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Problem definition

• Let V = {1, . . . , n}, let E be a set of subsets of cardinality at least two of V ,
and let V1, V2 be a partition of V . Consider the optimization problem:

max

{

∑

e∈E

ce
∏

v∈e

zv : zv ∈ [0, 1] ∀v ∈ V1, zv ∈ {0, 1} ∀v ∈ V2

}

.

– V1 = ∅: Pseudo-Boolean optimization, unconstrained binary polynomial
optimization, unconstrained binary nonlinear optimization

– V2 = ∅: maximizing a multilinear function over a box

• Define ze :=
∏

v∈e zv for all e ∈ E:

max
∑

e∈E

ceze,

s.t. ze =
∏

v∈e

zv, ∀e ∈ E

zv ∈ {0, 1}, ∀v ∈ V .
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The multilinear polytope

• We define the multilinear set as:

S =
{

z ∈ {0, 1}|V |+|E| : ze =
∏

v∈e

zv, ∀e ∈ E
}

.

• Example:

S =
{

z ∈ {0, 1}8 : z12 = z1z2, z24 = z2z4, z123 = z1z2z3, z134 = z1z3z4

}

.

• We define the multilinear polytope as the convex hull of the multilinear set:

MP = conv(S)

• If |e| = 2 for all e ∈ E, then MP is the Boolean quadric polytope QP (Padberg,
89) and hence the cut polytope under a bijective linear transformation.
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The hypergraph representation of multilinear sets

• With any hypergraph G = (V,E), we associate a multilinear set SG defined as:

SG = {z ∈ {0, 1}d : ze =
∏

v∈e

zv, e ∈ E},

where d = |V | + |E|. We define MPG = conv(SG).

z12 = z1z2

z24 = z2z4

z123 = z1z2z3

z134 = z1z3z4
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• For quadratic sets, we obtain the graph representation of QPG (Padberg, 89)

z12 = z1z2

z24 = z2z4

z34 = z3z4

1

2

3

4

• The rank of G is the maximum cardinality of any edge in E.
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Standard linearization of multilinear sets

• Replace each multilinear term ze =
∏

v∈e zv, by its convex hull over the
unit hypercube and use

⋂

i conv(Si) ⊇ conv(
⋂

i Si) to obtain the standard

linearization MPLP
G of SG:

MPLP
G =

{

z : zv ≤ 1, ∀v ∈ V, ze ≥ 0, ze ≥
∑

v∈e

zv − |e|+ 1, ∀e ∈ E,

ze ≤ zv, ∀v ∈ e, ∀e ∈ E
}

.

• Existing results for the Boolean quadric polytope:

– QPG = QPLP
G iff G is an acyclic graph (Padberg 89).

– Let QPC
G be polytope obtained by adding all odd cycle inequalities to QPLP

G ;
QPG = QPC

G iff G is a series-parallel graph (Barahona 86, Padberg 89).
– Optimizing over QPLP

G and QPC
G can be done in polynomial-time.

• Goal: obtaining similar results for higher degree multilinear sets in terms of
easily verifiable conditions on the structure of underlying hypergraphs.
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Cycles in hypergraphs

• Hypergraph acyclicity in increasing degree of generality: Berge-acyclicity, γ-
acyclicity, β-acyclicity, and α-acyclicity.

• A Berge-cycle in G of length t for some t ≥ 2, is a sequence C =
v1, e1, v2, e2, . . . , vt, et, v1 with the following properties:

– v1, v2, . . . , vt are distinct nodes of G,
– e1, e2, . . . , et are distinct edges of G,
– vi, vi+1 ∈ ei for i = 1, . . . , t− 1, and vt, v1 ∈ et.

• A hypergraph is Berge-acyclic when it contains no Berge-cycles.

3

1 2

Berge-cycle:
C = v1, e12, v2, e123, v1

A Berge-acyclic Hypergraph
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Decomposability of multilinear sets

• Given V ′ ⊂ V , the section hypergraph of G induced by V ′ is G′ = (V ′, E′),
where E′ = {e ∈ E : e ⊆ V ′}.

• Given G1 = (V1, E1) and G2 = (V2, E2), we denote by G1∪G2, the hypergraph
(V1 ∪ V2, E1 ∪ E2), and by G1 ∩G2, the hypergraph (V1 ∩ V2, E1 ∩ E2).

