Binary Polynomial Optimization: Theory, Algorithms, and Applications

January 2023

Aida Khajavirad

Lehigh University

Joint work with: Alberto Del Pia (University of Wisconsin-Madison)

Problem definition

• Let $V = \{1, ..., n\}$, let E be a set of subsets of cardinality at least two of V, and let V_1, V_2 be a partition of V. Consider the optimization problem:

$$\max\left\{\sum_{e\in E} c_e \prod_{v\in e} z_v: z_v \in [0,1] \ \forall v \in V_1, \ z_v \in \{0,1\} \ \forall v \in V_2\right\}$$

- − V₁ = Ø: Pseudo-Boolean optimization, unconstrained binary polynomial optimization, unconstrained binary nonlinear optimization
 − V₂ = Ø: maximizing a multilinear function over a box
- Define $z_e := \prod_{v \in e} z_v$ for all $e \in E$:

$$\max \sum_{e \in E} c_e z_e,$$

s.t. $z_e = \prod_{v \in e} z_v, \forall e \in E$
 $z_v \in \{0, 1\}, \forall v \in V.$

The multilinear polytope

• We define the multilinear set as:

$$\mathcal{S} = \Big\{ z \in \{0, 1\}^{|V| + |E|} : z_e = \prod_{v \in e} z_v, \forall e \in E \Big\}.$$

• Example:

$$\mathcal{S} = \left\{ z \in \{0,1\}^8 : z_{12} = z_1 z_2, z_{24} = z_2 z_4, z_{123} = z_1 z_2 z_3, z_{134} = z_1 z_3 z_4 \right\}.$$

• We define the multilinear polytope as the convex hull of the multilinear set:

$$\mathsf{MP} = \operatorname{conv}(\mathcal{S})$$

If |e| = 2 for all e ∈ E, then MP is the Boolean quadric polytope QP (Padberg, 89) and hence the cut polytope under a bijective linear transformation.

The hypergraph representation of multilinear sets

• With any hypergraph G = (V, E), we associate a multilinear set S_G defined as:

$$S_{G} = \{z \in \{0, 1\}^{d} : z_{e} = \prod_{v \in e} z_{v}, \ e \in E\},\$$
where $d = |V| + |E|.$ We define $MP_{G} = \operatorname{conv}(S_{G}).$

$$z_{12} = z_{1}z_{2}$$

$$z_{24} = z_{2}z_{4}$$

$$z_{123} = z_{1}z_{2}z_{3}$$

$$z_{134} = z_{1}z_{3}z_{4}$$

• For quadratic sets, we obtain the graph representation of QP_G (Padberg, 89)

• The rank of G is the maximum cardinality of any edge in E.

Standard linearization of multilinear sets

• Replace each multilinear term $z_e = \prod_{v \in e} z_v$, by its convex hull over the unit hypercube and use $\bigcap_i \operatorname{conv}(\mathcal{S}_i) \supseteq \operatorname{conv}(\bigcap_i \mathcal{S}_i)$ to obtain the standard linearization $\operatorname{MP}_G^{\operatorname{LP}}$ of \mathcal{S}_G :

$$\begin{split} \mathsf{MP}_{G}^{\mathsf{LP}} &= \Big\{ z: \quad z_{v} \leq 1, \; \forall v \in V, z_{e} \geq 0, \; z_{e} \geq \sum_{v \in e} z_{v} - |e| + 1, \; \forall e \in E, \\ &z_{e} \leq z_{v}, \forall v \in e, \; \forall e \in E \Big\}. \end{split}$$

- Existing results for the Boolean quadric polytope:
 - $QP_G = QP_G^{LP}$ iff G is an acyclic graph (Padberg 89).
 - Let QP_G^C be polytope obtained by adding all odd cycle inequalities to QP_G^{LP} ; $QP_G = QP_G^C$ iff G is a series-parallel graph (Barahona 86, Padberg 89).
 - Optimizing over QP_G^{LP} and QP_G^C can be done in polynomial-time.
- Goal: obtaining similar results for higher degree multilinear sets in terms of easily verifiable conditions on the structure of underlying hypergraphs.

