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RECAP: MARRIAGE MODEL & STABILITY

The marriage model:

1 A B C D
2 B D A C
3 C B A D
4 C D A B

A 4 3 2 1
B 3 4 1 2
C 2 1 4 3
D 1 2 3 4

A student-school pair (i, j) is called blocking for a matching M if:

j >i M(i) and i >j M(j).

A matching without blocking pairs is called stable.

Part I: A stable matching (of maximum weight) can be computed in time
polynomial in the number n of agents by exploiting the distributive lattice
structure of stable matchings.
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RECAP: DRAWBACKS OF THE CLASSICAL APPROACH

Stability is a very stringent condition:
I It disqualifies many “good” and “fair” solutions. (Abdulkadiroğlu, Pathak, and Roth 09)

showed empirically that by forgoing stability, we can obtain a matching that is much “better”
for students.

• Part II (a): Pareto-optimality (and vNM stability) allows us to output matchings that are
more favorable to students.

I It may leave many empty seats: the cardinality of a stable matching can be half that of a
maximum-size matching.
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Part II:
Changing the output

(b) Popularity
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POPULAR MATCHINGS

Stability gives each student-school pair a veto power over matchings.

Popularity replaces the veto power with majority vote, with the goal of
enlarging the set of feasible matchings.
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THE D AND . OPERATORS

Given two matchings M,M
0 in a marriage instance, we write M D M

0 if

|{x : M(x) >x M
0(x)}|| {z }

# of votes for M

� |{x : M
0(x) >x M(x)}|| {z }

# of votes for M
0

,

and M . M
0 if the inequality is strict (M beats M

0).
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POPULAR MATCHINGS

A matching that is never beaten is called popular.
Equivalently, popular matchings are weak Condorcet winners.

Popular matchings:
I Shift the focus from “veto power” to “collective decision”; X
I contain stable matching as a special case; X
I allow for matchings of size larger than stable matchings. X

Lemma. Every stable matching is a popular matching of minimum size.
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EVERY STABLE MATCHING IS A POPULAR MATCHING OF
MINIMUM SIZE
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STRUCTURAL AND ALGORITHMIC RESULTS

Bad structural news:
I The . operator is not transitive.
I So there can be cycles M . M

0 . M
00 . M.

Good algorithmic news! Efficient algorithms for:
I testing if a matching is popular;
I finding a popular matching of maximum size;
I finding a popular matching with / without an edge or deduce that such

a matching does not exist.
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TESTING POPULARITY
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FINDING A POPULAR MATCHING OF MAXIMUM CARDINALITY

1 A B
2 A B C
3 A B
4 A B D

A 2 4 1 3
B 4 2 3 1
C 2
D 4
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HARDNESS RESULTS

It is NP-Hard to:
I find a popular matching with / without two edges;
I find a popular matching of max weight (assuming w � 0)

– also, hard to approximate to a factor better than 2 (this is tight);
I find a popular matching of min weight (assuming w � 0)

– also, inapproximable up to any factor.

A RELAXATION. How about relaxing popularity to slight unpopularity for
the sake of tractability of the above problems?
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UNPOPULARITY FACTOR AND QUASI-POPULAR MATCHINGS

The unpopularity factor of a matching M is:

u(M) := max
M0

# of votes for M
0

# of votes for M
.

OBSERVATION. M popular , u(M)  1.

Call M quasi-popular if u(M)  2.
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QUASI-POPULAR MATCHINGS AND OPTIMALITY

Optimizing over the set of matchings M with u(M)  1 (popular) is hard,
maybe optimize over the set of matchings M with u(M)  2
(quasi-popular)?

THEOREM. The min-weight quasi-popular matching problem is NP-hard to

approximate up to any factor.

THEOREM. The popular and the quasi-popular matching polytopes have at least

near-exponential extension complexity.
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A BICRITERIA THEOREM

We know the min-weight popular matching problem and the min-weight
quasi-popular matching problem are NP-hard to approximate up to any
factor.