• Let G1, G2 be section hypergraphs of G such that G1 ∪G2 = G. We say that
SG is decomposable into SG1 and SG2, if

convSG = convSG1 ∩ convSG2.

• A hypergraph G = (V,E) is complete if all subsets of V of cardinality at least
two are in E.

• Theorem: Let G1, G2 be section hypergraphs of G such that G1 ∪G2 = G and
G1 ∩G2 is a complete hypergraph. Then the set SG is decomposable into SG1

and SG2.
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The standard linearization vs. the convex hull relaxation

• Theorem: MPLP
G = MPG if and only if G is a Berge-acyclic hypergraph.

• Proof sketch:

– If G has a Berge-cycle of length two; i.e., E(C) = {e1, e2} with |e1∩e2| ≥ 2,
the following is valid for SG:

∑

v∈e2\e1

zv + ze1 − ze2 ≤ |e2 \ e1|

Consider z̃v = 1 for all v ∈ e2 \ e1, z̃v = 1/2 for all v ∈ e1, z̃v = 0 for the
remaining nodes in G, z̃e1 = 1/2, z̃e2 = 0, z̃e = 1 for all e ⊆ e2 \ e1, z̃e = 0

for all e * e1 ∪ e2 and z̃e = 1/2 for all remaining edges in G. z̃ ∈ MPLP
G .

Substituting z̃ in the above inequality yields |e2 \ e1|+ 1/2− 0 � |e2 \ e1|.
– Let C be a Berge-cycle of minimum length t, where t ≥ 3. Since |ei∩ej| ≤ 1

for all ei, ej ∈ E, the subhypergraphGV (C) is a graph consisting of a chordless

cycle. To show MPG ⊂ MPLP
G is suffices to show that MPGV (C)

⊂ MPLP
GV (C)

.

The polytope MPGV (C)
is integral while MPLP

GV (C)
is not integral.

⇒ if G contains a Berge-cycle, we have MPG ⊂ MPLP
G
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The standard linearization vs. the convex hull relaxation

• Suppose that G is a Berge-acyclic hypergraph. Then there exists an edge ẽ of
G such that ẽ ∩ {v : ∃e ∈ E(G) \ ẽ, v ∈ e} = {ṽ}, for some ṽ ∈ V (G).

⇒ if G is Berge-acyclic, we have MPG = MPLP
G
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γ-acyclic hypergraphs

• A γ-cycle in G is a Berge-cycle C = v1, e1, v2, e2, . . . , vt, et, v1 such that t ≥ 3,
and the node vi belongs to ei−1, ei and no other ej, for all i = 2, . . . , t.

• A hypergraph is called γ-acyclic if it contains no γ-cycles.

3

1 2

1

2

3

451 2

3

4

No γ-cycles; Berge-cycles of length two and three. γ-cycle: C = v1, e12, v2, e123, v3, e13, v1

A γ-acyclic hypergraph
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γ-acyclicity and laminarity

• Given G = (V,E) and V̄ ⊆ V , the subhypergraph of G induced by V̄ is GV̄

with node set V̄ and with edge set {e ∩ V̄ : e ∈ E, |e ∩ V̄ | ≥ 2}.

• A hypergraph G is laminar, if for any e1, e2 ∈ E, one of the following is satisfied:
(i) e1 ∩ e2 = ∅, (ii) e1 ⊂ e2, (iii) e2 ⊂ e1.

• Let G = (V,E) be a γ-acyclic hypergraph, and let e ∈ E. Then the
subhypergraph Ge is laminar.
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Flower inequalities

• Let e0 ∈ E and let ek, k ∈ K, be the set of all edges adjacent to e0. Let
T ⊆ K such that

∣

∣

∣
(e0 ∩ ei) \

⋃

j∈T\{i}

(e0 ∩ ej)
∣

∣

∣
≥ 2, ∀i ∈ T. (1)

• The flower inequality centered at e0 with neighbors ek, k ∈ T is:
∑

v∈e0\∪k∈T ek

zv +
∑

k∈T

zek − ze0 ≤ |e0 \ ∪k∈Tek|+ |T | − 1.

• We refer to the flower inequalities for all nonempty T ⊆ K satisfying (1), as
the system of flower inequalities centered at e0. The flower relaxation MPF

G is
the polytope obtained by adding the system of flower inequalities centered at
each edge of G to MPLP

G .

