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Boolean tensor factorization: introduction

A tensor of order NN is an N-dimensional array. Factorizations of high-order
tensors, i.e., N > 3, as products of low-rank matrices, have applications
in signal processing, numerical linear algebra, computer vision, data mining,
neuroscience, and elsewhere.

We consider the problem of factorizing a high-order tensor with binary entries,
referred to as a binary tensor.

In Boolean tensor factorization (BTF), the binary tensor is approximated by
products of low rank binary matrices using Boolean algebra.

Applications include neuro-imaging, recommendation systems, topic modeling,
and sensor network localization

BTF is NP-hard in general; all existing methods rely on heuristics without any
guarantee on the quality of the solution.



Boolean tensor factorization: problem statement

e For simplicity, we focus on tensors of order three.

e The (Boolean) rank of a binary tensor G is the smallest integer r such that
there exist 3r binary vectors zP, yP, 2P, for p € [r], with

T

G=\/(@* oy,

p=1

where V denotes the component-wise “or’ operation, and ® denotes the vector
outer product.

e The rank-r BTF is the problem of finding the closest rank-r binary tensor to
a binary tensor. Given a n X m X [ binary tensor G and an integer r, find 3r
binary vectors zP € {0,1}", y? € {0,1}™, 2P € {0,1}!, for all p € [r], that
minimize

2
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where the Frobenius norm of G is defined as ||G|| := \/Zwk w?
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Rank-one Boolean tensor factorization
Rank-one BTF: the simplest case of BTF with r = 1:

2
min H(j—a:@)y@z“
st x€{0,1}", y€{0,1}", z < {0,1}".

Rank-one BTF is NP-hard and no algorithm with theoretical guarantees is
known for this problem.

Define Sy := {(i,7,k) € [n] x [m] x [I] : gi;x = 0}, S1 := {(4,4,k) € [n] x
[m] X [l] s Gijk = 1}, and Wijk = TiYjRk, for 1 € [n], ] c [m], k € [l]

Rank-one BTF can be written, in an extended space, as the problem of
minimizing a linear function over a highly structured multilinear set:

min Z Wijk -+ Z wzgk
(’I’aj k)ESO (’I’aj k)esl

S.b. Wijk = XY, 2k, Vi€ [n],j € [m], kel
€ {0,1}", y € {0,1}™, 2z € {0,1}".



Multilinear sets and polytopes
e With any hypergraph G = (V, E), we associate a Multilinear set S defined as:

S = {(u,w) € {0, 1}V 5 {0, 1} s we = [ [ uw, € € E},

vee
and the Multilinear polytope MPg is the convex hull of Sq.
W12 — U1U2
w24 — U2U4

w123 = Ul1U2U3

w134 = U1U3U4

e For quadratic sets, we obtain the graph representation of the Boolean quadric
polytope (Padberg, 89)

w12 = U1U2
w24 = U2U4
w34 = U3uqg

e There are interesting connections between the complexity of MPs and the
acyclicity degree of its hypergraph.



Standard linearization of Rank-one BTF

e A simple LP relaxation of Rank-one BTF can be obtained by replacing each
multilinear term w;;x = Y2k, %4, Y5, 2k € {0, 1}, by its convex hull:

min Z Wik + Z (1 — wij) (sLP)

S.t. Wik < X, Wijk < Y, Wik < 2k, V(i,j, k) € 51
Wik > 0, Wik > x4 +Y; + 2k — 2, V(i,j,k) € So
(z,y, z) € [0, 1]+

e Stronger LP relaxations can be obtained by convexifying multiple multilinear
terms at a time.
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Rank-one BTF and the multilinear polytope

e Proposition: The facet description of MP is given by:

We < Uy, ‘v’eEE,‘v’vEe

we > 0, Zuv—weSQ, Ve € E

vee

Uy < 1, Yo € V
Uep\e T We — We <1, Ve € E \ {eo}
Ue\eq — We + Weg < 1, Ve € E\ {eg}

U+ We + Wy —wey <0,  Ve#e € EN\{ep}

Zuv— Z we—i—weogél.

veV eEE\{eO}

e Proposition: All inequalities defining facets of MP 5 are facet-defining for the
multilinear polytope of rank-one BTF, once we associate u,,, u,, to any two x
variables, u,,, u,, to any two y variables, and u,,, u,, to any two z variables



LP relaxations for Rank-one BTF

e A stronger LP relaxation of Rank-one BTF is given by

min

s.t.

