EXERCISES ON SUMS-OF-SQUARES OVER FINITE SETS
 CURRENT THEMES OF DISCRETE OPTIMIZATION:
 BOOT-CAMP FOR EARLY CAREER RESEARCHERS

MAURICIO VELASCO

1. Exercises for lecture 1: The basic setup

(1) (The coordinate ring of the hypercube). Let n be a positive integer and $X:=\{-1,1\}^{n} \subseteq \mathbb{R}^{n}$. Prove that $\mathbb{R}[X]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{i}^{2}-1: i=1, \ldots, n\right)$ as follows:
(a) Let $J(X)$ be the ideal generated by $x_{i}^{2}-1$ for $i=1, \ldots, n$. Prove that $J(X) \subseteq I(X)$.
(b) Prove that $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / J(X)$ is generated by the 2^{n} square-free monomials in x_{1}, \ldots, x_{n}.
(c) Conclude that $\mathbb{R}[X]=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right] / J(X)$.
(d) Compute the Hilbert-samuel function $h_{X}(r)$ for $r=0,1,2, \ldots, n$ and verify that $\operatorname{reg}(X)=1+n$.
(e) Compute the coordinate ring of the hypercube $\{0,1\}^{n} \subseteq \mathbb{R}^{n}$.
(2) (Every function on a finite X is a polynomial) Let $X \subseteq \mathbb{R}^{n}$ be a finite set. Prove that every real-valued function on X is the restriction of some polynomial via the following steps:
(a) Assume $\ell\left(x_{1}, \ldots, x_{n}\right)$ is a linear form which distingusishes the points of X in the sense that $\ell(\alpha)=\ell(\beta)$ for $\alpha, \beta \in X$ implies $\alpha=\beta$. Prove that the polynomials

$$
p_{y}\left(x_{1}, \ldots, x_{n}\right)=\frac{\prod_{z \in X \backslash y}\left(\ell\left(x_{1}, \ldots, x_{n}\right)-\ell(z)\right)}{\prod_{z \in X \backslash y}(\ell(y)-\ell(z))}
$$

for $y \in X$ are Lagrange interpolation functions on X
(b) Show that for every finite set X there exists a linear form which distinguishes the points of X.
(c) Conclude that every real-valued function on X is the restriction of a polynomial and that the vector space dimension of $\mathbb{R}[X]$ equals $|X|$.
(3) (Formulating $f_{(1)}$ as an $S D P$). Let $X:=\{-1,1\}^{3} \subseteq \mathbb{R}^{3}$. In this exercise we want to minimize

$$
f:=6-2(x y+y z+x z)
$$

via semidefinite programming.
(a) Write the optimization problem

$$
f_{(1)}:=\max \left\{\lambda: f-\lambda \in \Sigma_{\leq 1}\right\}
$$

in $\mathbb{R}[X]$ as an explicit semidefinite program.
(b) Show that $f_{(1)}:=\max [6-(A+E+H+J)]$ subject to

$$
\left(\begin{array}{cccc}
A & 0 & 0 & 0 \\
0 & E & -1 & -1 \\
0 & -1 & H & -1 \\
0 & -1 & -1 & J
\end{array}\right) \succeq 0
$$

(c) Prove that $f_{(1)}=0=\min _{x \in X} f$.

2. Exercises for lecture 2: Sparsity and chordality

(1) (Cliques of chordal graphs) Prove the correctness of the algorithmic procedure explained Lecture 2 for finding all maximal cliques of a chordal graph given a perfect elimination order $v_{1}<\cdots<v_{n}$ on its vertices.
(2) Use the Grone and Johnson Theorem to decide whether the following matrix $A \succeq 0$.

$$
A=\begin{aligned}
& \\
& 1 \\
& 2 \\
& 3 \\
& 4
\end{aligned}\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2.2 & 1.1 & 0 & 1.1 \\
1.1 & 2.2 & 1.1 & 0 \\
0 & 1.1 & 2.2 & 1.1 \\
1.1 & 0 & 1.1 & 2.2
\end{array}\right)
$$

(3) (The square-free monomial basis) Let n be a positive integer and let $X:=\{-1,1\}^{n}$ be the hypercube. Prove the following statements:
(a) The square-free monomials $\left\{\chi_{I}: I \subseteq[n]\right\}$ form an orthonormal basis of $\mathbb{R}[X]$ for the inner product

$$
\langle f, g\rangle:=\frac{1}{|X|} \sum_{y \in X} f(x) g(x)
$$

(b) Prove that the equality $\chi_{I} \cdot \chi_{J}=\chi_{I \triangle J}$ holds in $\mathbb{R}[X]$.
(c) For each $z \in X$ let p_{z} be the Lagrange interpolation function centered at z. Use orthonormality of χ_{I} to find a formula expressing p_{z} in terms of the basis $\vec{\chi}$.
(d) Conclude that any nonnegative function $f \in \mathbb{R}[X]$ admits a representation $f=\vec{\chi}^{t} Q \vec{\chi}$ where $Q \succeq 0$ and the entries of Q are given by

$$
Q_{\chi_{I}, \chi_{J}}:=\left\langle f, \chi_{I \triangle J}\right\rangle .
$$

