Binary Polynomial Optimization: Theory, Algorithms, and Applications

January 2023
Aida Khajavirad
Lehigh University
Joint work with: Alberto Del Pia (University of Wisconsin-Madison)

Problem definition

- Let $V=\{1, \ldots, n\}$, let E be a set of subsets of cardinality at least two of V, and let V_{1}, V_{2} be a partition of V. Consider the optimization problem:

$$
\max \left\{\sum_{e \in E} c_{e} \prod_{v \in e} z_{v}: z_{v} \in[0,1] \forall v \in V_{1}, z_{v} \in\{0,1\} \forall v \in V_{2}\right\} .
$$

- $V_{1}=\emptyset$: Pseudo-Boolean optimization, unconstrained binary polynomial optimization, unconstrained binary nonlinear optimization
$-V_{2}=\emptyset$: maximizing a multilinear function over a box
- Define $z_{e}:=\prod_{v \in e} z_{v}$ for all $e \in E$:

$$
\begin{array}{ll}
\max & \sum_{e \in E} c_{e} z_{e}, \\
\text { s.t. } & z_{e}=\prod_{v \in e} z_{v}, \forall e \in E \\
& z_{v} \in\{0,1\}, \forall v \in V .
\end{array}
$$

The multilinear polytope

- We define the multilinear set as:

$$
\mathcal{S}=\left\{z \in\{0,1\}^{|V|+|E|}: z_{e}=\prod_{v \in e} z_{v}, \forall e \in E\right\}
$$

- Example:

$$
\mathcal{S}=\left\{z \in\{0,1\}^{8}: z_{12}=z_{1} z_{2}, z_{24}=z_{2} z_{4}, z_{123}=z_{1} z_{2} z_{3}, z_{134}=z_{1} z_{3} z_{4}\right\}
$$

- We define the multilinear polytope as the convex hull of the multilinear set:

$$
\mathrm{MP}=\operatorname{conv}(\mathcal{S})
$$

- If $|e|=2$ for all $e \in E$, then MP is the Boolean quadric polytope QP (Padberg, 89) and hence the cut polytope under a bijective linear transformation.

The hypergraph representation of multilinear sets

- With any hypergraph $G=(V, E)$, we associate a multilinear set \mathcal{S}_{G} defined as:

$$
\mathcal{S}_{G}=\left\{z \in\{0,1\}^{d}: z_{e}=\prod_{v \in e} z_{v}, e \in E\right\}
$$

where $d=|V|+|E|$. We define $\mathrm{MP}_{G}=\operatorname{conv}\left(\mathcal{S}_{G}\right)$.

$$
\begin{aligned}
& z_{12}=z_{1} z_{2} \\
& z_{24}=z_{2} z_{4} \\
& z_{123}=z_{1} z_{2} z_{3} \\
& z_{134}=z_{1} z_{3} z_{4}
\end{aligned}
$$

- For quadratic sets, we obtain the graph representation of QP_{G} (Padberg, 89)

$$
\begin{aligned}
& z_{12}=z_{1} z_{2} \\
& z_{24}=z_{2} z_{4} \\
& z_{34}=z_{3} z_{4}
\end{aligned}
$$

- The rank of G is the maximum cardinality of any edge in E.

Standard linearization of multilinear sets

- Replace each multilinear term $z_{e}=\prod_{v \in e} z_{v}$, by its convex hull over the unit hypercube and use $\bigcap_{i} \operatorname{conv}\left(\mathcal{S}_{i}\right) \supseteq \operatorname{conv}\left(\bigcap_{i} \mathcal{S}_{i}\right)$ to obtain the standard linearization $\mathrm{MP}_{G}^{\mathrm{LP}}$ of \mathcal{S}_{G} :

$$
\begin{aligned}
\mathrm{MP}_{G}^{\mathrm{LP}}=\{z: & z_{v} \leq 1, \forall v \in V, z_{e} \geq 0, z_{e} \geq \sum_{v \in e} z_{v}-|e|+1, \forall e \in E, \\
& \left.z_{e} \leq z_{v}, \forall v \in e, \forall e \in E\right\} .
\end{aligned}
$$

- Existing results for the Boolean quadric polytope:
$-\mathrm{QP}_{G}=\mathrm{QP}_{G}^{\mathrm{LP}}$ iff G is an acyclic graph (Padberg 89).
- Let QP_{G}^{C} be polytope obtained by adding all odd cycle inequalities to $\mathrm{QP}_{G}^{L P}$; $\mathrm{QP}_{G}=\mathrm{QP}_{G}^{C}$ iff G is a series-parallel graph (Barahona 86, Padberg 89).
- Optimizing over $\mathrm{QP}_{G}^{\mathrm{LP}}$ and QP_{G}^{C} can be done in polynomial-time.
- Goal: obtaining similar results for higher degree multilinear sets in terms of easily verifiable conditions on the structure of underlying hypergraphs.

