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THE NEW YORK CITY SCHOOL SYSTEM

Every year NYC ⇡ 80, 000 NYC students apply to one of the ⇡ 800 public
high school programs.

How should students be assigned to schools?
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THE PRE-2003 METHOD

Students were asked to list at most 5 schools in order of preference.

1) Schools see students’ lists, then make offers to some students and place
others in waiting lists.

2) Each student can accept one offer and one waiting list. If not all students
are assigned to a school, go to 1).

3) After three iterations, students still unmatched are assigned a school
decided by a central system.
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SOME ISSUES WITH THE PRE-2003 SYSTEM

I Students could apply only to 5 schools.
I Schools could see students’ preference before taking decisions, and some

schools would only admit students that ranked them first.

Hence, students had to be strategical on the schools they listed, rather than
truthful.

Because of the need for multiple rounds, some students got many offers,
some none.

It was tempting for schools to bypass the system, and give exploding offers
to students before the process started:

I Some students would accept schools worse than what they could aim to.
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ENTER (ABDULKADIROGLU, PATHAK, AND ROTH, 05)
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STABLE MATCHINGS IN THE MARRIAGE MODEL: IMPACT

Stable matchings are employed to solve matching / assignment problems,
including:

I School matches in NYC, Boston, Denver, ...;
I University placement, e.g., in India and Iran;
I the National Residency Matching Program (NRMP);
I Online dating;
I Firm / worker matchings;
I Jobs / server matchings;
I Ride sharing;
I ...
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CONTENT

Part I: The classical model (Gale and Shapley, 62):
I Structural and algorithmic properties of stable matchings in the

marriage model;
I Impact for school choice.
I Drawbacks.

Part II: Beyond (Gale and Shapley, 62), changing the output:

(a) Pareto-optimality & von Neumann-Morgenstern Stability;
(b) Popularity;

Part III: Beyond (Gale and Shapley, 62), changing the input:
I Ties, choice functions, and applications to school choice.
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Part I:
The classical model
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THE MARRIAGE MODEL

Each student strictly ranks schools.
• E.g. Bob ranks Laguardia first, Midwood second, while it does not

consider Staten Island Technical School a suitable choice.

Each school has a quota and strictly ranks students.
• E.g. Laguardia ranks Alexandra first, Bob second, while it does not

consider Carl suitable.
• Schools’ rankings are based on many parameters: performance at

tests, area of residence, etc.

Ranking of an agent i: >i

Partner of an agent i in a matching M: M(i)
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STABILITY

1 A B C D
2 B D A C
3 C B A D
4 C D A B

A 4 3 2 1
B 3 4 1 2
C 2 1 4 3
D 1 2 3 4

A student-school pair (i, j) is called blocking for a matching M if:

j >i M(i) and i >j M(j).

A matching without blocking pairs is called stable.

Theorem [Gale-Shapley algorithm]. There is an algorithm that computes a
stable matching M0 in time O(|E|), where E is the set of possible pairs.
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SOME INTERESTING FEATURES OF GS ALGORITHM

I it outputs a stable matching; in particular, no student-school pair has
incentive to find a deal “under the table”.

I It requires only one round of communication and runs in time linear in
the input size.

⇡ 3 minutes for instances of the size of the NYC high school market.

I Among all stable matchings, it finds one that is that all students prefer
(student-optimal).

I The algorithm is strategy-proof for students.
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STUDENT-OPTIMALITY
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STABILITY, BEYOND STUDENT-OPTIMALITY

There are instances with exponentially many stable matchings.

I
1 =

1 1 2 1 2 1
2 2 1 2 1 2

I
2 =

1

1 2 3 4

1

4 3 2 1

2

2 1 4 3

2

3 4 1 2

3

3 4 1 2

3

2 1 4 3

4

4 3 2 1

4

1 2 3 4

.

Exercise 1. Let k 2 N. I
k has n := 2k+1 agents and � 2 n

2�1 stable matchings.
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STABILITY, BEYOND STUDENT-OPTIMALITY

There are instances with exponentially many stable matchings.