2
3

4
7

6
5

9

8

1

0

1

2
3 z1 + z4 + z5 + z6 + ze1 − ze0 ≤ 4

z1 + z5 + z6 + ze2 − ze0 ≤ 3,

z1 + z2 + z3 + z4 + ze3 − ze0 ≤ 4,

z1 + z4 + ze1 + ze3 − ze0 ≤ 3, z1 + ze2 + ze3 − ze0 ≤ 2
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A sufficient condition for decomposability of multilinear sets

• Given V ′ ⊂ V , the section hypergraph of G induced by V ′ is G′ = (V ′, E′),
where E′ = {e ∈ E : e ⊆ V ′}. Given G1 = (V1, E1) and G2 = (V2, E2), we
denote by G1 ∪G2, the hypergraph (V1 ∪ V2, E1 ∪ E2).

• Let G1, G2 be section hypergraphs of G such that G1 ∪G2 = G. We say that
SG is decomposable into SG1 and SG2, if

convSG = convSG1 ∩ convSG2.

• Theorem: Let G1, G2 be section hypergraphs of G such that G1 ∪ G2 = G.
Suppose that p̄ := V (G1) ∩ V (G2) ∈ V (G) ∪ E(G), and that for every edge e
of G containing nodes in V (G1) \ V (G2) either e ⊃ p̄, or e ∩ p̄ = ∅. Then SG

is decomposable into SG1 and SG2.
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The flower relaxation vs. the convex hull relaxation

• Theorem: MPF
G = MPG if and only if G is a γ-acyclic hypergraph.

• Proof sketch: If G has a γ-cycle, then after fixing zv = 1 for all v in certain
subset V ′ ⊂ V (G), we either obtain a chordless cycle or one of the following
structures:

1 2

3

1 2

3

−z1 + z12 + z13 − z123 ≤ 0

⇒ if G contains a γ-cycle, we have MPG ⊂ MPF
G
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The flower relaxation vs. the convex hull relaxation

• Suppose that G is γ-acyclic and that G has at least two maximal edges.
Consider a maximal edge e′ of G, and define E′ to be the set of edges
contained in e′, and V̄ := e′ ∩ (∪e∈E\E′e). Then e′ is a leaf of G, if V̄ ⊂ ẽ for
some ẽ ∈ E \E′. We claim that G contains a leaf.

⇒ G decomposes into a collection of laminar hypergraphs
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The flower relaxation vs. the convex hull relaxation

• Theorem: Let G = (V,E) be a laminar hypergraph. Given an edge e ∈ E, we
define I(e) := {p ∈ V ∪ E : p ⊂ e, p 6⊂ e′, for e′ ∈ E, e′ ⊂ e}. Then MPG is
described by the following system:

zv ≤ 1 ∀v ∈ V

−ze ≤ 0 ∀e ∈ E such that e 6⊂ f, for f ∈ E

−zp + ze ≤ 0 ∀e ∈ E, ∀p ∈ I(e)
∑

p∈I(e)

zp − ze ≤ |I(e)| − 1 ∀e ∈ E.

• Our proof relies on a fundamental result due to Conforti and Cornuéjols
regarding the connection between integral polyhedra and balanced matrices.

• For a γ-acyclic hypergraph G, the multilinear polytope has a polynomial-size
extended formulation.

• Applying Fourier-Motzkin elimination to project out auxiliary edges, it follows
that for a γ-acyclic G, we have MPG = MPF

G.

15



β-acyclic hypergraphs

• A β-cycle in G is a γ-cycle C = v1, e1, v2, e2, . . . , vt, et, v1 such that the node
v1 belongs to e1, et and no other ej.

• A hypergraph is called β-acyclic if it contains no β-cycles.

1 2

34

1

2 3

1 2

34

6 5

Examples of β-cycles

A β-acyclic hypergraph
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Running intersection inequalities

• A multiset F of subsets of a finite set V has the running intersection property
if there exists an ordering p1, p2, . . . , pm of the sets in F such that

∀k ∈ {2, . . . ,m},∃j < k : N(pk) := pk ∩
(

⋃

i<k

pi

)

⊆ pj.

We refer to such an ordering as a running intersection ordering of F .