Cycles in hypergraphs

- Hypergraph acyclicity in increasing degree of generality: Berge-acyclicity, γ acyclicity, β-acyclicity, and α-acyclicity.
- A Berge-cycle in G of length t for some $t \geq 2$, is a sequence $C=$ $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{t}, e_{t}, v_{1}$ with the following properties:
- $v_{1}, v_{2}, \ldots, v_{t}$ are distinct nodes of G,
- $e_{1}, e_{2}, \ldots, e_{t}$ are distinct edges of G,
$-v_{i}, v_{i+1} \in e_{i}$ for $i=1, \ldots, t-1$, and $v_{t}, v_{1} \in e_{t}$.
- A hypergraph is Berge-acyclic when it contains no Berge-cycles.

Berge-cycle:

$$
C=v_{1}, e_{12}, v_{2}, e_{123}, v_{1}
$$

A Berge-acyclic Hypergraph

Decomposability of multilinear sets

- Given $V^{\prime} \subset V$, the section hypergraph of G induced by V^{\prime} is $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $E^{\prime}=\left\{e \in E: e \subseteq V^{\prime}\right\}$.
- Given $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, we denote by $G_{1} \cup G_{2}$, the hypergraph $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$, and by $G_{1} \cap G_{2}$, the hypergraph ($V_{1} \cap V_{2}, E_{1} \cap E_{2}$).
- Let G_{1}, G_{2} be section hypergraphs of G such that $G_{1} \cup G_{2}=G$. We say that \mathcal{S}_{G} is decomposable into $\mathcal{S}_{G_{1}}$ and $\mathcal{S}_{G_{2}}$, if

$$
\operatorname{conv} \mathcal{S}_{G}=\operatorname{conv} \mathcal{S}_{G_{1}} \cap \operatorname{conv} \mathcal{S}_{G_{2}}
$$

- A hypergraph $G=(V, E)$ is complete if all subsets of V of cardinality at least two are in E.
- Theorem: Let G_{1}, G_{2} be section hypergraphs of G such that $G_{1} \cup G_{2}=G$ and $G_{1} \cap G_{2}$ is a complete hypergraph. Then the set \mathcal{S}_{G} is decomposable into $\mathcal{S}_{G_{1}}$ and $\mathcal{S}_{G_{2}}$.

The standard linearization vs. the convex hull relaxation

- Theorem: $\mathrm{MP}_{G}^{\mathrm{LP}}=\mathrm{MP}_{G}$ if and only if G is a Berge-acyclic hypergraph.
- Proof sketch:
- If G has a Berge-cycle of length two; i.e., $E(C)=\left\{e_{1}, e_{2}\right\}$ with $\left|e_{1} \cap e_{2}\right| \geq 2$, the following is valid for \mathcal{S}_{G} :

$$
\sum_{v \in e_{2} \backslash e_{1}} z_{v}+z_{e_{1}}-z_{e_{2}} \leq\left|e_{2} \backslash e_{1}\right|
$$

Consider $\tilde{z}_{v}=1$ for all $v \in e_{2} \backslash e_{1}, \tilde{z}_{v}=1 / 2$ for all $v \in e_{1}, \tilde{z}_{v}=0$ for the remaining nodes in $G, \tilde{z}_{e_{1}}=1 / 2, \tilde{z}_{e_{2}}=0, \tilde{z}_{e}=1$ for all $e \subseteq e_{2} \backslash e_{1}, \tilde{z}_{e}=0$ for all $e \nsubseteq e_{1} \cup e_{2}$ and $\tilde{z}_{e}=1 / 2$ for all remaining edges in G. $\tilde{z} \in \mathrm{MP}_{G}^{\mathrm{LP}}$. Substituting \tilde{z} in the above inequality yields $\left|e_{2} \backslash e_{1}\right|+1 / 2-0 \not \leq\left|e_{2} \backslash e_{1}\right|$.