What if we want to find a stable matching other than the student-optimal?
I We may care about both sides of the market.
I We may want a specific student-school pair (not) to be matched.

The discrete optimizer’s approach:

[OPT-SM]

I Let E be the possible student-school pairs, and define w : E ! Z;
I Find a stable matching that minimizes w(M) : M 2 S .
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ORDERING MATCHINGS BY STUDENT PREFERENCES

For matchings M,M
0, we write

M ⌫ M
0

if M(i) �i M
0(i) for every student i (“i weakly prefers M to M

0”).

1 A {B} C D
2 B {A} D C
3 {C} D A B
4 {D} C B A

A 4 3 2 1
B 3 4 1 2
C 2 1 4 3
D 1 2 3 4
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POSET OF MATCHINGS: EXAMPLES

1 A B C D
2 B A D C
3 C D A B
4 D C B A

A 4 3 2 1
B 3 4 1 2
C 2 1 4 3
D 1 2 3 4
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POSET OF MATCHINGS: EXAMPLES

1 C A D B
2 B C A D
3 B A C D
4 B D C A

A 1 3 2 4
B 4 2 3 1
C 2 3 1 4
D 4 3 1 2
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POSET OF MATCHINGS: EXAMPLES

1 D B C A
2 A C D B
3 C B D A
4 D A C B

A 4 3 2 1
B 3 1 4 2
C 3 4 1 2
D 2 1 4 3
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POSETS OF MATCHINGS: EXAMPLES

1 A B E D C
2 B A D E C
3 C D A B E
4 D C B A E
5 E B C D A

A 5 4 3 2 1
B 3 4 5 1 2
C 2 1 5 4 3
D 5 1 2 3 4
E 4 3 2 1 5
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MEET AND JOIN OF STABLE MATCHINGS

Let M,M
0 be stable matchings. Define

M _ M
0 = M

"

be the set of pairs where each student is assigned to their favorite partner
between M,M

0.
Lemma. M

" is a stable matching.

Similarly, define
M ^ M

0 = M
#

by assigning to each student their worse partner between M,M
0.

Lemma. M
# is a stable matching.

Corollary. M
" is the join of M,M

0, i.e.,
I M

" ⌫ M,M
0 and

I M ⌫ M,M
0 ) M ⌫ M

".
M

# is the meet of M,M
0.
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THE LATTICE OF STABLE MATCHINGS

A poset where each pair of elements has a meet and a join is called a Lattice.
) Corollary. (S,⌫) is a lattice.

Exercise 2. The lattice (S,⌫) is distributive, i.e., the operations of meet and
join distribute over each other:

(M _ M
0) ^ M

00 = (M ^ M
00) _ (M0 ^ M

00)

(M ^ M
0) _ M

00 = (M _ M
00) ^ (M0 _ M

00)
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BIRKHOFF’S REPRESENTATION THEOREM

Birkhoff’s representation theorem. Let (L,⌫) be a distributive lattice.
There exists R ✓ L and a bijection  between elements of L and upper closed
sets of (R,⌫).

I S ✓ R is a upper closed set of (R,⌫) if e 2 R, e
0 ⌫ e ) e

0 2 S;
I (R,⌫) is the representation poset;
I Often, |R| ⌧ |L|.

Can we use Birkhoff’s theorem to solve [OPT-SM]?
YURI FAENZA – IEOR – COLUMBIA UNIVERSITY MATCHING THEORY AND SCHOOL CHOICE 21 / 65



ROADMAP TO THE SOLUTION OF [OPT-SM]

(a) Transform [OPT-SM] to a linear optimization problem over the UCS of
the representation poset (R,⌫) of (S,⌫).

(b) Show that |R| =poly(n).

(c) Find an UCS of minimum weight in (R,⌫) in time poly(|R|).