Bicriteria Theorem.
Given weights on the edges, we can find efficiently a quasi-popular matching

with weight at most that of a min-weight popular matching.
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THE TECHNIQUES

I Let PG be the popular matching polytope.
I Let QG be the quasi-popular matching polytope.
I We show an integral polytope C sandwiched between PG and QG such

that C has a compact extended formulation.

I Optimizing over C (using an LP algorithm) leads to the main result.
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EXTENDED FORMULATIONS

Let P,Q be polytopes.
I If there is an affine map ⇡ such that ⇡(Q) = P, then Q is an extension of P.
I Ax  b such that Q = {x : Ax  b} is an extended formulation for P;
I It is compact if A has poly(d) rows, with d = dimension of P.

⇡

P

Q
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OPEN PROBLEMS

I Can we obtain a polynomial-time bicriteria algorithm if we allow only
matchings M with u(M) < 2?

• In particular, can we get arbitrarily close to popularity?

I Are there efficient bicriteria approximation algorithms for other hard
matching problems under preferences?
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ONE-SIDED POPULARITY

Stability is a symmetric concept; (student-) Pareto-optimality favours
students over schools;

Popularity is also a symmetric concept; can we “skew it” towards students?
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THE D1 AND .1 OPERATORS

Given two matchings M,M
0 in a marriage instance, we write M D1

M
0 if

|{x student : M(x) >x M
0(x)}|| {z }

# of students votes for M

� |{x student : M
0(x) >x M(x)}|| {z }

# of students votes for M
0

,

and M . M
0 if the inequality is strict (M student-beats M

0).

A matching that is never student-beaten is called 1-popular.
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ABOUT 1-POPULAR MATCHINGS

A 1-popular matching may not exist:
1 A B C
2 A B C
3 A B C

In polynomial-time we can: decide if a marriage instance has a 1-popular
matching and, if it has, find one of maximum cardinality.
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SOME FACTS

For each student i, add a school `(i) (“last resort”) that:
I forms a feasible pair with i only;
I appears last in i’s preference list.

) we can restrict to perfect matchings.

For a student i, let f (i) be the school that ranks first in i’s list.
A school j is an f -school if j = f (i) for some i.

1 A C B
2 A D B
3 A B
4 B C D
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SOME FACTS

For each student i, add a school `(i) (“last resort”) that:
I forms a feasible pair with i only;
I appears last in i’s preference list.

) we can restrict to perfect matchings.

For a student i, let f (i) be the school that ranks first in i’s list.
A school j is an f -school if j = f (i) for some i.
Lemma. Let M be a popular matching and j an f -school. Then j is matched
in M and f (M(j)) = j.
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A CHARACTERIZATION OF 1-POPULAR MATCHINGS

Lemma. Let M be a 1-popular matching and j an f -school. Then j is matched
in M and f (M(j)) = j.
For a student i, let s(i) be the first school in i’s list that is not an f -school.

1 A C B `(1)
2 A D B `(2)
3 A B `(3)
4 B C D `(4)

Lemma. Let M be a 1-popular matching. Then M(i) 2 {f (i), s(i)} for each
student i.

Theorem. A matching M is 1-popular if and only if
I Every f -school is matched in M;
I For each student i, M(i) 2 {f (i), s(i)}.

Exercise 7. Prove the theorem above.
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FINDING A 1-POPULAR MATCHING

To find a 1-popular matching, one needs to find a matching M such that:
I Every f -school is matched in M;
I For each student i, M(i) 2 {f (i), s(i)};

or conclude that no such matching exists.

This can be done with standard algorithms. With some care, one deduces:
Theorem. Let I be a marriage instance with n agents and E pairs. In time
O(n + |E|) one can decide if 1-popular matchings exist in I and, if they do,
find one.
Exercise 8. Give an efficient algorithm to find a 1-popular matching of
maximum size.
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HIGHLIGHTS FROM PART II (B)

I Every stable matching is popular, but popular matchings may have
larger size than stable matchings;

I Some popular matchings can be found efficiently; however, weighted
popular matching problems are hard.