• Let e0 and ek, k ∈ K, be a collection of edges adjacent to e0 such that
Ẽ := {e0 ∩ ek : k ∈ K} has the running intersection property. Consider a
running intersection ordering of Ẽ. For each k ∈ K, let wk ⊆ N(e0 ∩ ek) such
that wk ∈ ∅ ∪ V ∪ E. We define a running intersection inequality centered at
e0 with neighbours ek, k ∈ K as

−
∑

k∈K

zwk
+

∑

v∈e0\
⋃

k∈K ek

zv +
∑

k∈K

zek − ze0 ≤ ω − 1,

where we define z∅ = 0, and ω =
∣

∣

∣
{k ∈ K : wk = ∅}

∣

∣

∣
+
∣

∣

∣
{e0 \

⋃

k∈K ek}
∣

∣

∣
.
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Running intersection inequalities

• Letting wk = ∅ for all k ∈ K, running intersection inequalities simplify to flower
inequalities.

4

e1

e2

e3

e0

e4

e5
e6

e7

e8

1

1

2

2

2

3

3

4

5

5

6

7

7

8

8
9

9

−zv5 − zv7 − zv8 + zv1 + zv2 + ze2 + ze3 + ze6 + ze7 + ze8 − ze0 ≤ 3,

−zv5 − zv7 − zv9 + zv1 + zv2 + ze2 + ze3 + ze6 + ze7 + ze8 − ze0 ≤ 3,

−2zv4 + zv2 + zv3 + ze1 + ze2 + ze4 + ze5 + ze8 − ze0 ≤ 4

• Any running intersection ordering of Ẽ leads to the same system of running
intersection inequalities centered at e0 with neighbors ek, k ∈ K.
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The running intersection relaxation

• The running intersection relaxation MPRI
G is the polytope obtained by adding

to MPLP
G all possible running intersection inequalities for SG.

• If MPG is not β-acyclic, then MPG ⊂ MPRI
G .

• Let G be a β-acyclic hypergraph. Suppose that there exist no three edges
e0, e1, e2 ∈ E such that |e0∩e1∩e2| ≥ 2, (e0∩e1)\e2 6= ∅, and (e0∩e2)\e1 6= ∅.
Then MPG = MPRI

G .

�
✁

✂

✄

☎

✧ ✆ ✆ ✆ ✧ ✧ ✝ ✞
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Separation of flower and running intersection inequalities

• Even for a γ-acyclic hypergraph G = (V,E), the number of facets of MPF
G may

not be bounded by a polynomial in |V |, |E|.

• Given a rank-r γ-acyclic hypergraph G = (V,E), the separation problem over
all flower inequalities can be solved in O(r|E|2(|V |+ |E|)) operations.

• The separation problem for flower inequalities over general hypergraphs is
NP-hard (reduction from 3D matching).

• The separation problem for running intersection inequalities for fixed-
rank hypergraphs can be solved in polynomial-time. More precisely, in

O(|E|(r2r|E|+ 2r
2
r3)) operations.
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Numerical Experiments

• We characterize each problem by its degree (d), number of variables (n),
number of constraints (q), and density (ν).

• Polynomial problems of degree 3 with

(n, ν) ∈ {(10, 0.75), (15, 0.25), (15, 0.15), (20, 0.1), (20, 0.05)},

and multilinear problems of degree 3 with

(n, ν) ∈ {(10, 1.0), (15, 0.5), (20, 0.15), (20, 0.1), (25, 0.05), (30, 0.02)}.

• Polynomial problems of degree 4 with

(n, ν) ∈ {(10, 0.25), (10, 0.15), (15, 0.05), (15, 0.02), (20, 0.01)},

and multilinear problems of degree 4 with

(n, ν) ∈ {(10, 1.0), (15, 0.15), (20, 0.02), (20, 0.01), , (25, 0.01), (25, 0.005)}.

• In both sets, we let q ∈ {0, n/5, n/2, n}. For each combination, 5 random
instance are generated.

• Relative/absolute optimality tolerance = 10−6 and time limit = 500s.
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220 polynomial optimization problems of degree three
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(c) Memory
• Average reductions of 60% in CPU time, 78% in number of nodes, and

70% in maximum number of nodes in memory.
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220 polynomial optimization problems of degree four
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• Average reductions of 43% in CPU time, 76% in number of nodes, and

72% in maximum number of nodes in memory.
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Numerical Experiments – computer vision instances

• The purpose of image restoration is to estimate the original image from the
degraded data. An image is modeled as a l × h matrix where each binary
element xij represents a pixel.