YURI FAENZA – IEOR – COLUMBIA UNIVERSITY MATCHING THEORY AND SCHOOL CHOICE 22 / 65

O- # agents ofthe instance



ROTATION DIGRAPH

How do we “move” within the lattice of stable matchings?
Rotation digraph DM

1 A B D C
2 B A C D
3 C D B A
4 D C A B

A 3 4 2 1
B 4 3 1 2
C 1 2 4 3
D 2 1 3 4

⇢1 = 1A, 1B, 2B, 2A

⇢�1 = {1A, 2B}
⇢+1 = {1B, 2A}
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ROTATION DIGRAPH

How do we “move” within the lattice of stable matchings?
Rotation digraph DM

1 A B D C

2 B A C D

3 C D B A

4 D C A B

A 3 4 2 1
B 4 3 1 2
C 1 2 4 3
D 2 1 3 4

Theorem. Let M be stable matching, ⇢ rotation in DM. Then:
I M

0 := M/⇢ immediately follows M in (S,⌫).

Theorem. We can “move” from the student-optimal to the school-optimal
stable matching by iteratively finding and eliminating rotations.
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A CLOSER LOOK AT ROTATIONS

Theorem.

I The poset of rotations is a representation poset for (S,�).

I The bijection between stable matching and UCS of rotations is as follows:
M = M0/⇢1/⇢2/ . . . /⇢k $ {⇢1, ⇢2, . . . , ⇢k}
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LATTICE OF STABLE MATCHINGS AND ROTATIONS: EXAMPLE

1 A B {D} C
2 B {A} C D
3 C D {B} A
4 D {C} A B

A 3 4 {2} 1
B 4 {3} 1 2
C 1 2 {4} 3
D 2 {1} 3 4

= ⇢1 = 1A, 1B, 2B, 2A;
= ⇢2 = 3C, 3D, 4D, 4C;
= ⇢3 = 1B, 1D, 3D, 3B;

M = M
0 [ {1B, 2A, 3D, 4C, 1D, 3B} \ {1A, 2B, 3C, 4D, 1B, 3D}.

w(M) = .
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w(M) = w(M0)+w(⇢+1 )�w(⇢�1 )+w(⇢+2 )�w(⇢�2 )+w(⇢+3 )�w(⇢�3 ).
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D 2 {1} 3 4

= ⇢1 = 1A, 1B, 2B, 2A;
= ⇢2 = 3C, 3D, 4D, 4C;
= ⇢3 = 1B, 1D, 3D, 3B;

M = M
0 [ {1B, 2A, 3D, 4C, 1D, 3B} \ {1A, 2B, 3C, 4D, 1B, 3D}.

w(M) = w(M0)+w(⇢+1 )� w(⇢�1 )| {z }
:=w(⇢1)

+w(⇢+2 )� w(⇢�2 )| {z }
:=w(⇢2)

+w(⇢+3 )� w(⇢�3 )| {z }
:=w(⇢3)

.
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BACK TO THE ROADMAP FOR [OPT-SM]

(a) Transform [OPT-SM] to a linear optimization problem over the UCS of
the representation poset (R,⌫⇤) of (S,⌫).

minM2S w
T
M = min{⇢1,...,⇢k} UCS of (R,⌫⇤)

w(M0/⇢1/ . . . /⇢k)

= w(M0) + min{⇢1,...,⇢k} UCS of (R,⌫⇤)

P
k

j=1 w(⇢j)

= w(M0) + min
X UCS of (R,⌫⇤)

P
⇢2X

w(⇢)

(b) Show that |R| = poly(n).
Lemma. (i, j) 2 ⇢+ (resp. ⇢�) for at most one rotation ⇢
) |R| = O(n2).

(c) Find an UCS of minimum weight in (R,⌫⇤) in time poly(|R|).
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MINIMUM s � t CUT PROBLEM

Given a digraph G(V,E), nodes s 6= t 2 V, capacities u : E ! N.
I X ✓ V is an s � t cut if s 2 X, t /2 X;
I The capacity of an s � t cut X is defined as

u(�(X)) =
X

e=(u,v)2E:u,inX,v/2X

u(e).