I Quasi-popularity can be used to obtain bicriteria approximations
efficiently.

I 1-sided popularity allows to skew popularity to favor students.
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CONTENT

Part I: The classical model (Gale and Shapley, 62):
I Structural and algorithmic properties of stable matchings in the

marriage model;
I Impact for school choice.
I Drawbacks.

Part II: Beyond (Gale and Shapley, 62), changing the output:

(a) Pareto-optimality & von Neumann-Morgenstern Stability;
(b) Popularity;

Part III: Beyond (Gale and Shapley, 62), changing the input:
I Polytopes �

�
�H

H
HTies, choice functions, and applications to school choice.
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Part III:
Changing the input
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CHOICE FUNCTIONS

‘
I For each agent a and sets S of agents from the opposite set,

Ca(S) ✓ S

denotes the set of agents that a would choose from S.
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THE SC-MODEL

Finite sets of firms F and workers W.
For each f 2 F, S ✓ W(f ), choice function Cf : 2W(f ) ! 2W(f ) satisfies:

I Cf (S) ✓ S;
I Substitutability: b 2 Cf (S),T ✓ S ) b 2 Cf (T [ {b});
I Consistency: Cf (S) ✓ T ✓ S ) Cf (S) = Cf (T).

Similar properties apply to Cw for every w 2 W.

M ✓ W ⇥ F is a stable matching if:
I M(w) ✓ F(w) 8w 2 W;
I M(f ) ✓ W(f ) 8f 2 F;
I individual rationality: Ca(M(a)) = M(a) 8a 2 F [ W;
I no blocking pairs: w 2 Cf (M(f ) [ {w}), f 2 Cw(M(w) [ {f}) ) wf 2 M.
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MATCHINGS AND CHOICE FUNCTIONS

Models with substitutable and consistent choice functions arise in:

I Staffing problems
I United Kingdom residency matching market
I Course allocations
I Achieving diversity in school cohorts (see later in the talk).
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GOAL

Can we extend the algorithmic results on stable matching in the marriage
model to this more general setting?
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ROTH’S ALGORITHM

Define M ⌫ M
0 if, for every worker F 2 F, Cf (M(f ) [ M(f 0)) = M(f ).

Theorem. Roth’s algorithm outputs a stable matching that is firm-optimal.
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ROTH’S ALGORITHM

Define M ⌫ M
0 if, for every firm f 2 F, Cf (M(f ) [ M

0(f )) = M(f ).

Theorem. Roth’s algorithm outputs a stable matching that is firm-optimal.
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HOW ABOUT A STABLE MATCHING OF MINIMUM WEIGHT?

We don’t know...maybe not. Reason for being skeptical:
I The stable matchings in the SC-model form a lattice which however is

not, in general, distributive.

YURI FAENZA – IEOR – COLUMBIA UNIVERSITY MATCHING THEORY AND SCHOOL CHOICE 41 / 66



RESTRICTING TO THE QF-MODEL

Finite sets of firms F and workers W.
For each f 2 F, S ✓ W(f ), choice function Cf : 2W(f ) ! 2W(f ) satisfies:

I Cf (S) ✓ S;
I Substitutability: b 2 Cf (S),T ✓ S ) b 2 Cf (T [ {b});
I Consistency: Cf (S) ✓ T ✓ S ) Cf (S) = Cf (T).
I Quota-filling: |Cf (S)| = min{|S|, qf}.

Similar properties apply to Cw for every w 2 W.

Theorem. The set of stable matchings in the QF-model forms a distributive
lattice.
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ALGORITHMIC AND LP RESULTS

Theorem. There is an algorithm that finds a stable matching of maximum
weight in the QF-model in O(|F|3|W|3oracle-call) time.

I where oracle-call= time to compute Ca(S) 8a, S.