Cycles in hypergraphs

- Hypergraph acyclicity in increasing degree of generality: Berge-acyclicity, γ -acyclicity, β -acyclicity, and α -acyclicity.
- A Berge-cycle in G of length t for some $t \ge 2$, is a sequence $C = v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$ with the following properties:
 - v_1, v_2, \ldots, v_t are distinct nodes of G,
 - e_1, e_2, \ldots, e_t are distinct edges of G,
 - $v_i, v_{i+1} \in e_i$ for $i = 1, \ldots, t-1$, and $v_t, v_1 \in e_t$.
- A hypergraph is Berge-acyclic when it contains no Berge-cycles.

Berge-cycle: $C = v_1, e_{12}, v_2, e_{123}, v_1$

Decomposability of multilinear sets

- Given $V' \subset V$, the section hypergraph of G induced by V' is G' = (V', E'), where $E' = \{e \in E : e \subseteq V'\}$.
- Given $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, we denote by $G_1 \cup G_2$, the hypergraph $(V_1 \cup V_2, E_1 \cup E_2)$, and by $G_1 \cap G_2$, the hypergraph $(V_1 \cap V_2, E_1 \cap E_2)$.
- Let G_1, G_2 be section hypergraphs of G such that $G_1 \cup G_2 = G$. We say that S_G is decomposable into S_{G_1} and S_{G_2} , if

$$\operatorname{conv}\mathcal{S}_G = \operatorname{conv}\mathcal{S}_{G_1} \cap \operatorname{conv}\mathcal{S}_{G_2}.$$

- A hypergraph G = (V, E) is complete if all subsets of V of cardinality at least two are in E.
- Theorem: Let G_1, G_2 be section hypergraphs of G such that $G_1 \cup G_2 = G$ and $G_1 \cap G_2$ is a complete hypergraph. Then the set S_G is decomposable into S_{G_1} and S_{G_2} .

The standard linearization vs. the convex hull relaxation

- Theorem: $MP_G^{LP} = MP_G$ if and only if G is a Berge-acyclic hypergraph.
- Proof sketch:
 - If G has a Berge-cycle of length two; i.e., $E(C) = \{e_1, e_2\}$ with $|e_1 \cap e_2| \ge 2$, the following is valid for S_G :

$$\sum_{v \in e_2 \setminus e_1} z_v + z_{e_1} - z_{e_2} \le |e_2 \setminus e_1|$$

Consider $\tilde{z}_v = 1$ for all $v \in e_2 \setminus e_1$, $\tilde{z}_v = 1/2$ for all $v \in e_1$, $\tilde{z}_v = 0$ for the remaining nodes in G, $\tilde{z}_{e_1} = 1/2$, $\tilde{z}_{e_2} = 0$, $\tilde{z}_e = 1$ for all $e \subseteq e_2 \setminus e_1$, $\tilde{z}_e = 0$ for all $e \not\subseteq e_1 \cup e_2$ and $\tilde{z}_e = 1/2$ for all remaining edges in G. $\tilde{z} \in \mathsf{MP}_G^{\mathsf{LP}}$. Substituting \tilde{z} in the above inequality yields $|e_2 \setminus e_1| + 1/2 - 0 \nleq |e_2 \setminus e_1|$. - Let C be a Berge-cycle of minimum length t, where $t \ge 3$. Since $|e_i \cap e_j| \le 1$ for all $e_i, e_j \in E$, the subhypergraph $G_{V(C)}$ is a graph consisting of a chordless cycle. To show $\mathsf{MP}_G \subset \mathsf{MP}_G^{LP}$ is suffices to show that $\mathsf{MP}_{G_{V(C)}} \subset \mathsf{MP}_{G_{V(C)}}^{\mathsf{LP}}$. The polytope $\mathsf{MP}_{G_{V(C)}}$ is integral while $\mathsf{MP}_{G_{V(C)}}^{\mathsf{LP}}$ is not integral.

 \Rightarrow if G contains a Berge-cycle, we have $MP_G \subset MP_G^{LP}$

The standard linearization vs. the convex hull relaxation

Suppose that G is a Berge-acyclic hypergraph. Then there exists an edge ẽ of G such that ẽ ∩ {v : ∃e ∈ E(G) \ ẽ, v ∈ e} = {ṽ}, for some ṽ ∈ V(G).

 \Rightarrow if G is Berge-acyclic, we have $MP_G = MP_G^{LP}$

$\gamma\text{-acyclic hypergraphs}$

- A γ -cycle in G is a Berge-cycle $C = v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$ such that $t \geq 3$, and the node v_i belongs to e_{i-1} , e_i and no other e_j , for all $i = 2, \ldots, t$.
- A hypergraph is called γ -acyclic if it contains no γ -cycles.