- Let C be a Berge-cycle of minimum length t, where $t \geq 3$. Since $\left|e_{i} \cap e_{j}\right| \leq 1$ for all $e_{i}, e_{j} \in E$, the subhypergraph $G_{V(C)}$ is a graph consisting of a chordless cycle. To show $\mathrm{MP}_{G} \subset \mathrm{MP}_{G}^{L P}$ is suffices to show that $\mathrm{MP}_{G_{V(C)}} \subset \mathrm{MP}_{G_{V(C)}}^{\mathrm{LP}}$. The polytope $\mathrm{MP}_{G_{V(C)}}$ is integral while $\mathrm{MP}_{G_{V(C)}}^{\mathrm{LP}}$ is not integral.
\Rightarrow if G contains a Berge-cycle, we have $\mathrm{MP}_{G} \subset \mathrm{MP}_{G}^{\mathrm{LP}}$

The standard linearization vs. the convex hull relaxation

- Suppose that G is a Berge-acyclic hypergraph. Then there exists an edge ẽ of G such that $\tilde{e} \cap\{v: \exists e \in E(G) \backslash \tilde{e}, v \in e\}=\{\tilde{v}\}$, for some $\tilde{v} \in V(G)$.

\Rightarrow if G is Berge-acyclic, we have $\mathrm{MP}_{G}=\mathrm{MP}_{G}^{\mathrm{LP}}$

γ-acyclic hypergraphs

- A γ-cycle in G is a Berge-cycle $C=v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{t}, e_{t}, v_{1}$ such that $t \geq 3$, and the node v_{i} belongs to e_{i-1}, e_{i} and no other e_{j}, for all $i=2, \ldots, t$.
- A hypergraph is called γ-acyclic if it contains no γ-cycles.

No γ-cycles; Berge-cycles of length two and three.

$$
\gamma \text {-cycle: } C=v_{1}, e_{12}, v_{2}, e_{123}, v_{3}, e_{13}, v_{1}
$$

γ-acyclicity and laminarity

- Given $G=(V, E)$ and $\bar{V} \subseteq V$, the subhypergraph of G induced by \bar{V} is $G_{\bar{V}}$ with node set \bar{V} and with edge set $\{e \cap \bar{V}: e \in E,|e \cap \bar{V}| \geq 2\}$.
- A hypergraph G is laminar, if for any $e_{1}, e_{2} \in E$, one of the following is satisfied: (i) $e_{1} \cap e_{2}=\emptyset$, (ii) $e_{1} \subset e_{2}$, (iii) $e_{2} \subset e_{1}$.

- Let $G=(V, E)$ be a γ-acyclic hypergraph, and let $e \in E$. Then the subhypergraph G_{e} is laminar.

Flower inequalities

- Let $e_{0} \in E$ and let $e_{k}, k \in K$, be the set of all edges adjacent to e_{0}. Let $T \subseteq K$ such that

$$
\begin{equation*}
\left|\left(e_{0} \cap e_{i}\right) \backslash \bigcup_{j \in T \backslash\{i\}}\left(e_{0} \cap e_{j}\right)\right| \geq 2, \quad \forall i \in T \tag{1}
\end{equation*}
$$

- The flower inequality centered at e_{0} with neighbors $e_{k}, k \in T$ is:

$$
\sum_{v \in e_{0} \backslash \cup_{k \in T} e_{k}} z_{v}+\sum_{k \in T} z_{e_{k}}-z_{e_{0}} \leq\left|e_{0} \backslash \cup_{k \in T} e_{k}\right|+|T|-1 .
$$

- We refer to the flower inequalities for all nonempty $T \subseteq K$ satisfying (1), as the system of flower inequalities centered at e_{0}. The flower relaxation MP_{G}^{F} is the polytope obtained by adding the system of flower inequalities centered at each edge of G to $\mathrm{MP}_{G}^{\mathrm{LP}}$.

$$
\begin{aligned}
& z_{1}+z_{4}+z_{5}+z_{6}+z_{e_{1}}-z_{e_{0}} \leq 4 \\
& z_{1}+z_{5}+z_{6}+z_{e_{2}}-z_{e_{0}} \leq 3 \\
& z_{1}+z_{2}+z_{3}+z_{4}+z_{e_{3}}-z_{e_{0}} \leq 4 \\
& z_{1}+z_{4}+z_{e_{1}}+z_{e_{3}}-z_{e_{0}} \leq 3, z_{1}+z_{e_{2}}+z_{e_{3}}-z_{e_{0}} \leq 2
\end{aligned}
$$

