp. ȳ, z̄). Assume that rx̄, rȳ, rz̄ are positive constants and
let rw̄ := rx̄rȳrz̄.
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Information theoretic limits

• What is the corruption range, in terms of p, for which any algorithm, regardless
of its computational complexity, can recover the ground truth with high
probability.

• Theorem (Information theoretic lower bound): If p ≥ 1/2, then the probability
that rank-one BTF recovers the ground truth is at most 1/2. Furthermore,
if rx̄, rȳ, rz̄, p are positive constants and p > 1/2, then with high probability
rank-one BTF does not recover the ground truth.

• Theorem (Information theoretic upper bound): Assume that rx̄, rȳ, rz̄ are
positive constants and

lim
n,m,l→∞

n+m+ l

min{nm, nl,ml}
= 0.

If p is a constant satisfying p < 1/2, then rank-one BTF recovers the ground
truth with high probability.
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Recovery guarantees for LP relaxations

• Theorem: Assume that, as n,m, l → ∞, we have n exp(−m), n exp(−l),
m exp(−n), m exp(−l), l exp(−n), l exp(−m) → 0. If p is a constant
satisfying p < rw̄

2(1+rw̄), then Problem (sLP) recovers the ground truth with high

probability.

• Theorem: Assume that, as n,m, l → ∞, we have nml exp(−n), nml exp(−m),
nml exp(−l) → 0. If p is a constant satisfying p < rw̄

1+2rw̄
, then Problem (fLP)

recovers the ground truth with high probability.
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Numerical experiments
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(a) Standard LP
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(b) Flower LP
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(c) Complete LP
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