• The image restoration problem is defined as the objective function f(x) =
H(x) + L(x) to be minimized, where H(x) is linear and models similarity
between the input blurred image and the output, L(x) is a multilinear function
of degree four and models smoothness.

• Test set taken from [CramaRodrigez16] with images sizes {10×10}, {10×15},
{15× 15}.

Effect of adding cuts CPU time Iterations Nodes

Better by a factor at least 2 17 (38%) 10 (23%) 10 (23%)

Between 30% and 100% better 13 (30%) 0 (0%) 0 (0%)
Difference smaller than 30% 14 (32%) 34 (77%) 34 (77%)

Between 30% and 100% worse 0 (0%) 0 (0%) 0 (0%)
Worse by a factor of at least 2 0 (0%) 0 (0%) 0 (0%)

• Average reductions of 63% in CPU time, 42% in number of iterations,

and 30% in maximum number of nodes in memory.
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What about the multilinear polytope of β-acyclic

hypergraphs?

• From a computational perspective, sparsity is key to the effectiveness of cutting
planes in a branch-and-cut framework.

• For a rank r hypergraph, flower inequalities contain at most r
2 nonzero

coefficients, and running intersection inequalities contain at most 2(r − 1)
nonzero coefficients.

• For β-acyclic hypergraphs, MPG may contain dense facet-defining inequalities
with θ(|E|) nonzero coefficients.

• In practice, we almost always have r ≪ |E|.
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Example

• Let n ≥ 2 and consider the β-acyclic hypergraph G = (V,E) with V =
⋃

i∈[n] V
i, E = H ∪

⋃

i∈[n]E
i, where V 1 = {v13, v

1
4, v

1
7, v

1
8}, V

i = {vi1, · · · , v
i
8}

for all i ∈ [n− 1] \ {1}, V n = {vn1 , v
n
2 , v

n
5 , v

n
6 },

H =
{

{vi3, v
i
4, v

i+1
1 , v

i+1
2 }, i ∈ [n − 1]

}

E
1 =

{

{v13, v
1
4, v

1
7}, {v

1
3, v

1
4, v

1
8}, V

1
}

E
i =

{

{vi1, v
i
2, v

i
5}, {v

i
1, v

i
2, v

i
6}, {v

i
3, v

i
4, v

i
7}, {v

i
3, v

i
4, v

i
8}, V

i
}

, ∀i ∈ [n − 1] \ {1}

E
n =

{

{vn1 , v
n
2 , v

n
5 }, {v

n
1 , v

n
2 , v

n
6 }, V

n
}

.

• Then the following inequality containing |E| nonzero coefficients defines a facet
of MPG:

−
∑

i∈[n]

zV i −
∑

e∈H

ze +
∑

i∈[n]

∑

e∈Ei\{V i}

ze ≤ 2n− 3.
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The multilinear polytope of acyclic hypergraphs

• The multilinear polytope of Berge-acyclic hypergraphs is the standard
linearization; polynomial-size description: |V |+|E| variables and |V |+(r+2)|E|
inequalities.

• The multilinear polytope of γ-acyclic hypergraphs is the flower relaxation;
polynomial-size extended formulation: at most |V | + 2|E| variables (|E|
additional variables) and |V |+ (r + 2)|E| inequalities.

• The multilinear polytope of kite-free β-acyclic hypergraphs is the running
intersection relaxation; polynomial-size extended formulation: at most |V |+2|E|
variables (|E| additional variables) and |V |+ (r + 2)|E| inequalities.

• The multilinear polytope of α-acyclic hypergraphs does not admit a polynomial-
size extended formulation unless P = NP

• Does the multilinear polytope of β-acyclic admit a polynomial-size extended
formulation?
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The multilinear polytope of β-acyclic hypergraphs

• Theorem: Let G = (V,E) be a β-acyclic hypergraph of rank r. Then there
exists an extended formulation of MPG comprising of at most (3r−4)|V |+4|E|
inequalities, with at most (r − 2)|V | extended variables.