A sufficient condition for decomposability of multilinear sets

- Given $V^{\prime} \subset V$, the section hypergraph of G induced by V^{\prime} is $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$, where $E^{\prime}=\left\{e \in E: e \subseteq V^{\prime}\right\}$. Given $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$, we denote by $G_{1} \cup G_{2}$, the hypergraph $\left(V_{1} \cup V_{2}, E_{1} \cup E_{2}\right)$.
- Let G_{1}, G_{2} be section hypergraphs of G such that $G_{1} \cup G_{2}=G$. We say that \mathcal{S}_{G} is decomposable into $\mathcal{S}_{G_{1}}$ and $\mathcal{S}_{G_{2}}$, if

$$
\operatorname{conv} \mathcal{S}_{G}=\operatorname{conv} \mathcal{S}_{G_{1}} \cap \operatorname{conv} \mathcal{S}_{G_{2}}
$$

- Theorem: Let G_{1}, G_{2} be section hypergraphs of G such that $G_{1} \cup G_{2}=G$. Suppose that $\bar{p}:=V\left(G_{1}\right) \cap V\left(G_{2}\right) \in V(G) \cup E(G)$, and that for every edge e of G containing nodes in $V\left(G_{1}\right) \backslash V\left(G_{2}\right)$ either $e \supset \bar{p}$, or $e \cap \bar{p}=\emptyset$. Then \mathcal{S}_{G} is decomposable into $\mathcal{S}_{G_{1}}$ and $\mathcal{S}_{G_{2}}$.

The flower relaxation vs. the convex hull relaxation

- Theorem: $\mathrm{MP}_{G}^{F}=\mathrm{MP}_{G}$ if and only if G is a γ-acyclic hypergraph.
- Proof sketch: If G has a γ-cycle, then after fixing $z_{v}=1$ for all v in certain subset $V^{\prime} \subset V(G)$, we either obtain a chordless cycle or one of the following structures:

$$
-z_{1}+z_{12}+z_{13}-z_{123} \leq 0
$$

\Rightarrow if G contains a γ-cycle, we have $\mathrm{MP}_{G} \subset \mathrm{MP}_{G}^{F}$

The flower relaxation vs. the convex hull relaxation

- Suppose that G is γ-acyclic and that G has at least two maximal edges. Consider a maximal edge e^{\prime} of G, and define E^{\prime} to be the set of edges contained in e^{\prime}, and $\bar{V}:=e^{\prime} \cap\left(\cup_{e \in E \backslash E^{\prime} e}\right)$. Then e^{\prime} is a leaf of G, if $\bar{V} \subset \tilde{e}$ for some $\tilde{e} \in E \backslash E^{\prime}$. We claim that G contains a leaf.

$\Rightarrow G$ decomposes into a collection of laminar hypergraphs

The flower relaxation vs. the convex hull relaxation

- Theorem: Let $G=(V, E)$ be a laminar hypergraph. Given an edge $e \in E$, we define $I(e):=\left\{p \in V \cup E: p \subset e, p \not \subset e^{\prime}\right.$, for $\left.e^{\prime} \in E, e^{\prime} \subset e\right\}$. Then MP_{G} is described by the following system:

$$
\begin{aligned}
z_{v} & \leq 1 & & \forall v \in V \\
-z_{e} & \leq 0 & & \forall e \in E \text { such that } e \not \subset f, \text { for } f \in E \\
-z_{p}+z_{e} & \leq 0 & & \forall e \in E, \forall p \in I(e) \\
\sum_{p \in I(e)} z_{p}-z_{e} & \leq|I(e)|-1 & & \forall e \in E .
\end{aligned}
$$

- Our proof relies on a fundamental result due to Conforti and Cornuéjols regarding the connection between integral polyhedra and balanced matrices.
- For a γ-acyclic hypergraph G, the multilinear polytope has a polynomial-size extended formulation.
- Applying Fourier-Motzkin elimination to project out auxiliary edges, it follows that for a γ-acyclic G, we have $\mathrm{MP}_{G}=\mathrm{MP}_{G}^{F}$.