T wipt Y (1 —wE) (cLP)
(,3,k) €S0 (i,5,k)€S7
Wik < Ti, Wik <Yy, Wik < 2k, V(i 4,k) €51

wi/jk — Wik S 1— Ly, \V/(’L,j,k) € 507 (ilaja k) S Sl

IN

[
<
<

\V/(’l:,j, k) S 507 (iajlak) S Sl

IN
[
|
I\
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Wik = Wijk V(i,7,k) € So, (i,5,k") € S1

Wit Wi — wigk <@g V(i35 k) € So, (4,5, k) € S1, (4, 4,K') € S

Wit + Wi — wije < yj,  (4,4,k) € So, V(i', 4, k) € S1, (4,4, k) € i

Wit Wi — wijke < 25, V(i 4, k) € So, (7, 4,k) € S1, (4,5, k) € S

Ti+ Ty F Y5+ Yt 2 2yt Wi = Wi — Wi — Wi S 4
v(i', j, k) € So, (i,5',k) € So, (3,4,k") € So, (4,4, k) € S1

(z,y,2) € [0,1]" ™,



LP relaxations for Rank-one BTF

e We analyze the theoretical performance of the following relaxation of

Problem (lcLP)):

(4,3,k)E€Sp (1,3,k)€S
sit. wiin < Xy wiik < Yj, wie < 2, V(5 k) €5

wiip = 0, wijk > T +yj; + 2 — 2, V(i,j,k) € So

wi’jk — Wyjk S 1 =z, \V/(’L,j, k) € 507 (i/ajak) S Sl

IA

wij,k — Wyjk 1 - Yj, V(Zaja k) S SO? (iaj/a k) S Sl

IA

Wit — Wik < 1 — 2, V(i,j,k) € So, (4,7, k") € S

(z,y,2) € [0,1]"T™F



Recovery under random models

e Given an LP relaxation of Rank-one BTF and a random model for noise in the
input tensor, what is the maximum level of noise under which the relaxation
recovers the ground truth with high probability? (probability tending to 1 as
n,m,l — 00.)

e Random corruption model for rank-one BTF: consider binary vectors = €
{0,1}*, 5 € {0,1}™, z € {0,1} and define the ground truth rank-one tensor
W = (wir) =T @y ® 2z Given p € [0,1], the noisy tensor G is as follows:
for each (i,7,k) € [n] x [m] x [l], gijr is corrupted with probability p, i.e.,
9ijk = 1 — Z;y;Z, and g;;i is not corrupted with probability 1 — p, ie.,
Gijk ‘= ZiY;Zr. we focus on the case where p is a constant.

e Denote by r; (resp. ry, rz) the ratio of ones in Z (resp. ¥, Z) to the number
of elements in Z (resp. ¢, z). Assume that 7z, 7y, 7z are positive constants and
let Tw = TzlyTz.



Information theoretic limits

e What is the corruption range, in terms of p, for which any algorithm, regardless
of its computational complexity, can recover the ground truth with high
probability.

e Theorem (Information theoretic lower bound): If p > 1/2, then the probability
that rank-one BTF recovers the ground truth is at most 1/2. Furthermore,
if rz,75,7z,p are positive constants and p > 1/2, then with high probability
rank-one BTF does not recover the ground truth.

e Theorem (Information theoretic upper bound): Assume that rz, 75,7z are
positive constants and

, n—+m—+I(
lim . —
n,m,l—oco min{nm, nl, ml}

0.

If p is a constant satisfying p < 1/2, then rank-one BTF recovers the ground
truth with high probability.
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Recovery guarantees for LP relaxations

e Theorem: Assume that, as n,m,l — oo, we have nexp(—m), nexp(—I),
mexp(—n), mexp( l), lexp(—n), lexp(—m) — 0. If p is a constant
satisfying p < = then Problem (SLP)) recovers the ground truth with high
probability.

2(1+

e Theorem: Assume that, as n,m,l — oo, we have nml eXp( n), nml exp(—m),
nmlexp(—1) — 0. If p is a constant satisfying p < , then Problem (fLP)
recovers the ground truth with high probability.
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Numerical experiments
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