• Fewer inequalities than the standard linearization for β-acyclic hypergraphs with
|E| ≥ 3|V |

• The inequalities defining the extended formulation are very sparse: they contain
at most four variables with non-zero coefficients.
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β-acyclicity and nest points

• A node v ∈ V is a nest point of G if the set of the edges of G containing v
can be ordered so that e1 ⊂ e2 ⊂ · · · ⊂ ek.

• We define the hypergraph obtained from G = (V,E) by removing a node
v ∈ V as G − v := (V ′, E′), where V ′ := V \ {v} and E′ := {e \ {v} : e ∈
E, |e \ {v}| ≥ 2}.

• A nest point sequence of length s for some s ≤ |V | of G is an ordering
v1, · · · , vs of s distinct nodes of G, such that v1 is a nest point of G, v2 is a
nest point of G− v1, and so on

• Theorem: A hypergraph G = (V,E) is β-acyclic if and only if it has a nest
point sequence of length |V |.

• Let v1, · · · , vs be a nest point sequence of G. The expansion of G (w.r.t.
v1, · · · , vs) is the hypergraph G′ = (V,E′), where E′ is obtained from E by
adding, for each e ∈ E, the sets of cardinality at least two among e \ {v1},
e \ {v1, v2}, · · · , e \ {v1, · · · , vs}.
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The Extended formulation

• Theorem: Let G = (V,E) be a β-acyclic hypergraph expanded w.r.t. v1, . . . , vn.
For every e ∈ E, denote by v(e) the first node in the sequence v1, . . . , vn
contained in e, and define p(e) := e \ {v(e)}. Define M := {e ∈ E : ∃g ∈
E, g ⊂ e, v(e) ∈ g}. For every e ∈ M , let f(e) ⊂ e be the edge of maximum
cardinality with v(e) ∈ f(e), and let f ′(e) := f(e) \ {v(e)}. Denote by Ē the
set of maximal edges of G. Then, MPG is defined by:

0 ≤ zu ≤ 1, ∀u ∈ V, ze ≥ 0, ∀e ∈ Ē

ze − zp(e) ≤ 0, ∀e ∈ E

ze − zf(e) ≤ 0, −zf ′(e) + zp(e) + zf(e) − ze ≤ 0, ∀e ∈ M

ze − zv(e) ≤ 0, zv(e) + zp(e) − ze ≤ 1, ∀e ∈ E \M.

e

V(e)
p(e)

p(e)

f(e)
e

f'(e)
V(e)

30



Recap

• Goal: constructing strong and cheap polyhedral relaxations for multilinear sets

• The standard linearization coincides with the multilinear polytope of Berge-
acyclic hypergraphs, very weak relaxations in general

• Flower relaxation gives the multilinear polytope of γ-acyclic hypergraphs

• Running intersection inequalities dominate flower inequalities when the
neighbours intersect and satisfy the running intersection property

• A very simple compact extended formulation for the multilinear polytope of
β-acyclic hypergraphs, but no characterization in the original space
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Other results on the facial structure of the multilinear

polytope

• A. Del Pia and S. Di Gregorio, Chvatal rank in binary polynomial optimization,
INFORMS Journal on Optimization 3(4) 315-349 (2021)

– Running intersection inequalities are CG cuts for the standard linearization
MPLP

G

– For kite-free β-acyclic hypergraphs, the polytope MPLP
G has Chvatal rank 1.

• A. Del Pia and M. Walter, Simple odd β-cycle inequalities for binary polynomial
optimization, Proceedings of IPCO 2022 LNCS 13265 181-194 (2022)

– Odd β-cycle inequalities: when added to the flower relaxation, they give the
multilinear polytope of a cycle hypergraph

– G = (V,E), with E = {e1, · · · , em}, where m ≥ 3 is a cycle hypergraph,
if every edge ei has nonempty intersection only with ei−1 and ei+1 for all
i ∈ {1, · · · ,m}. When m = 3, it is also required that e1 ∩ e2 ∩ e3 = ∅.

– Odd β-cycle inequalities have Chvatal rank 2.
– Odd β-cycle inequalities can be separated in strongly polynomial time
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Some open questions

• What is the first CG closure of MPLP
G ?

– For BQP, adding the triangle inequalities to the standard linearization gives
the first CG closure.

• What “the RLT level” of flower inequalities or running intersection inequalities?

• What is “the SoS level” of flower inequalities or running intersection inequalities?

• Other classes of acyclic hypergraphs between β-acyclic and α-acyclic with
polytime complexity.
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