β-acyclic hypergraphs

- A β-cycle in G is a γ-cycle $C=v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{t}, e_{t}, v_{1}$ such that the node v_{1} belongs to e_{1}, e_{t} and no other e_{j}.
- A hypergraph is called β-acyclic if it contains no β-cycles.

Examples of β-cycles

A β-acyclic hypergraph

Running intersection inequalities

- A multiset F of subsets of a finite set V has the running intersection property if there exists an ordering $p_{1}, p_{2}, \ldots, p_{m}$ of the sets in F such that

$$
\forall k \in\{2, \ldots, m\}, \exists j<k: N\left(p_{k}\right):=p_{k} \cap\left(\bigcup_{i<k} p_{i}\right) \subseteq p_{j}
$$

We refer to such an ordering as a running intersection ordering of F.

- Let e_{0} and $e_{k}, k \in K$, be a collection of edges adjacent to e_{0} such that $\tilde{E}:=\left\{e_{0} \cap e_{k}: k \in K\right\}$ has the running intersection property. Consider a running intersection ordering of \tilde{E}. For each $k \in K$, let $w_{k} \subseteq N\left(e_{0} \cap e_{k}\right)$ such that $w_{k} \in \emptyset \cup V \cup E$. We define a running intersection inequality centered at e_{0} with neighbours $e_{k}, k \in K$ as

$$
-\sum_{k \in K} z_{w_{k}}+\sum_{v \in e_{0} \backslash \bigcup_{k \in K} e_{k}} z_{v}+\sum_{k \in K} z_{e_{k}}-z_{e_{0}} \leq \omega-1
$$

where we define $z_{\emptyset}=0$, and $\omega=\left|\left\{k \in K: w_{k}=\emptyset\right\}\right|+\left|\left\{e_{0} \backslash \bigcup_{k \in K} e_{k}\right\}\right|$.

Running intersection inequalities

- Letting $w_{k}=\emptyset$ for all $k \in K$, running intersection inequalities simplify to flower inequalities.

$$
-z_{v_{5}}-z_{v_{7}}-z_{v_{8}}+z_{v_{1}}+z_{v_{2}}+z_{e_{2}}+z_{e_{3}}+z_{e_{6}}+z_{e_{7}}+z_{e_{8}}-z_{e_{0}} \leq 3,
$$

- Any running intersection ordering of \tilde{E} leads to the same system of running intersection inequalities centered at e_{0} with neighbors $e_{k}, k \in K$.

The running intersection relaxation

- The running intersection relaxation $\mathrm{MP}_{G}^{\mathrm{RI}}$ is the polytope obtained by adding to $\mathrm{MP}_{G}^{\mathrm{LP}}$ all possible running intersection inequalities for \mathcal{S}_{G}.
- If MP_{G} is not β-acyclic, then $\mathrm{MP}_{G} \subset \mathrm{MP}_{G}^{\mathrm{RI}}$.
- Let G be a β-acyclic hypergraph. Suppose that there exist no three edges $e_{0}, e_{1}, e_{2} \in E$ such that $\left|e_{0} \cap e_{1} \cap e_{2}\right| \geq 2,\left(e_{0} \cap e_{1}\right) \backslash e_{2} \neq \emptyset$, and $\left(e_{0} \cap e_{2}\right) \backslash e_{1} \neq \emptyset$. Then $\mathrm{MP}_{G}=\mathrm{MP}_{G}^{\mathrm{RI}}$.

Separation of flower and running intersection inequalities

- Even for a γ-acyclic hypergraph $G=(V, E)$, the number of facets of MP_{G}^{F} may not be bounded by a polynomial in $|V|,|E|$.
- Given a rank-r γ-acyclic hypergraph $G=(V, E)$, the separation problem over all flower inequalities can be solved in $O\left(r|E|^{2}(|V|+|E|)\right)$ operations.
- The separation problem for flower inequalities over general hypergraphs is NP-hard (reduction from 3D matching).
- The separation problem for running intersection inequalities for fixedrank hypergraphs can be solved in polynomial-time. More precisely, in $O\left(|E|\left(r 2^{r}|E|+2^{r^{2}} r^{3}\right)\right)$ operations.