No γ -cycles; Berge-cycles of length two and three.

 γ -cycle: $C = v_1, e_{12}, v_2, e_{123}, v_3, e_{13}, v_1$

A γ -acyclic hypergraph

$\gamma\text{-}\mathrm{acyclicity}$ and laminarity

- Given G = (V, E) and $\overline{V} \subseteq V$, the subhypergraph of G induced by \overline{V} is $G_{\overline{V}}$ with node set \overline{V} and with edge set $\{e \cap \overline{V} : e \in E, |e \cap \overline{V}| \ge 2\}$.
- A hypergraph G is laminar, if for any e₁, e₂ ∈ E, one of the following is satisfied:
 (i) e₁ ∩ e₂ = Ø, (ii) e₁ ⊂ e₂, (iii) e₂ ⊂ e₁.

• Let G = (V, E) be a γ -acyclic hypergraph, and let $e \in E$. Then the subhypergraph G_e is laminar.

Flower inequalities

• Let $e_0 \in E$ and let e_k , $k \in K$, be the set of all edges adjacent to e_0 . Let $T \subseteq K$ such that

$$\left| (e_0 \cap e_i) \setminus \bigcup_{j \in T \setminus \{i\}} (e_0 \cap e_j) \right| \ge 2, \quad \forall i \in T.$$
(1)

• The flower inequality centered at e_0 with neighbors e_k , $k \in T$ is:

$$\sum_{v \in e_0 \setminus \bigcup_{k \in T} e_k} z_v + \sum_{k \in T} z_{e_k} - z_{e_0} \le |e_0 \setminus \bigcup_{k \in T} e_k| + |T| - 1.$$

 We refer to the flower inequalities for all nonempty T ⊆ K satisfying (1), as the system of flower inequalities centered at e₀. The flower relaxation MP^F_G is the polytope obtained by adding the system of flower inequalities centered at each edge of G to MP^{LP}_G.

$$\begin{aligned} z_1 + z_4 + z_5 + z_6 + z_{e_1} - z_{e_0} &\leq 4 \\ z_1 + z_5 + z_6 + z_{e_2} - z_{e_0} &\leq 3, \\ z_1 + z_2 + z_3 + z_4 + z_{e_3} - z_{e_0} &\leq 4, \\ z_1 + z_4 + z_{e_1} + z_{e_3} - z_{e_0} &\leq 3, \ z_1 + z_{e_2} + z_{e_3} - z_{e_0} &\leq 2 \end{aligned}$$

A sufficient condition for decomposability of multilinear sets

- Given $V' \subset V$, the section hypergraph of G induced by V' is G' = (V', E'), where $E' = \{e \in E : e \subseteq V'\}$. Given $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$, we denote by $G_1 \cup G_2$, the hypergraph $(V_1 \cup V_2, E_1 \cup E_2)$.
- Let G_1, G_2 be section hypergraphs of G such that $G_1 \cup G_2 = G$. We say that S_G is decomposable into S_{G_1} and S_{G_2} , if

$$\operatorname{conv}\mathcal{S}_G = \operatorname{conv}\mathcal{S}_{G_1} \cap \operatorname{conv}\mathcal{S}_{G_2}.$$

• Theorem: Let G_1 , G_2 be section hypergraphs of G such that $G_1 \cup G_2 = G$. Suppose that $\bar{p} := V(G_1) \cap V(G_2) \in V(G) \cup E(G)$, and that for every edge e of G containing nodes in $V(G_1) \setminus V(G_2)$ either $e \supset \bar{p}$, or $e \cap \bar{p} = \emptyset$. Then S_G is decomposable into S_{G_1} and S_{G_2} .

The flower relaxation vs. the convex hull relaxation

• Theorem: $MP_G^F = MP_G$ if and only if G is a γ -acyclic hypergraph.

 Proof sketch: If G has a γ-cycle, then after fixing z_v = 1 for all v in certain subset V' ⊂ V(G), we either obtain a chordless cycle or one of the following structures:

$$-z_1 + z_{12} + z_{13} - z_{123} \le 0$$

 \Rightarrow if G contains a γ -cycle, we have $\mathsf{MP}_G \subset \mathsf{MP}_G^F$

The flower relaxation vs. the convex hull relaxation

• Suppose that G is γ -acyclic and that G has at least two maximal edges. Consider a maximal edge e' of G, and define E' to be the set of edges contained in e', and $\overline{V} := e' \cap (\bigcup_{e \in E \setminus E'} e)$. Then e' is a leaf of G, if $\overline{V} \subset \tilde{e}$ for some $\tilde{e} \in E \setminus E'$. We claim that G contains a leaf.