Theorem. There exists an LP formulation for the convex hull of stable
matchings in the QF-model with O(|F|2|W|2) constraints.
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BIRKHOFF’S REPRESENTATION THEOREM

Birkhoff’s representation theorem. Let (L,⌫) be a distributive lattice.
There exists R ✓ L and a bijection  between elements of L and upper closed
sets of (R,⌫).

I S ✓ R is a upper closed set of (R,⌫) if e 2 R, e
0 ⌫ e ) e

0 2 S;
I (R,⌫) is the representation poset;
I Often, |R| ⌧ |L|.
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BACK TO THE ROADMAP FOR [OPT-SM]

(a) Transform [OPT-SM] to a linear optimization problem over the UCS of
the representation poset (R,⌫) of (S,⌫).

minM2S w
T
M = min{⇢1,...,⇢k} UCS of (R,⌫)

w(M0/⇢1/ . . . /⇢k)

= w(M0) + min{⇢1,...,⇢k} UCS of (R,⌫)

P
k

j=1 w(⇢j)

= w(M0) + min
X UCS of (R,⌫)

P
⇢2X

w(⇢)

(b) Show that |R| = poly(n).
Lemma. (i, j) 2 ⇢+ (resp. ⇢�) for at most one rotation ⇢
) |R| = O(n2).

(c) Find an UCS of minimum weight in (R,⌫) in time poly(|R|).
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AFFINELY REPRESENTABLE LATTICES

Let (L,⌫) be a lattice over a ground set E and (R,⌫) its representation poset.
(R,⌫) affinely represents L if there exist x0,A such that

�S = x0 + A� (S)

for each S 2 L.

S1 = {1, 2}

S2 = {1, 3} S3 = {1, 2, 4}

S4 = {1, 3, 4}

y1 y2

 :  (S1) = ;,  (S2) = {y1},  (S3) = {y2},  (S4) = {y1, y2}

Affine representation: �S = �S1 + A� (S) where A =

0

BB@

0 0
�1 0
1 0
0 1

1

CCA.
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AFFINE REPRESENTABILITY ) ALGORITHMIC TRACTABILITY

Lemma. Let (L,⌫) be a lattice over a ground set E and (R,⌫) its
representation poset. Assume R affinely represents L and we are given x0,A

such that
�S = x0 + A� (S)

for each S 2 L. Let w 2 Z
E. Then

min
S2L

w
|�S

can be solved in time polynomial in |R|.

Proof.

min
S2L

w
|�S = min

U2U(B)
w

|(x0 + A�U) = w
|
x0 + min

U2U(B)
(w|

A)�U.

minU2U(B)(w
|
A)�U polynomially reduces to min (s, t)-cut.
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AFFINE REPRESENTABILITY ) POLYHEDRAL DESCRIPTION

Lemma. Let (L,⌫) be a lattice over a ground set E and (R,⌫) its
representation poset. Assume R affinely represents L, i.e., there exists x0,A

such that
�S = x0 + A� (S)

for each S 2 L. There is an LP formulation (possibly with additional
variables) for (�S : S 2 L) of size polynomial in |R|. If moreover, A has full
column rank, then this formulation does not have any additional variable.

Proof.

The order polytope associated with poset (R,⌫)

O(R,⌫) := {y 2 [0, 1]R : yi � yj, 8i, j 2 R s.t. i ⌫ j}.
is the convex hull of the closed sets of (R,⌫).

Then
(�S : S 2 L) = {x0}� A ·O(R,⌫)
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BACK TO STABLE MATCHINGS

Thm 1. There is an algorithm that finds a stable matching of maximum
weight in the QF-model in O(|F|3|W|3oracle-call) time.

Proof. Same approach as in the marriage model.

Thm 2. There exists an LP formulation for the convex hull of stable
matchings in the QF-model with O(|F|2|W|2) constraints.

Proof.