Numerical Experiments

- We characterize each problem by its degree (d), number of variables (n), number of constraints (q), and density (ν).
- Polynomial problems of degree 3 with

$$
(n, \nu) \in\{(10,0.75),(15,0.25),(15,0.15),(20,0.1),(20,0.05)\}
$$

and multilinear problems of degree 3 with

$$
(n, \nu) \in\{(10,1.0),(15,0.5),(20,0.15),(20,0.1),(25,0.05),(30,0.02)\}
$$

- Polynomial problems of degree 4 with

$$
(n, \nu) \in\{(10,0.25),(10,0.15),(15,0.05),(15,0.02),(20,0.01)\}
$$

and multilinear problems of degree 4 with

$$
(n, \nu) \in\{(10,1.0),(15,0.15),(20,0.02),(20,0.01),,(25,0.01),(25,0.005)\}
$$

- In both sets, we let $q \in\{0, n / 5, n / 2, n\}$. For each combination, 5 random instance are generated.
- Relative/absolute optimality tolerance $=10^{-6}$ and time limit $=500 \mathrm{~s}$.

220 polynomial optimization problems of degree three

(a) CPU time (s)

(b) Iterations

- Average reductions of 60% in C) CUMery time, 78% in number of nodes, and 70% in maximum number of nodes in memory.

220 polynomial optimization problems of degree four

(d) CPU time (s)

(e) Iterations

- Average reductions of 43% in ${ }^{(f)}$ PUUmory time, 76% in number of nodes, and 72% in maximum number of nodes in memory.

Numerical Experiments - computer vision instances

- The purpose of image restoration is to estimate the original image from the degraded data. An image is modeled as a $l \times h$ matrix where each binary element $x_{i j}$ represents a pixel.
- The image restoration problem is defined as the objective function $f(x)=$ $H(x)+L(x)$ to be minimized, where $H(x)$ is linear and models similarity between the input blurred image and the output, $L(x)$ is a multilinear function of degree four and models smoothness.
- Test set taken from [CramaRodrigez16] with images sizes $\{10 \times 10\},\{10 \times 15\}$, $\{15 \times 15\}$.

Effect of adding cuts	CPU time	Iterations	Nodes
Better by a factor at least 2	$17(38 \%)$	$10(23 \%)$	$10(23 \%)$
Between 30\% and 100\% better	$13(30 \%)$	$0(0 \%)$	$0(0 \%)$
Difference smaller than 30\%	$14(32 \%)$	$34(77 \%)$	$34(77 \%)$
Between 30\% and 100\% worse	$0(0 \%)$	$0(0 \%)$	$0(0 \%)$
Worse by a factor of at least 2	$0(0 \%)$	$0(0 \%)$	$0(0 \%)$

- Average reductions of 63% in CPU time, 42% in number of iterations, and 30% in maximum number of nodes in memory.

What about the multilinear polytope of β-acyclic hypergraphs?

- From a computational perspective, sparsity is key to the effectiveness of cutting planes in a branch-and-cut framework.
- For a rank r hypergraph, flower inequalities contain at most $\frac{r}{2}$ nonzero coefficients, and running intersection inequalities contain at most $2(r-1)$ nonzero coefficients.
- For β-acyclic hypergraphs, MP_{G} may contain dense facet-defining inequalities with $\theta(|E|)$ nonzero coefficients.
- In practice, we almost always have $r \ll|E|$.

Example

- Let $n \geq 2$ and consider the β-acyclic hypergraph $G=(V, E)$ with $V=$ $\bigcup_{i \in[n]} V^{i}, E=H \cup \bigcup_{i \in[n]} E^{i}$, where $V^{1}=\left\{v_{3}^{1}, v_{4}^{1}, v_{7}^{1}, v_{8}^{1}\right\}, V^{i}=\left\{v_{1}^{i}, \cdots, v_{8}^{i}\right\}$ for all $i \in[n-1] \backslash\{1\}, V^{n}=\left\{v_{1}^{n}, v_{2}^{n}, v_{5}^{n}, v_{6}^{n}\right\}$,