 \Rightarrow G decomposes into a collection of laminar hypergraphs

The flower relaxation vs. the convex hull relaxation

Theorem: Let G = (V, E) be a laminar hypergraph. Given an edge e ∈ E, we define I(e) := {p ∈ V ∪ E : p ⊂ e, p ⊄ e', for e' ∈ E, e' ⊂ e}. Then MP_G is described by the following system:

 $\begin{aligned} z_v &\leq 1 & \forall v \in V \\ -z_e &\leq 0 & \forall e \in E \text{ such that } e \not\subset f, \text{ for } f \in E \\ -z_p + z_e &\leq 0 & \forall e \in E, \ \forall p \in I(e) \\ \sum_{p \in I(e)} z_p - z_e &\leq |I(e)| - 1 & \forall e \in E. \end{aligned}$

- Our proof relies on a fundamental result due to Conforti and Cornuéjols regarding the connection between integral polyhedra and balanced matrices.
- For a γ -acyclic hypergraph G, the multilinear polytope has a polynomial-size extended formulation.
- Applying Fourier-Motzkin elimination to project out auxiliary edges, it follows that for a γ -acyclic G, we have $MP_G = MP_G^F$.

β -acyclic hypergraphs

- A β -cycle in G is a γ -cycle $C = v_1, e_1, v_2, e_2, \ldots, v_t, e_t, v_1$ such that the node v_1 belongs to e_1 , e_t and no other e_j .
- A hypergraph is called β -acyclic if it contains no β -cycles.

A $\beta\text{-acyclic}$ hypergraph

Running intersection inequalities

• A multiset F of subsets of a finite set V has the running intersection property if there exists an ordering p_1, p_2, \ldots, p_m of the sets in F such that

$$\forall k \in \{2, \dots, m\}, \exists j < k : N(p_k) := p_k \cap \left(\bigcup_{i < k} p_i\right) \subseteq p_j.$$

We refer to such an ordering as a running intersection ordering of F.

• Let e_0 and e_k , $k \in K$, be a collection of edges adjacent to e_0 such that $\tilde{E} := \{e_0 \cap e_k : k \in K\}$ has the running intersection property. Consider a running intersection ordering of \tilde{E} . For each $k \in K$, let $w_k \subseteq N(e_0 \cap e_k)$ such that $w_k \in \emptyset \cup V \cup E$. We define a running intersection inequality centered at e_0 with neighbours e_k , $k \in K$ as

$$-\sum_{k\in K} z_{w_k} + \sum_{v\in e_0\setminus\bigcup_{k\in K} e_k} z_v + \sum_{k\in K} z_{e_k} - z_{e_0} \le \omega - 1,$$

where we define $z_{\emptyset} = 0$, and $\omega = \left| \{k \in K : w_k = \emptyset\} \right| + \left| \{e_0 \setminus \bigcup_{k \in K} e_k\} \right|.$

Running intersection inequalities

• Letting $w_k = \emptyset$ for all $k \in K$, running intersection inequalities simplify to flower inequalities.

 $\begin{aligned} -z_{v_5} - z_{v_7} - z_{v_8} + z_{v_1} + z_{v_2} + z_{e_2} + z_{e_3} + z_{e_6} + z_{e_7} + z_{e_8} - z_{e_0} &\leq 3, \\ -z_{v_5} - z_{v_7} - z_{v_9} + z_{v_1} + z_{v_2} + z_{e_2} + z_{e_3} + z_{e_6} + z_{e_7} + z_{e_8} - z_{e_0} &\leq 3, \\ -2z_{v_4} + z_{v_2} + z_{v_3} + z_{e_1} + z_{e_2} + z_{e_4} + z_{e_5} + z_{e_8} - z_{e_0} &\leq 4 \end{aligned}$

• Any running intersection ordering of \tilde{E} leads to the same system of running intersection inequalities centered at e_0 with neighbors e_k , $k \in K$.