(4) (A general upper bound for the exactness degree) Let n be an even integer and let $X:=\{-1,1\}^{n}$. Suppose d is even and $f \in \mathbb{R}[X]_{\leq d}$ is a nonnegative form. Prove that $f \in \Sigma_{\leq b}$ with $b=\frac{n+d}{2}$ via the following steps:
(a) Define the graph H whose vertices are all subsets of $[n]$ and connect two sets I, J with an edge if and only if the symmetric difference $I \triangle J$ has size at most d. Prove that $f:=\vec{\chi}^{t} Q \vec{\chi}$ for some matrix $Q \succeq 0$ for which H is an admissible support graph.
(b) Define a graph \hat{H} whose vertices are all subsets of $[n]$ and connect two sets I, J with an edge if and only if $\| I|-|J|| \leq d$. Prove that \hat{H} is a chordal cover of H with cliques C_{0}, \ldots, C_{n-d} where the vertices of C_{i} are all sets of sizes $i, i+1, \ldots, i+d$.
(c) Note that multiplication $\chi_{[n]}$ exchanges the C_{j} 's. Prove a Lemma explaining how.
(d) Prove that $f \in \Sigma_{\leq b}$ with $b=\frac{n+d}{2}$.
(e) What, if anything, changes when d or n are odd? Find the right statements and prove them.

3. Exercises for lecture 3: Symmetry in sums-of-SQuares.

(1) Let S_{n} act on $\mathbb{R}[\vec{x}]:=\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ by permuting the coordinates.
(a) Prove that the set of homogeneous polynomials of any given degree d, denoted $\mathbb{R}[\vec{x}]_{d}$ is a stable subspace.
(b) Prove that the subspace $\left\langle\sum x_{i}\right\rangle \subseteq \mathbb{R}[\vec{x}]_{1}$ is a stable subspace.
(c) Prove that the orthogonal complement of $\sum x_{i}$ (with respect to the inner product $\left\langle x_{i}, x_{j}\right\rangle=\delta_{i j}$) is an irreducible stable subspace of $\mathbb{R}[\vec{x}]_{1}$
(d) Describe all the S_{n}-invariant sums-of-squares of linear forms in $\mathbb{R}[\vec{x}]$. Is every such form a sum of squares of invariant forms?
(2) (A very useful isomorphism) Let $\left(V, \rho_{1}\right),\left(W, \rho_{2}\right)$ be representations of a finite group G. Prove the following statements:
(a) The pair $\left(V^{*}, \rho_{1}^{t}\right)$ is a representation of G (here ρ_{1}^{t} denotes the transpose of ρ).
(b) The pair $\left(V \otimes W, \rho_{1} \otimes \rho_{2}\right)$ is a representation of G.
(c) Prove that the vector space $\operatorname{Hom}(V, W)$ can be made into a representation of T by definining $\tau(g)(T):=\rho_{2}(g) \circ T \circ \rho_{1}\left(g^{-1}\right)$.
(d) Prove that there is a canonical isomorphism of representations

$$
V \otimes W \cong \operatorname{Hom}\left(V^{*}, W\right)
$$

and in particular $(V \otimes W)^{G}$ is isomorphic $\operatorname{Hom}_{G}\left(V^{*}, W\right)$ defined as the space of morphisms of representations between V^{*} and W.
(e) Assume V, W are isotypical components of a representation Λ with summands isomorphic to irreducible representations T, S with $T^{*} \not \neq S$. Compute $(V \otimes W)^{G}$.
(3) (Invariant sums-of-squares) Let X be a finite set and let $G \subseteq \operatorname{Aut}(X)$ be a subgroup and suppose G acts on $\mathbb{R}[X]$ by the contragradient action ρ^{*}. Prove the following statements:
(a) If $W \subseteq \mathbb{R}[X]$ is a G-stable subspace then the multiplication map $\mu: W \otimes W \rightarrow \mathbb{R}[X]$ is a morphism of representations.
(b) Prove that the averaging maps $\mathcal{A}^{\prime}: W \otimes W \rightarrow(W \otimes W)^{G}$ and $\mathcal{A}: \mathbb{R}[X] \rightarrow \mathbb{R}[X]^{G}$ satisfy the commuting relation $\mathcal{A}^{\prime} \circ \mu=\mu \circ \mathcal{A}$.
(c) Assume now that $\mathbb{R}[X]_{\leq r}$ is stable and that $\mathbb{R}[X]_{\leq r}:=W_{1} \oplus \cdots \oplus W_{c}$ is the G-isotypical decomposition. Assume this decomposition is real and furthermore that $W_{j}^{*} \cong W_{j}$ for every j (this always happens when the isotypical decomposition is real). Prove that:
(i) If $i \neq j$ then for every $w_{i} \in W_{i}$ and $w_{j} \in W_{j}$ the equality $\mathcal{A}\left(w_{i} w_{j}\right)=0$ holds.
(ii) If $i=j$ then for every $w, w^{\prime} \in W_{i}$ the average $\mathcal{A}\left(w w^{\prime}\right)$ lies in a subspace of dimension bounded above by the multiplicity of the isotypical component W_{i}.
(iii) Give a rigorous proof of the fact that

