Rank-one Boolean tensor factorization and the multilinear polytope

Jan 2023

Aida Khajavirad

Lehigh University

Joint work with Alberto Del Pia (University of Wisconsin-Madison)

Boolean tensor factorization: introduction

- A tensor of order N is an N-dimensional array. Factorizations of high-order tensors, i.e., $N \geq 3$, as products of low-rank matrices, have applications in signal processing, numerical linear algebra, computer vision, data mining, neuroscience, and elsewhere.
- We consider the problem of factorizing a high-order tensor with binary entries, referred to as a binary tensor.
- In Boolean tensor factorization (BTF), the binary tensor is approximated by products of low rank binary matrices using Boolean algebra.
- Applications include neuro-imaging, recommendation systems, topic modeling, and sensor network localization
- BTF is NP-hard in general; all existing methods rely on heuristics without any guarantee on the quality of the solution.

Boolean tensor factorization: problem statement

- For simplicity, we focus on tensors of order three.
- The (Boolean) rank of a binary tensor \mathcal{G} is the smallest integer r such that there exist $3 r$ binary vectors x^{p}, y^{p}, z^{p}, for $p \in[r]$, with

$$
\mathcal{G}=\bigvee_{p=1}^{r}\left(x^{p} \otimes y^{p} \otimes z^{p}\right)
$$

where \vee denotes the component-wise "or" operation, and \otimes denotes the vector outer product.

- The rank-r BTF is the problem of finding the closest rank-r binary tensor to a binary tensor. Given a $n \times m \times l$ binary tensor \mathcal{G} and an integer r, find $3 r$ binary vectors $x^{p} \in\{0,1\}^{n}, y^{p} \in\{0,1\}^{m}, z^{p} \in\{0,1\}^{l}$, for all $p \in[r]$, that minimize

$$
\left\|\mathcal{G}-\bigvee_{p=1}^{r} x^{p} \otimes y^{p} \otimes z^{p}\right\|^{2}
$$

where the Frobenius norm of \mathcal{G} is defined as $\|\mathcal{G}\|:=\sqrt{\sum_{i, j, k} w_{i j k}^{2}}$.

Rank-one Boolean tensor factorization

- Rank-one BTF: the simplest case of BTF with $r=1$:

$$
\begin{array}{ll}
\min & \|\mathcal{G}-x \otimes y \otimes z\|^{2} \\
\text { s.t. } & x \in\{0,1\}^{n}, y \in\{0,1\}^{m}, z \in\{0,1\}^{l}
\end{array}
$$

- Rank-one BTF is NP-hard and no algorithm with theoretical guarantees is known for this problem.
- Define $S_{0}:=\left\{(i, j, k) \in[n] \times[m] \times[l]: g_{i j k}=0\right\}, S_{1}:=\{(i, j, k) \in[n] \times$ $\left.[m] \times[l]: g_{i j k}=1\right\}$, and $w_{i j k}:=x_{i} y_{j} z_{k}$, for $i \in[n], j \in[m], k \in[l]$.
- Rank-one BTF can be written, in an extended space, as the problem of minimizing a linear function over a highly structured multilinear set:

$$
\begin{array}{ll}
\min & \sum_{(i, j, k) \in S_{0}} w_{i j k}+\sum_{(i, j, k) \in S_{1}}\left(1-w_{i j k}\right) \\
\text { s.t. } & w_{i j k}=x_{i} y_{j} z_{k}, \quad \forall i \in[n], j \in[m], k \in[l] \\
& x \in\{0,1\}^{n}, y \in\{0,1\}^{m}, z \in\{0,1\}^{l}
\end{array}
$$

Multilinear sets and polytopes

- With any hypergraph $G=(V, E)$, we associate a Multilinear set \mathcal{S}_{G} defined as:

$$
\mathcal{S}_{G}=\left\{(u, w) \in\{0,1\}^{|V|} \times\{0,1\}^{|E|}: w_{e}=\prod_{v \in e} u_{v}, e \in E\right\},
$$

and the Multilinear polytope MP_{G} is the convex hull of \mathcal{S}_{G}.

$$
\begin{aligned}
& w_{12}=u_{1} u_{2} \\
& w_{24}=u_{2} u_{4} \\
& w_{123}=u_{1} u_{2} u_{3} \\
& w_{134}=u_{1} u_{3} u_{4}
\end{aligned}
$$

- For quadratic sets, we obtain the graph representation of the Boolean quadric polytope (Padberg, 89)

$$
\begin{aligned}
w_{12} & =u_{1} u_{2} \\
w_{24} & =u_{2} u_{4} \\
w_{34} & =u_{3} u_{4}
\end{aligned}
$$

- There are interesting connections between the complexity of MP_{G} and the acyclicity degree of its hypergraph.