The running intersection relaxation

- The running intersection relaxation MP_G^{RI} is the polytope obtained by adding to MP_G^{LP} all possible running intersection inequalities for S_G .
- If MP_G is not β -acyclic, then $MP_G \subset MP_G^{RI}$.
- Let G be a β -acyclic hypergraph. Suppose that there exist no three edges $e_0, e_1, e_2 \in E$ such that $|e_0 \cap e_1 \cap e_2| \geq 2$, $(e_0 \cap e_1) \setminus e_2 \neq \emptyset$, and $(e_0 \cap e_2) \setminus e_1 \neq \emptyset$. Then $\mathsf{MP}_G = \mathsf{MP}_G^{\mathrm{RI}}$.

 $-z_1 + z_{123} + z_{124} + z_{135} - z_{1234} - z_{1235} \le 0$

Separation of flower and running intersection inequalities

- Even for a γ -acyclic hypergraph G = (V, E), the number of facets of MP_G^F may not be bounded by a polynomial in |V|, |E|.
- Given a rank- $r \gamma$ -acyclic hypergraph G = (V, E), the separation problem over all flower inequalities can be solved in $O(r|E|^2(|V| + |E|))$ operations.
- The separation problem for flower inequalities over general hypergraphs is NP-hard (reduction from 3D matching).
- The separation problem for running intersection inequalities for fixed-rank hypergraphs can be solved in polynomial-time. More precisely, in $O(|E|(r2^r|E| + 2^{r^2}r^3))$ operations.

Numerical Experiments

- We characterize each problem by its degree (d), number of variables (n), number of constraints (q), and density (ν) .
- Polynomial problems of degree 3 with

 $(n,\nu) \in \{(10,0.75), (15,0.25), (15,0.15), (20,0.1), (20,0.05)\},\$

and multilinear problems of degree 3 with

 $(n,\nu) \in \{(10,1.0), (15,0.5), (20,0.15), (20,0.1), (25,0.05), (30,0.02)\}.$

• Polynomial problems of degree 4 with

 $(n, \nu) \in \{(10, 0.25), (10, 0.15), (15, 0.05), (15, 0.02), (20, 0.01)\},\$

and multilinear problems of degree 4 with

 $(n,\nu) \in \{(10,1.0), (15,0.15), (20,0.02), (20,0.01), (25,0.01), (25,0.005)\}.$

- In both sets, we let q ∈ {0, n/5, n/2, n}. For each combination, 5 random instance are generated.
- Relative/absolute optimality tolerance $= 10^{-6}$ and time limit = 500s.

220 polynomial optimization problems of degree three

• Average reductions of 60% in CPU time, 78% in number of nodes, and 70% in maximum number of nodes in memory.

220 polynomial optimization problems of degree four

• Average reductions of 43% in CPU time, 76% in number of nodes, and 72% in maximum number of nodes in memory.

Numerical Experiments – computer vision instances

- The purpose of image restoration is to estimate the original image from the degraded data. An image is modeled as a $l \times h$ matrix where each binary element x_{ij} represents a pixel.
- The image restoration problem is defined as the objective function f(x) = H(x) + L(x) to be minimized, where H(x) is linear and models similarity between the input blurred image and the output, L(x) is a multilinear function of degree four and models smoothness.
- Test set taken from [CramaRodrigez16] with images sizes $\{10 \times 10\}$, $\{10 \times 15\}$, $\{15 \times 15\}$.

Effect of adding cuts	CPU time	Iterations	Nodes
Better by a factor at least 2	17 (38%)	10 (23%)	10 (23%)
Between 30% and 100% better	13 (30%)	0 (0%)	0 (0%)
Difference smaller than 30%	14 (32%)	34 (77%)	34 (77%)
Between 30% and 100% worse	0 (0%)	0 (0%)	0 (0%)
Worse by a factor of at least 2	0 (0%)	0 (0%)	0 (0%)

• Average reductions of 63% in CPU time, 42% in number of iterations, and 30% in maximum number of nodes in memory.

What about the multilinear polytope of β -acyclic hypergraphs?

- From a computational perspective, sparsity is key to the effectiveness of cutting planes in a branch-and-cut framework.
- For a rank r hypergraph, flower inequalities contain at most $\frac{r}{2}$ nonzero coefficients, and running intersection inequalities contain at most 2(r-1) nonzero coefficients.
- For β -acyclic hypergraphs, MP_G may contain dense facet-defining inequalities with $\theta(|E|)$ nonzero coefficients.
- In practice, we almost always have $r \ll |E|$.