$$
\Sigma_{\leq r}^{G}=\mathcal{A}\left(\Sigma_{W_{1}}\right)+\cdots+\mathcal{A}\left(\Sigma_{W_{c}}\right)
$$

4. Exercises for lecture 4: The polynomial kernel method.
(1) (The reproducing or Christoffel-Darboux kernel) Let X be a finite set. Endow $\mathbb{R}[X]$ with the inner product

$$
\langle f, g\rangle:=\frac{1}{|X|} \sum_{y \in X} f(y) g(y)
$$

and let $W \subseteq \mathbb{R}[X]$ be any vector subspace. Prove the following statements
(a) If f_{1}, \ldots, f_{L} is a \langle,$\rangle -orthonormal basis for W$ then the function

$$
K(a, b):=\sum_{j=1}^{L} f_{j}(a) f_{j}(b)
$$

called the reproducing or Christoffel-Darboux kernel has the following reproducing property

$$
\frac{1}{|X|} \sum_{y \in X} K(x, y) f(y)=\left\{\begin{array}{l}
f(x), \text { if } f \in W \\
0, \text { if } f \in W^{\perp}
\end{array}\right.
$$

(b) Show that $K: X \times X \rightarrow \mathbb{R}$ is the unique function with the reproducing property on W. In particular show that $K(a, b)$ is independent of the chosen orthonormal basis for W.
(c) Suppose h_{1}, \ldots, h_{L} is a basis for W which is not necessarily orthonormal. Find a formula for computing the Christoffel-Darboux kernel $K(a, b)$ using the h 's.
(2) (The Funk-Hecke formula) Suppose X is a finite metric space with distance function $d(x, y)$. Let \mathbb{B} be the collection of automorphisms of the metric, that is $g: X \rightarrow X$ such that $d(g x, g y)=d(x, y)$. Assume $u(t)$ is a univariate polynomial and let $\Gamma: \mathbb{R}[X] \rightarrow \mathbb{R}[X]$ be defined by

$$
\Gamma(f)(x):=\frac{1}{|X|} \sum_{y \in X} u(d(x, y)) f(y)
$$

Prove the following statements:
(a) The map $\Gamma: \mathbb{R}[X] \rightarrow \mathbb{R}[X]$ is a morphism of \mathbb{B}-representations.
(b) Assume the isotypical decomposition of $\mathbb{R}[X]$ is of multiplicity one, that is

$$
\mathbb{R}[X]:=W_{1} \oplus W_{2} \oplus \cdots \oplus W_{L}
$$

where the W_{i} are pairwise nonisomoprhic irreducible representations of \mathbb{B}. Prove that for each W_{i} there exists a constant λ_{i} such that Γ acts like $\lambda_{i} I$ on W_{i}.
(3) (Generalized Krawtchouk polynomials) We use the notation and assumptions from part (b) of the previous exercise. Fix $x_{0} \in X$ and let $H:=\operatorname{Stab}\left(x_{0}\right)$ that is, the collection of elements $g \in \mathbb{B}$ such that $g x_{0}=x_{0}$. Assume that every \mathbb{B}-irreducible component contains a unique copy of the trivial H representation and furthermore that $\mathbb{R}[X]^{H}$ is generated as an algebra by the function $\ell(y):=d\left(x_{0}, y\right)$ with $\mathbb{R}[X]^{H}=\mathbb{R}[\ell] /(q(\ell))$ where $q(\ell)$ is a univariate polynomial of degree $1+\operatorname{diam}(X)$. Prove that
for each $j=0,1, \ldots, \operatorname{diam}(X)$ there is a unique univariate polynomial $u_{j}(t)$ with the property that $K(x, y):=u_{j}(d(x, y))$ is the reproducing kernel for W_{j}.