Standard linearization of Rank-one BTF

- A simple LP relaxation of Rank-one BTF can be obtained by replacing each multilinear term $w_{i j k}=x_{i} y_{j} z_{k}, x_{i}, y_{j}, z_{k} \in\{0,1\}$, by its convex hull:

$$
\begin{array}{lll}
\min & \sum{ }_{(i, j, k) \in S_{0}} w_{i j k}+\sum_{(i, j, k) \in S_{1}}\left(1-w_{i j k}\right) & \tag{sLP}\\
\text { s.t. } & w_{i j k} \leq x_{i}, w_{i j k} \leq y_{j}, w_{i j k} \leq z_{k}, & \forall(i, j, k) \in S_{1} \\
& w_{i j k} \geq 0, w_{i j k} \geq x_{i}+y_{j}+z_{k}-2, \quad \forall(i, j, k) \in S_{0} \\
& (x, y, z) \in[0,1]^{n+m+l} . &
\end{array}
$$

- Stronger LP relaxations can be obtained by convexifying multiple multilinear terms at a time.

Rank-one BTF and the multilinear polytope

- Proposition: The facet description of $\mathrm{MP}_{\tilde{G}}$ is given by:

$$
\begin{aligned}
& w_{e} \leq u_{v}, \quad \forall e \in \tilde{E}, \forall v \in e \\
& w_{e} \geq 0, \quad \sum_{v \in e} u_{v}-w_{e} \leq 2, \quad \forall e \in \tilde{E} \\
& u_{v} \leq 1, \quad \forall v \in \tilde{V} \\
& u_{e_{0} \backslash e}+w_{e}-w_{e_{0}} \leq 1, \quad \forall e \in \tilde{E} \backslash\left\{e_{0}\right\} \\
& u_{e \backslash e_{0}}-w_{e}+w_{e_{0}} \leq 1, \quad \forall e \in \tilde{E} \backslash\left\{e_{0}\right\} \\
& -u_{e \cap e^{\prime}}+w_{e}+w_{e^{\prime}}-w_{e_{0}} \leq 0, \quad \forall e \neq e^{\prime} \in \tilde{E} \backslash\left\{e_{0}\right\} \\
& \sum_{v \in V} u_{v}-\sum_{e \in \tilde{E} \backslash\left\{e_{0}\right\}} w_{e}+w_{e_{0}} \leq 4 .
\end{aligned}
$$

- Proposition: All inequalities defining facets of $\mathrm{MP}_{\tilde{G}}$ are facet-defining for the multilinear polytope of rank-one BTF, once we associate $u_{v_{1}}, u_{v_{2}}$ to any two x variables, $u_{v_{3}}, u_{v_{4}}$ to any two y variables, and $u_{v_{5}}, u_{v_{6}}$ to any two z variables

LP relaxations for Rank-one BTF

- A stronger LP relaxation of Rank-one BTF is given by

$$
\begin{array}{ll}
\min & \sum_{(i, j, k) \in S_{0}} w_{i j k}+\sum_{(i, j, k) \in S_{1}}\left(1-w_{i j k}\right) \\
\text { s.t. } & w_{i j k} \leq x_{i}, w_{i j k} \leq y_{j}, w_{i j k} \leq z_{k}, \quad \forall(i, j, k) \in S_{1} \\
& w_{i j k} \geq 0, w_{i j k} \geq x_{i}+y_{j}+z_{k}-2, \quad \forall(i, j, k) \in S_{0} \\
& w_{i^{\prime} j k}-w_{i j k} \leq 1-x_{i}, \quad \forall(i, j, k) \in S_{0},\left(i^{\prime}, j, k\right) \in S_{1} \\
& w_{i j^{\prime} k}-w_{i j k} \leq 1-y_{j}, \quad \forall(i, j, k) \in S_{0},\left(i, j^{\prime}, k\right) \in S_{1} \\
& w_{i j k^{\prime}}-w_{i j k} \leq 1-z_{k}, \quad \forall(i, j, k) \in S_{0},\left(i, j, k^{\prime}\right) \in S_{1} \\
& w_{i j^{\prime} k}+w_{i j k^{\prime}}-w_{i j k} \leq x_{i}, \quad \forall(i, j, k) \in S_{0},\left(i, j^{\prime}, k\right) \in S_{1},\left(i, j, k^{\prime}\right) \in S_{1} \\
& w_{i^{\prime} j k}+w_{i j k^{\prime}}-w_{i j k} \leq y_{j}, \quad(i, j, k) \in S_{0}, \forall\left(i^{\prime}, j, k\right) \in S_{1},\left(i, j, k^{\prime}\right) \in S_{1} \\
& w_{i^{\prime} j k}+w_{i j^{\prime} k}-w_{i j k} \leq z_{k}, \quad \forall(i, j, k) \in S_{0},\left(i^{\prime}, j, k\right) \in S_{1},\left(i, j^{\prime}, k\right) \in S_{1} \\
x_{i}+x_{i^{\prime}}+y_{j}+y_{j^{\prime}}+z_{k}+z_{k^{\prime}}+w_{i j k}-w_{i^{\prime} j k}-w_{i j^{\prime} k}-w_{i j k^{\prime}} \leq 4, \\
& \forall\left(i^{\prime}, j, k\right) \in S_{0},\left(i, j^{\prime}, k\right) \in S_{0},\left(i, j, k^{\prime}\right) \in S_{0},(i, j, k) \in S_{1} \\
(x, y, z) \in[0,1]^{n+m+l .} .
\end{array}
$$