Example

• Let $n \geq 2$ and consider the β -acyclic hypergraph G = (V, E) with $V = \bigcup_{i \in [n]} V^i$, $E = H \cup \bigcup_{i \in [n]} E^i$, where $V^1 = \{v_3^1, v_4^1, v_7^1, v_8^1\}$, $V^i = \{v_1^i, \cdots, v_8^i\}$ for all $i \in [n-1] \setminus \{1\}$, $V^n = \{v_1^n, v_2^n, v_5^n, v_6^n\}$,

$$\begin{split} H &= \Big\{ \{v_3^i, v_4^i, v_1^{i+1}, v_2^{i+1}\}, \ i \in [n-1] \Big\} \\ E^1 &= \Big\{ \{v_3^1, v_4^1, v_7^1\}, \{v_3^1, v_4^1, v_8^1\}, V^1 \Big\} \\ E^i &= \Big\{ \{v_1^i, v_2^i, v_5^i\}, \{v_1^i, v_2^i, v_6^i\}, \{v_3^i, v_4^i, v_7^i\}, \{v_3^i, v_4^i, v_8^i\}, V^i \Big\}, \quad \forall i \in [n-1] \setminus \{1\} \\ E^n &= \Big\{ \{v_1^n, v_2^n, v_5^n\}, \{v_1^n, v_2^n, v_6^n\}, V^n \Big\}. \end{split}$$

• Then the following inequality containing |E| nonzero coefficients defines a facet of MP_G:

$$-\sum_{i\in[n]} z_{V^i} - \sum_{e\in H} z_e + \sum_{i\in[n]} \sum_{e\in E^i\setminus\{V^i\}} z_e \le 2n-3.$$

The multilinear polytope of acyclic hypergraphs

- The multilinear polytope of Berge-acyclic hypergraphs is the standard linearization; polynomial-size description: |V|+|E| variables and |V|+(r+2)|E| inequalities.
- The multilinear polytope of γ -acyclic hypergraphs is the flower relaxation; polynomial-size extended formulation: at most |V| + 2|E| variables (|E| additional variables) and |V| + (r+2)|E| inequalities.
- The multilinear polytope of kite-free β -acyclic hypergraphs is the running intersection relaxation; polynomial-size extended formulation: at most |V|+2|E| variables (|E| additional variables) and |V| + (r+2)|E| inequalities.
- The multilinear polytope of α -acyclic hypergraphs does not admit a polynomial-size extended formulation unless P = NP
- Does the multilinear polytope of β -acyclic admit a polynomial-size extended formulation?

The multilinear polytope of β -acyclic hypergraphs

- Theorem: Let G = (V, E) be a β -acyclic hypergraph of rank r. Then there exists an extended formulation of MP_G comprising of at most (3r-4)|V|+4|E| inequalities, with at most (r-2)|V| extended variables.
- Fewer inequalities than the standard linearization for $\beta\mbox{-acyclic hypergraphs}$ with $|E|\geq 3|V|$
- The inequalities defining the extended formulation are very sparse: they contain at most four variables with non-zero coefficients.

β -acyclicity and nest points

- A node v ∈ V is a nest point of G if the set of the edges of G containing v can be ordered so that e₁ ⊂ e₂ ⊂ · · · ⊂ e_k.
- We define the hypergraph obtained from G = (V, E) by removing a node $v \in V$ as G v := (V', E'), where $V' := V \setminus \{v\}$ and $E' := \{e \setminus \{v\} : e \in E, |e \setminus \{v\}| \ge 2\}$.
- A nest point sequence of length s for some $s \leq |V|$ of G is an ordering v_1, \dots, v_s of s distinct nodes of G, such that v_1 is a nest point of G, v_2 is a nest point of $G v_1$, and so on
- Theorem: A hypergraph G = (V, E) is β -acyclic if and only if it has a nest point sequence of length |V|.
- Let v_1, \dots, v_s be a nest point sequence of G. The expansion of G (w.r.t. v_1, \dots, v_s) is the hypergraph G' = (V, E'), where E' is obtained from E by adding, for each $e \in E$, the sets of cardinality at least two among $e \setminus \{v_1\}$, $e \setminus \{v_1, v_2\}, \dots, e \setminus \{v_1, \dots, v_s\}$.