I The min s � t cut problem aims at finding an s � t cut of minimum
capacity.
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I X ✓ V is an s � t cut if s 2 X, t /2 X;
I The capacity of an s � t cut X is defined as

u(�(X)) =
X

e=(u,v)2E:u,inX,v/2X

u(e).

I The min s � t cut problem aims at finding an s � t cut of minimum
capacity.

I A minimum s � t cut can be find in time poly(|V|).

Theorem. The problem of finding an UCS of minimum weight can be
polynomially reduced to min s � t cut.
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REDUCING MIN-WEIGHT UCS TO MIN s � t CUT

Poset (R,⌫), weights w : R ! Z, with
w( ) � 0, w( ) < 0.

u(") = +1

, u( s ! ) = �w( ), u( ! t ) = w( ),

1. Let X ✓ R. X [ {s} s � t cut with u(X) < +1, X is an UCS.

2. X ✓ R UCS ) u(X [ {s}) = C + w(X).
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THE ALGORITHM FOR [OPT-SM]

1. Use the Gale-Shapley algorithm to compute M0;
2. Compute the poset of rotation (R,⌫) and, for each ⇢ 2 R, w(⇢);
3. Compute an UCS {⇢1, . . . , ⇢k} of minimum weight in (R,⌫);
4. Return M0/⇢1/ . . . /⇢k.

Theorem. [OPT-SM] can be solved in time O(n4 log n).
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THE RED-BLUE UNSTABLE MATCHING PROBLEM

Exercise 3. Give a polynomial-time algorithm for the following problem.

Given: An instance I of the marriage problem with weights w on the edges
E (“blue”), plus an additional set F of edges (“red”) with weights w.
Find: Among those that are stable in I, a matching M maximizing

w(M)� w(edges from F that block M).

Auxiliary facts that may help:
I ij is in some stable matching (i.e., it is a stable pair) iff it is contained in the student-optimal

stable matching, or in some rotation;
I For a student-school pair (i, j) that is not in any stable matching, there exists at most one

rotation ⇢ and schools j
0, j

00 so that: (i, j
0) 2 ⇢�, (i, j

00) 2 ⇢+, and j
0 >i j >i j

00.
I In each sequence of matching obtained starting from the student-optimal stable matching and

iteratively eliminating rotations until the school-optimal, we rotate all rotations.
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THE ROOMMATE CASE

Dropping the bipartiteness assumption from the marriage model, we obtain
the roommate model.

In the roommate model, a stable matching may not exist.

1 2 3
2 3 1
3 1 2

Good news:
I One can still associate a poset of (differently defined) rotations that

represents the set of stable matchings;
I It can be decided in polynomial time if a stable matching exists.

Bad news:
I Solving [OPT-SM] in the roommate model is NP-Hard.
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APPLICATION TO NYC HIGH SCHOOL MATCH

With the pre-2003 algorithm, 30.000 students were not assigned any of the
schools they chose.
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HIGHLIGHTS FROM PART I

I In the marriage model, Gale and Shapley’s algorithm outputs in linear
time a stable matching with many interesting features;

I Stable matchings in the marriage model have a lot of structure, that can
be leveraged on to deduce efficient algorithms;

I In particular, the lattice of stable matchings and the poset of rotations are
useful objects.

I Stable matchings are the state-of-the-art concept for many applications.
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SOME DRAWBACKS OF THE CLASSICAL MODEL & OF STABILITY

Stability is a very stringent condition:
I It disqualifies many “good” and “fair” solutions. For instance, (Abdulkadiroğlu, Pathak, and

Roth 09) showed empirically that by forgoing stability, we can obtain a matching that is much
“better” for students.

I It may leave many seats empty: the cardinality of a stable matching can be half that of a
maximum-size matching.