Thm 1 above �
Affine representability ) polyhedral description �
A full column rank
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A DIRECT DESCRIPTION OF THE STABLE MATCHING POLYTOPE

Theorem. Let I be a marriage instance, P(I) the associated matching
polytope. Then:

P(I) = {x : x(�(v))  1 for each agent v

xi,j +
P

|̄:|̄>ij
xi,|̄ +

P
ı̄:̄ı>ji

xı̄,j � 1 for feasible pairs (i, j)

x � 0}.
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ORACLE MODEL VS EXPLICIT PREFERENCE REPRESENTATION

Computational advantage of Gale-Shapley’s algorithm:
I Agents need to communicate with the central planner only once.

Conversely, in the oracle model:
I A central planner needs to ask agent a for Ca(S) multiple times.

Is there a compact representation of choice functions for our models?

Theorem. We cannot compactly represent choice functions in the
QF-model.

I there are doubly-exponentially many such functions.
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NYC SPECIALIZED HIGH SCHOOLS

I The admission to 8 specialized public high schools in NYC is run
independently from the rest.

I Admissions to the NYC specialized high school is uniquely determined
by score in the SHSAT exam.

I But there is disparity in opportunity!

I Nowadays, roughly 20% of the seats in each school are reserved to
disadvantaged students (this admission path requires 3 weeks of
additional classes).
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WHEN WE LOOKED AT THE DATA...

... we saw the following:

I Student A is disadvantaged, really wants to go to Stuyvesant, has a
SHSAT score of 492, is admitted to Queens Science.

I Student B is disadvantaged, really wants to go to Stuyvesant, has a
SHSAT score of 452, is admitted to Stuyvesant.

We say that (A, Stuyvesant) form an in-group blocking pair.

Around 30% of disadvantaged students that received an offer are part of an
in-group blocking pair. Why is this the case?
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THE CURRENT MECHANISM
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THE MINORITY RESERVE MECHANISM
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THE JOINT SEAT ALLOCATION MECHANISM
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PROPERTIES OF MR, JSA

I Can be reformulated in terms of qf choice functions, such as:

CMR
c
(S1) = min(S1 \ S

m, >c, q
R

c
)

| {z }
reserved seats

[̇ min
�
S1 \ S

R

1 , >c, qc � |SR

1 |)
�

| {z }
remaining seats

.

I Strategy-proofness;

I No in-group blocking pairs.
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A COMPARISON OF MR, JSA

I In theory, there is no domination between MR and JSA for
disadvantaged students.

I On data, we were however seeing JSA being always weakly preferred by
all disadvantaged students.

I High competitiveness hypothesis (hch) (informal)
• MR assigns to each school no more disadvantaged students than the

number of reserved seats the school has.

I Theorem. Under the hch, all disadvantaged students weakly prefer JSA
to MR.
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WHEN DOES THE HCH HOLD?

Theorem. (informal) The hch holds whp if:
I Schools rank students following a master list and have the same quotas;
I The favorite school of each student is selected independently and uar;
I The ⇡ (n log n)-th best advantaged student is ranked above the ⇡ n-th

best disadvantaged student (n = # schools).

Theorem. (informal) The hch holds whp if:
I Schools rank students following a master list based on a students’

perceived potential and have the same quotas;
I The favorite school of each student is selected independently and uar;
I Students have a perceived potential sampled from a Gaussian, with the

mean for disadvantaged students being slightly less than the
advantaged students.

The “slightly less” is largely satisfied, e.g., by the differences in test scores
among the two groups of students in NYC.
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HIGHLIGHTS FOR PART III

I Choice functions models allow us to address more complex preference
settings.

I Tractability is guaranteed in oracle models, or if we drastically restrict
the class of choice functions under consideration.

I These models can be applied to relevant real-world problems, and there
is room for meaningful theory in applications!

I Affinely representable lattices may be impactful beyond stable matching
problems.
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FINAL COMMENTS

I Stable matchings are relevant in theory and practice.

I Nice theories have been developed, with impactful applications.

I The more we find out, the more directions open up.

Thank you for your attention.
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