$$
\begin{aligned}
& H=\left\{\left\{v_{3}^{i}, v_{4}^{i}, v_{1}^{i+1}, v_{2}^{i+1}\right\}, i \in[n-1]\right\} \\
& E^{1}=\left\{\left\{v_{3}^{1}, v_{4}^{1}, v_{7}^{1}\right\},\left\{v_{3}^{1}, v_{4}^{1}, v_{8}^{1}\right\}, V^{1}\right\} \\
& E^{i}=\left\{\left\{v_{1}^{i}, v_{2}^{i}, v_{5}^{i}\right\},\left\{v_{1}^{i}, v_{2}^{i}, v_{6}^{i}\right\},\left\{v_{3}^{i}, v_{4}^{i}, v_{7}^{i}\right\},\left\{v_{3}^{i}, v_{4}^{i}, v_{8}^{i}\right\}, V^{i}\right\}, \quad \forall i \in[n-1] \backslash\{1\} \\
& E^{n}=\left\{\left\{v_{1}^{n}, v_{2}^{n}, v_{5}^{n}\right\},\left\{v_{1}^{n}, v_{2}^{n}, v_{6}^{n}\right\}, V^{n}\right\} .
\end{aligned}
$$

- Then the following inequality containing $|E|$ nonzero coefficients defines a facet of MP_{G} :

$$
-\sum_{i \in[n]} z_{V^{i}}-\sum_{e \in H} z_{e}+\sum_{i \in[n]} \sum_{e \in E^{i} \backslash\left\{V^{i}\right\}} z_{e} \leq 2 n-3 .
$$

The multilinear polytope of acyclic hypergraphs

- The multilinear polytope of Berge-acyclic hypergraphs is the standard linearization; polynomial-size description: $|V|+|E|$ variables and $|V|+(r+2)|E|$ inequalities.
- The multilinear polytope of γ-acyclic hypergraphs is the flower relaxation; polynomial-size extended formulation: at most $|V|+2|E|$ variables $(|E|$ additional variables) and $|V|+(r+2)|E|$ inequalities.
- The multilinear polytope of kite-free β-acyclic hypergraphs is the running intersection relaxation; polynomial-size extended formulation: at most $|V|+2|E|$ variables ($|E|$ additional variables) and $|V|+(r+2)|E|$ inequalities.
- The multilinear polytope of α-acyclic hypergraphs does not admit a polynomialsize extended formulation unless $P=N P$
- Does the multilinear polytope of β-acyclic admit a polynomial-size extended formulation?

The multilinear polytope of β-acyclic hypergraphs

- Theorem: Let $G=(V, E)$ be a β-acyclic hypergraph of rank r. Then there exists an extended formulation of MP_{G} comprising of at most $(3 r-4)|V|+4|E|$ inequalities, with at most $(r-2)|V|$ extended variables.
- Fewer inequalities than the standard linearization for β-acyclic hypergraphs with $|E| \geq 3|V|$
- The inequalities defining the extended formulation are very sparse: they contain at most four variables with non-zero coefficients.

β-acyclicity and nest points

- A node $v \in V$ is a nest point of G if the set of the edges of G containing v can be ordered so that $e_{1} \subset e_{2} \subset \cdots \subset e_{k}$.
- We define the hypergraph obtained from $G=(V, E)$ by removing a node $v \in V$ as $G-v:=\left(V^{\prime}, E^{\prime}\right)$, where $V^{\prime}:=V \backslash\{v\}$ and $E^{\prime}:=\{e \backslash\{v\}: e \in$ $E,|e \backslash\{v\}| \geq 2\}$.
- A nest point sequence of length s for some $s \leq|V|$ of G is an ordering v_{1}, \cdots, v_{s} of s distinct nodes of G, such that v_{1} is a nest point of G, v_{2} is a nest point of $G-v_{1}$, and so on
- Theorem: A hypergraph $G=(V, E)$ is β-acyclic if and only if it has a nest point sequence of length $|V|$.
- Let v_{1}, \cdots, v_{s} be a nest point sequence of G. The expansion of G (w.r.t. $\left.v_{1}, \cdots, v_{s}\right)$ is the hypergraph $G^{\prime}=\left(V, E^{\prime}\right)$, where E^{\prime} is obtained from E by adding, for each $e \in E$, the sets of cardinality at least two among $e \backslash\left\{v_{1}\right\}$, $e \backslash\left\{v_{1}, v_{2}\right\}, \cdots, e \backslash\left\{v_{1}, \cdots, v_{s}\right\}$.