LP relaxations for Rank-one BTF

- We analyze the theoretical performance of the following relaxation of Problem (cLP):

$$
\begin{array}{ll}
\min & \sum_{(i, j, k) \in S_{0}} w_{i j k}+\sum_{(i, j, k) \in S_{1}}\left(1-w_{i j k}\right) \tag{fLP}\\
\text { s.t. } & w_{i j k} \leq x_{i}, w_{i j k} \leq y_{j}, w_{i j k} \leq z_{k}, \quad \forall(i, j, k) \in S_{1} \\
& w_{i j k} \geq 0, \quad w_{i j k} \geq x_{i}+y_{j}+z_{k}-2, \quad \forall(i, j, k) \in S_{0} \\
& w_{i^{\prime} j k}-w_{i j k} \leq 1-x_{i}, \quad \forall(i, j, k) \in S_{0},\left(i^{\prime}, j, k\right) \in S_{1} \\
& w_{i j^{\prime} k}-w_{i j k} \leq 1-y_{j}, \quad \forall(i, j, k) \in S_{0},\left(i, j^{\prime}, k\right) \in S_{1} \\
& w_{i j k^{\prime}}-w_{i j k} \leq 1-z_{k}, \quad \forall(i, j, k) \in S_{0},\left(i, j, k^{\prime}\right) \in S_{1} \\
& (x, y, z) \in[0,1]^{n+m+l} .
\end{array}
$$

Recovery under random models

- Given an LP relaxation of Rank-one BTF and a random model for noise in the input tensor, what is the maximum level of noise under which the relaxation recovers the ground truth with high probability? (probability tending to 1 as $n, m, l \rightarrow \infty$.)
- Random corruption model for rank-one BTF: consider binary vectors $\bar{x} \in$ $\{0,1\}^{n}, \bar{y} \in\{0,1\}^{m}, \bar{z} \in\{0,1\}^{l}$ and define the ground truth rank-one tensor $\bar{W}=\left(w_{i j k}\right):=\bar{x} \otimes \bar{y} \otimes \bar{z}$. Given $p \in[0,1]$, the noisy tensor \mathcal{G} is as follows: for each $(i, j, k) \in[n] \times[m] \times[l], g_{i j k}$ is corrupted with probability p, i.e., $g_{i j k}:=1-\bar{x}_{i} \bar{y}_{j} \bar{z}_{k}$, and $g_{i j k}$ is not corrupted with probability $1-p$, i.e., $g_{i j k}:=\bar{x}_{i} \bar{y}_{j} \bar{z}_{k}$. we focus on the case where p is a constant.
- Denote by $r_{\bar{x}}$ (resp. $r_{\bar{y}}, r_{\bar{z}}$) the ratio of ones in \bar{x} (resp. \bar{y}, \bar{z}) to the number of elements in \bar{x} (resp. \bar{y}, \bar{z}). Assume that $r_{\bar{x}}, r_{\bar{y}}, r_{\bar{z}}$ are positive constants and let $r_{\bar{w}}:=r_{\bar{x}} r_{\bar{y}} r_{\bar{z}}$.

Information theoretic limits

- What is the corruption range, in terms of p, for which any algorithm, regardless of its computational complexity, can recover the ground truth with high probability.
- Theorem (Information theoretic lower bound): If $p \geq 1 / 2$, then the probability that rank-one BTF recovers the ground truth is at most $1 / 2$. Furthermore, if $r_{\bar{x}}, r_{\bar{y}}, r_{\bar{z}}, p$ are positive constants and $p>1 / 2$, then with high probability rank-one BTF does not recover the ground truth.
- Theorem (Information theoretic upper bound): Assume that $r_{\bar{x}}, r_{\bar{y}}, r_{\bar{z}}$ are positive constants and

$$
\lim _{n, m, l \rightarrow \infty} \frac{n+m+l}{\min \{n m, n l, m l\}}=0
$$

If p is a constant satisfying $p<1 / 2$, then rank-one BTF recovers the ground truth with high probability.

Recovery guarantees for LP relaxations

- Theorem: Assume that, as $n, m, l \rightarrow \infty$, we have $n \exp (-m), n \exp (-l)$, $m \exp (-n), m \exp (-l), l \exp (-n), l \exp (-m) \rightarrow 0$. If p is a constant satisfying $p<\frac{r_{\bar{w}}}{2\left(1+r_{\bar{w}}\right)}$, then Problem (sLP) recovers the ground truth with high probability.
- Theorem: Assume that, as $n, m, l \rightarrow \infty$, we have $n m l \exp (-n), n m l \exp (-m)$, $n m l \exp (-l) \rightarrow 0$. If p is a constant satisfying $p<\frac{r_{\bar{w}}}{1+2 r_{\bar{w}}}$, then Problem (fLP) recovers the ground truth with high probability.

Numerical experiments