The marriage model cannot always model preferences accurately:
I Ties may be present in rankings;
I Strict and non-strict rankings cannot model other goals a school may want to achieve, like

diversity in school cohorts.
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Part II:
Changing the output

(a) Pareto-optimality & von Neumann-Morgenstern Stability
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PARETO-OPTIMALITY

1 A B C D
2 B D A C
3 C B A B
4 C D A B

A 4 3 2 1
B 3 4 1 2
C 2 1 4 3
D 1 2 3 4

We defined M ⌫ M
0 if all students weakly prefer M to M

0.
We say that M Pareto-dominates M

0 (for student).

M is Pareto-optimal (for students) if it is not Pareto-dominated, i.e., if

6 9M
0 6= M such that M

0(i) �i M(i) for all students i.

Can we find Pareto-optimal matchings that have additional features?
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STABILITY VS. PARETO-OPTIMALITY

There exist instances where no stable matching is Pareto-optimal.

1 A B C
2 B A C
3 B C A

A 2 1 3
B 1 3 2
C 2 1 3

Exercise 4. Give an infinite family of marriage instances with n agents such
that there is a matching M that Pareto-dominates the student-optimal
matching M0 and moreover, for ⇥(n) students i, the rank of M(i) is ⇥(n)
positions better than the rank of M0(i).
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THE TOP TRADING CYCLE ALGORITHM

1 A B C D E F G
2 B G A D F C E
3 C F A G B E D
4 D G B F C A E
5 B A G C D E F
6 D F E C B G A
7 A G C F D B E

A 2 1 7 5 6 3 4
B 3 4 6 5 1 2 7
C 1 7 5 3 4 2 6
D 6 3 6 1 7 2 4
E 6 4 7 3 1 5 2
F 5 2 3 7 4 6 1
G 2 4 1 6 3 5 7

Theorem. The top trading cycle is strategy-proof for students and outputs a
Pareto-optimal matching.

Theorem. Among all strategy-proof mechanisms that output a
Pareto-Optimal matching, the top trading cycle produces a matching that
has an inclusionwise minimal set of blocking pairs.

Theorem. (informal) In large random markets (i.e., # agents ! +1), TTC
does not have less blocking pairs that the Random Serial Dictatorship.
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MORE RESULTS ON PARETO-OPTIMAL MATCHINGS IN THE
MARRIAGE MODEL

Theorem. A Pareto-optimal matchings of maximum size can be found
efficiently.

I Compute a matching of maximum cardinality;
I Iteratively switch every student to an unmatched school they prefer to

their current match;
I Iteratively run TTC on a suitably modified instance.

Exercise 5. Prove the previous theorem.

Theorem. It is NP-hard to find a Pareto-optimal matching of minimum
weight.
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A NEW PERSPECTIVE ON STABILITY

1 A B C A 2 3 1
2 B A B 1 2
3 A C C 3 1

# maximal matching blocking pairs
M1 1B, 2A, 3C ;
M2 1A, 2B, 3C 3A

M3 1B, 3A 2A

M4 1C, 2B, 3A 1B

M5 1C, 2A 1B, 2B, 3C

M2

M1
M4

M5

M3
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SETS

I Set of stable matchings S(I);
I Internally stable set;
I Externally stable set;
I Internally stable + Externally stable = vNM stable;

YURI FAENZA – IEOR – COLUMBIA UNIVERSITY MATCHING THEORY AND SCHOOL CHOICE 47 / 65

o



SETS

I Set of stable matchings S(I);
I Internally stable set;
I Externally stable set;
I Internally stable + Externally stable = vNM stable;
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VNM STABLE SETS IN GAME THEORY

Von Neumann-Morgenstern stability in abstract & cooperative games:

I First solution concept for games with > 2 players;

I Their goal was to codify a “collection of acceptable behaviours in a
society: None is clearly preferred to any other, but for each unacceptable
behaviour there is a preferred alternative”;

I Popular concept at first (e.g., (Shubik, 82) cites > 100 papers on the topic),
then fell out of fashion, mainly because:

• vNM ss may not exist or be arbitrarily many;
• In general, they are considered “hard to work with”.
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RESULTS ON VNM STABLE SETS IN THE MARRIAGE MODEL

In the marriage model:
I There is a unique vNM stable set V ;
I There is a matching M 2 V that is Pareto-Optimal (for students);
I M also Pareto-dominates (for students) all stable matchings;
I M can be found in time O(n2) and a min-weight matching in V can be

found in time O(n4 log n).