The Extended formulation

- Theorem: Let $G=(V, E)$ be a β-acyclic hypergraph expanded w.r.t. v_{1}, \ldots, v_{n}. For every $e \in E$, denote by $v(e)$ the first node in the sequence v_{1}, \ldots, v_{n} contained in e, and define $p(e):=e \backslash\{v(e)\}$. Define $M:=\{e \in E: \exists g \in$ $E, g \subset e, v(e) \in g\}$. For every $e \in M$, let $f(e) \subset e$ be the edge of maximum cardinality with $v(e) \in f(e)$, and let $f^{\prime}(e):=f(e) \backslash\{v(e)\}$. Denote by \bar{E} the set of maximal edges of G. Then, MP_{G} is defined by:

$$
\begin{aligned}
& 0 \leq z_{u} \leq 1, \quad \forall u \in V, \quad z_{e} \geq 0, \quad \forall e \in \bar{E} \\
& z_{e}-z_{p(e)} \leq 0, \quad \forall e \in E \\
& z_{e}-z_{f(e)} \leq 0,-z_{f^{\prime}(e)}+z_{p(e)}+z_{f(e)}-z_{e} \leq 0, \quad \forall e \in M \\
& z_{e}-z_{v(e)} \leq 0, z_{v(e)}+z_{p(e)}-z_{e} \leq 1, \quad \forall e \in E \backslash M
\end{aligned}
$$

Recap

- Goal: constructing strong and cheap polyhedral relaxations for multilinear sets
- The standard linearization coincides with the multilinear polytope of Bergeacyclic hypergraphs, very weak relaxations in general
- Flower relaxation gives the multilinear polytope of γ-acyclic hypergraphs
- Running intersection inequalities dominate flower inequalities when the neighbours intersect and satisfy the running intersection property
- A very simple compact extended formulation for the multilinear polytope of β-acyclic hypergraphs, but no characterization in the original space

References

- A. Del Pia and A. Khajavirad. A polyhedral study of binary polynomial programs. Mathematics of Operations Research, 2017.
- A. Del Pia and A. Khajavirad. On decomposability of multilinear sets. Mathematical Programming, 2018.
- A. Del Pia and A. Khajavirad. The multilinear polytope for acyclic hypergraphs, SIAM Journal on Optimization, 2018.
- A. Del Pia and A. Khajavirad. The running intersection relaxation of the multilinear polytope, Mathematics of Operations Research, 2021.
- A. Del Pia, A. Khajavirad, and N. V. Sahinidis. On the impact of runningintersection inequalities for globally solving polynomial optimization problems, Mathematical Programming Computation, 2020.
- A. Del Pia and A. Khajavirad. The multilinear polytope of beta-acyclic hypergraphs has polynomial extension complexity, arXiv:2212.11239, 2022.

Other results on the facial structure of the multilinear polytope

- A. Del Pia and S. Di Gregorio, Chvatal rank in binary polynomial optimization, INFORMS Journal on Optimization 3(4) 315-349 (2021)
- Running intersection inequalities are CG cuts for the standard linearization $\mathrm{MP}_{G}^{\mathrm{LP}}$
- For kite-free β-acyclic hypergraphs, the polytope $\mathrm{MP}_{G}^{\mathrm{LP}}$ has Chvatal rank 1 .
- A. Del Pia and M. Walter, Simple odd β-cycle inequalities for binary polynomial optimization, Proceedings of IPCO 2022 LNCS 13265 181-194 (2022)
- Odd β-cycle inequalities: when added to the flower relaxation, they give the multilinear polytope of a cycle hypergraph
- $G=(V, E)$, with $E=\left\{e_{1}, \cdots, e_{m}\right\}$, where $m \geq 3$ is a cycle hypergraph, if every edge e_{i} has nonempty intersection only with e_{i-1} and e_{i+1} for all $i \in\{1, \cdots, m\}$. When $m=3$, it is also required that $e_{1} \cap e_{2} \cap e_{3}=\emptyset$.
- Odd β-cycle inequalities have Chvatal rank 2.
- Odd β-cycle inequalities can be separated in strongly polynomial time

Some open questions

- What is the first CG closure of $\mathrm{MP}_{G}^{\mathrm{LP}}$?
- For BQP, adding the triangle inequalities to the standard linearization gives the first CG closure.
- What "the RLT level" of flower inequalities or running intersection inequalities?
- What is "the SoS level" of flower inequalities or running intersection inequalities?
- Other classes of acyclic hypergraphs between β-acyclic and α-acyclic with polytime complexity.

Comparison with recursive McCormick relaxations

- A. Khajavirad, On the strength of recursive McCormick relaxations for binary polynomial optimization, Operations Research Letters, 2023.