The Extended formulation

• Theorem: Let G = (V, E) be a β -acyclic hypergraph expanded w.r.t. v_1, \ldots, v_n . For every $e \in E$, denote by v(e) the first node in the sequence v_1, \ldots, v_n contained in e, and define $p(e) := e \setminus \{v(e)\}$. Define $M := \{e \in E : \exists g \in E, g \subset e, v(e) \in g\}$. For every $e \in M$, let $f(e) \subset e$ be the edge of maximum cardinality with $v(e) \in f(e)$, and let $f'(e) := f(e) \setminus \{v(e)\}$. Denote by \overline{E} the set of maximal edges of G. Then, MP_G is defined by:

$$0 \leq z_u \leq 1, \quad \forall u \in V, \quad z_e \geq 0, \quad \forall e \in E$$
$$z_e - z_{p(e)} \leq 0, \quad \forall e \in E$$
$$z_e - z_{f(e)} \leq 0, \quad -z_{f'(e)} + z_{p(e)} + z_{f(e)} - z_e \leq 0, \quad \forall e \in M$$
$$z_e - z_{v(e)} \leq 0, \quad z_{v(e)} + z_{p(e)} - z_e \leq 1, \quad \forall e \in E \setminus M.$$

Recap

- Goal: constructing strong and cheap polyhedral relaxations for multilinear sets
- The standard linearization coincides with the multilinear polytope of Bergeacyclic hypergraphs, very weak relaxations in general
- Flower relaxation gives the multilinear polytope of γ -acyclic hypergraphs
- Running intersection inequalities dominate flower inequalities when the neighbours intersect and satisfy the running intersection property
- A very simple compact extended formulation for the multilinear polytope of β-acyclic hypergraphs, but no characterization in the original space

References

- A. Del Pia and A. Khajavirad. A polyhedral study of binary polynomial programs. *Mathematics of Operations Research*, 2017.
- A. Del Pia and A. Khajavirad. On decomposability of multilinear sets. *Mathematical Programming*, 2018.
- A. Del Pia and A. Khajavirad. The multilinear polytope for acyclic hypergraphs, *SIAM Journal on Optimization*, 2018.
- A. Del Pia and A. Khajavirad. The running intersection relaxation of the multilinear polytope, *Mathematics of Operations Research*, 2021.
- A. Del Pia, A. Khajavirad, and N. V. Sahinidis. On the impact of runningintersection inequalities for globally solving polynomial optimization problems, *Mathematical Programming Computation*, 2020.
- A. Del Pia and A. Khajavirad. The multilinear polytope of beta-acyclic hypergraphs has polynomial extension complexity, *arXiv:2212.11239*, 2022.

Other results on the facial structure of the multilinear polytope

- A. Del Pia and S. Di Gregorio, Chvatal rank in binary polynomial optimization, INFORMS Journal on Optimization 3(4) 315-349 (2021)
 - Running intersection inequalities are CG cuts for the standard linearization $\mathsf{MP}^{\mathrm{LP}}_G$
 - For kite-free β -acyclic hypergraphs, the polytope MP^{LP}_G has Chvatal rank 1.
- A. Del Pia and M. Walter, Simple odd β -cycle inequalities for binary polynomial optimization, Proceedings of IPCO 2022 LNCS 13265 181-194 (2022)
 - Odd β -cycle inequalities: when added to the flower relaxation, they give the multilinear polytope of a cycle hypergraph
 - G = (V, E), with $E = \{e_1, \dots, e_m\}$, where $m \ge 3$ is a cycle hypergraph, if every edge e_i has nonempty intersection only with e_{i-1} and e_{i+1} for all $i \in \{1, \dots, m\}$. When m = 3, it is also required that $e_1 \cap e_2 \cap e_3 = \emptyset$.
 - Odd β -cycle inequalities have Chvatal rank 2.
 - Odd β -cycle inequalities can be separated in strongly polynomial time

Some open questions

- What is the first CG closure of MP_G^{LP} ?
 - For BQP, adding the triangle inequalities to the standard linearization gives the first CG closure.
- What "the RLT level" of flower inequalities or running intersection inequalities?
- What is "the SoS level" of flower inequalities or running intersection inequalities?
- Other classes of acyclic hypergraphs between $\beta\text{-acyclic}$ and $\alpha\text{-acyclic}$ with polytime complexity.

Comparison with recursive McCormick relaxations

• A. Khajavirad, On the strength of recursive McCormick relaxations for binary polynomial optimization, Operations Research Letters, 2023.