So, in the marriage case:

I The vNM stable set has nice properties it fails to have in general games;
I The vNM stable set extends the set of stable matchings while keeping its

algorithmic tractability.
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VNM STABLE MATCHINGS ARE STABLE MATCHINGS IN
DISGUISE

Obs. V vNM stable ) V ◆ S .
Lemma. Let V be a vNM stable set of a marriage instance I. Let IV be the
subinstance containing all and only the edges in some matching from V .
Then

V = S(IV).

1 A B C A 2 3 1
2 B A B 1 2
3 A C C 3 1

# maximal matching
M1 1B, 2A, 3C

M2 1A, 2B, 3C

M3 1B, 3A

M4 1C, 2B, 3A

M5 1C, 2A

M2

M1
M4

M5

M3
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VNM STABLE MATCHINGS ARE STABLE MATCHINGS IN
DISGUISE

Obs. V vNM stable ) V ◆ S .

Lemma. Let V be a vNM stable set of a marriage instance I. Let IV be the
subinstance containing all and only the edges in some matching from V .
Then

V = S(IV).

+
The problem becomes: decide which edges are in IV .

1 * * * * *
2 * * * * *
3 * * * * *
A * * * * *
B * * * * *
C * * * * *

)

1 * * * * *
2 * * * * *
3 * * * * *
A * * * * *
B * * * * *
C * * * * *
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FINDING (IL)LEGAL EDGES VIA ROTATIONS: ROTATE-AND-REMOVE

1 A B D C E
2 A B D C E
3 C D B A E
4 D A B C E
5 E B C D A

A 5 3 4 2 1
B 5 3 4 1 2
C 5 1 2 4 3
D 5 1 2 3 4
E 2 3 5 1 4

1. Using Gale and Shapley, find the student-optimal sm M.
2. Starting from M, eliminate rotations as to find the school-optimal sm M

0 and mark stable edges
found on the way legal.

Lemma Let e be an edge between two legal edges that is not marked as legal. Then any
matching containing e is blocked by an edge of Ilegal. We call an edge with the latter
property illegal.

Lemma. Illegal edges can be deleted without changing the vNM stable set.
3. Lemma. If there exists (a, nextM0(a)) 2 A(DM) such that nextM0(a) is a sink, then a, sM(a) is

illegal. Delete it and go to 2.
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THE ALGORITHM FOR FINDING THE VNM STABLE SET

1. Run Rotate-and-remove.
2. Switch the roles of students and schools, run Rotate-and-remove.
3. Output the instance restricted to edges marked as legal.

Theorem. The algorithm above can be implemented as to run in time O(n2)
and outputs an instance I

0 so that S(I0) is a vNM stable set. Moreover, the
vNM stable set is unique.

Then we can use:
I Gale-Shapley algorithm to output a student optimal matching in the

vNM stable set V ;
I The algorithm for [OPT-SM] to output a min-weight matching from V .
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RESULTS ON VNM STABLE SETS IN THE MARRIAGE MODEL

In the marriage model:
I There is a unique vNM stable set V ;
I There is a matching M 2 V that is Pareto-Optimal (for students):
I M also Pareto-dominates (for students) all stable matchings:
I M can be found in time O(n2) and a min-weight matching in V can be

found in time O(n4 log n).
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PARETO-OPTIMALITY OF THE VNM STUDENT-OPTIMAL MATCHING

Theorem. The student-optimal matching in the von Neumann-Morgenstern
stable set V :

