Exercise Sheet

For notation not defined in here, refer to the slides.

1. Stable matchings in the marriage model

Exercise 1

Consider the following class of marriage instances $\left\{I^{k}\right\}_{k \in \mathbb{N}}$ defined recursively as follows. I^{1} has students 1,2 , schools 1,2 and preference lists of students and schools defined as:

$$
\left|\begin{array}{ll|ll}
1 & 2 \\
2 & 1
\end{array} \quad\right| \begin{array}{ll}
2 & 1 \\
1 & 2
\end{array} .
$$

For $k \geq 2, I^{k}$ has students $1, \ldots, 2^{k}$, schools $1, \ldots, 2^{k}$, and preference lists defined as:

$$
\left\lvert\, \begin{array}{cc|cc}
I_{a}^{k-1} & I_{a}^{k-1} \oplus 2^{k-1} & I_{b}^{k-1} \oplus 2^{k-1} & I_{b}^{k-1} \\
I_{a}^{k-1} \oplus 2^{k-1} & I_{a}^{k-1} & I_{b}^{k-1} & I_{b}^{k-1} \oplus 2^{k-1} .
\end{array}\right.,
$$

where I_{a}^{k-1} (resp., I_{b}^{k-1}) denotes the preference lists of students (resp., schools) in I^{k-1}, and $\oplus 2^{k-1}$ shifts all entries of a matrix by 2^{k-1}. Show that, for $k \in \mathbb{N}, I^{k}$ has no less than $2^{2^{k}-1}$ stable matchings.

Exercise 2.0

Let M, M^{\prime} be stable matchings. Define M^{\uparrow} to be the set of pairs where each student is assigned to their favorite partner between M, M^{\prime}. Show that M^{\uparrow} is a stable matching.

Exercise 2.1

Let \mathcal{S} be the set of stable matchings of a marriage instance. Show that (\mathcal{S}, \succeq) is a distributive lattice.

Exercise 3

Give a polynomial-time algorithm for the Red-Blue Unstable Matching Problem defined below:
Given: An instance I of the marriage problem with weights w on the edges E ("blue"), plus an additional disjoint set F of edges ("red") with weights w.
Find: Among those that are stable in I, a matching M maximizing $w(M)-w($ edges from F that block $M)$.
(Auxiliary facts that may help:

- ij is in some stable matching (i.e., it is a stable pair) iff it is contained in the student-optimal stable matching, or in ρ^{+} for some rotation ρ;
- For a student-school pair (i, j) that is not in any stable matching, there exists at most one rotation ρ and schools $j^{\prime}, j^{\prime \prime}$ so that: $\left(i, j^{\prime}\right) \in \rho^{-},\left(i, j^{\prime \prime}\right) \in \rho^{+}$, and $j^{\prime}>_{i} j>_{i} j^{\prime \prime}$.
- In each sequence of matchings obtained starting from the student-optimal stable matching and iteratively eliminating rotations until the school-optimal, we rotate all rotations.)

2. Pareto-optimal matchings

Exercise 4.0

Show that the TTC algorithm is strategy-proof for students and outputs a matching that is Pareto-optimal for students.

Exercise 4.1

For an infinite set of values $n \in \mathbb{N}$, give a family of marriage instances with n agents such that there is a matching M that Pareto-dominates the student-optimal stable matching M_{0} and moreover, for $\Theta(n)$ students i, the rank of $M(i)$ (i.e., the position of $M(i)$ in i 's list) is $\Theta(n)$ positions better than the rank of $M_{0}(i)$.
(Hint: start from an instance I with exponentially many stable matchings, and show how to add one student and one school as to obtain an instance I^{\prime}, so that the school-optimal stable matching of I can be extended to the unique stable matching in I^{\prime}, and the student-optimal stable matching in I can be extended to a Pareto-optimal matching in I^{\prime}.)

3. Popular matchings

Exercise 5

Prove that a matching M is 1-popular if and only if

- Every f-school is matched in M;
- For each student $i, M(i) \in\{f(i), s(i)\}$.

Exercise 6

Show how to modify the algorithm seen in the talk that outputs a 1-popular matching (or decide none exists) to an algorithm that outputs a 1-popular matching of maximum size.

4. Choice functions and stable matchings

Exercise 7

Show that, if choice functions of both sides of the markets are substitutable and consistent, stable matchings form a lattice.

Exercise 8

Show that, under the assumptions that choice functions of both sides of the markets are substitutable and consistent, Roth's algorithm outputs a stable matching.