I Is Pareto-optimal for students.
I Because of the lattice structure, it Pareto-dominates all other matchings

from V – in particular, all stable matchings.
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FINDING THE STUDENT-OPTIMAL MATCHING IN THE VNM SET
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BACK TO SETS

I Set of stable matchings S(I);
I Internally stable set;
I Externally stable set;
I Internally stable + Externally stable = vNM stable;

I Inclusionwise maximal among internally stable = internally closed.
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FINDING AN INTERNALLY CLOSED SET CONTAINING A GIVEN
SET OF MATCHINGS

Given: a set of matchings M of an instance I.
Find: an internally closed set of matching M0 ◆ M
Lemma. Let M be an internally closed set of an instance I. Let IM be the
subinstance containing all and only the edges in some matching from M.
Then

M = S(IM).

Given: a roommate instance I and a subinstance I0 of I.
Find: an instance I

0 ✓ I with S(I0) ✓ S(I0) such that S(I0) is internally closed.
1 * * * * *
2 * * * * *
3 * * * * *
A * * * * *
B * * * * *
C * * * * *

)

1 * * * * *
2 * * * * *
3 * * * * *
A * * * * *
B * * * * *
C * * * * *
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REINTERPRETING THE ALGORITHM TO FIND A VNM STABLE
SET

To find a vNM stable set we iteratively “append” new ⌫-maximal and
⌫-minimal rotations to (R,⌫).

To compute an internally closed set, we may also need to “dissect” a
rotation, i.e., replace it with a poset of new rotations.
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HOW TO DISSECT A ROTATION (SKETCH)

Let ⇢ be a rotation.
I Student i 2 ⇢ is matched to a worse school after the elimination of ⇢.
I School j 2 ⇢ will be matched to a better student after the elimination of ⇢.

We dissect a rotation by look-
ing for cycles in a generalized
rotation digraph.
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HOW TO DISSECT A ROTATION (SKETCH)

1 D,A,C

2 B,A

3 C,B
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1 3
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FINDING AN INTERNALLY CLOSED SET OF MATCHINGS

Given: a roommate instance I and a subinstance I0 of I.
Find: an instance I

0 with I0 ✓ I
0 ✓ I such that S(I0) is internally closed.

1 Start from I
0 = I0.

2 Compute the rotation poset (R,⌫) associated to I
0.

3a Try to “append” a rotation to (R,⌫)

• If successful, add the corresponding edges go to I
0 and go to 2.

3b Try to “dissect” rotations from (R,⌫).
• If successful, add the corresponding edges go to I

0 and go to 2.
4 Output I

0.

Theorem. The algorithm above outputs I
0 ✓ I such that S(I0) ◆ S(I0) and

S(I0) is internally closed in time O(n4).
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THE ROOMMATE CASE

Recall that, in the roommate case, stable matchings can also be represented
via a rotation poset (defined differently).

We can still find a rotation-based condition for enlarging certain internally
stable sets.
Theorem. Let I be a roommate instance with S(I) 6= ;. S(IS) is internally
closed iff its rotation poset does not have stitched rotations.

Theorem. Deciding if I has a stitched rotation is NP-Hard.

Corollary. Deciding if a given I
0 ✓ I is such that S(I0) is internally closed is

co-NP-Hard. Deciding if I
0 ✓ I is such that S(I0) is vNM stable is

co-NP-Hard. Finding a vNM stable set of I (or deciding none exists) is
co-NP-Hard.
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HIGHLIGHTS FROM PART II(B)

In the marriage model:

I Pareto-optimality is an interesting concept alternative to stability;

I However, with the exception of a few (still relevant) Pareto-optimal
matchings, not much is known about this class;

I The vNM Stable sets of matchings contain both the set of stable
matchings and one Pareto-optimal matching; also, it is algorithmically
as tractable as the family of stable matchings

I Internally closed sets allow us to extend sets of pairwise-non blocking
matchings in a principled manner;

I For vNM stable and internally closed sets of matchings, the lattice of
stable matchings and the poset of rotations are crucial tools.
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