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Introduction



Overview

Biomass production is essentially a mass transfer process that requires

more than just energy. It is crucially dependent on the chemical

compositions of both the consumer species and food resources. There

maybe many ways cells or individual may die, but only one way (cell

division) to grow.

The basis of most life on earth is photosynthesis. Photoautotrophic

organisms can exhibit a very wide range of physiological plasticity in

elemental composition. In contrast, animals have almost constant

chemical composition. The stoichiometric formula for an average human

being is: H375,000,000O132,000,000C85,700,000N6,430,000Ca1,500,000P1,020,000

S206,000Na183,000K177,000Cl127,000Mg40,000Si38,600Fe2,680Zn2,110

Cu76I14Mn13F13Cr7Se4Mo3Co1
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Ecological Stoichiometry

Chemistry is fundamental to truly understanding biology.

Stoichiometry is the accounting, or math, behind chemistry. It deals

with the balance of multiple chemical elements in chemical reactions.

Ecological stoichiometry is the study of the balance of energy and

multiple chemical resources (elements) in ecological interactions.
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Growth Rate Hypothesis

T he G rowth R ate Hypothes is

B ased on:  E lser,  J .J . , D.R . Dobberfuhl,  N.A. MacK ay, and J .H. S champel.  

Organism size,  life history, and N:P  stoichiometry:  toward a unified view of 
cellular and ecosystem processes .  BioS cience 46: 674-684.

B ody C : N: P

food quality  
constraints  
on growth / 

reproduction

resource 
competition

trophic 
efficiency

nutrient 
recycling

natural s elec tion 
on growth rate

c ellular inves tment 
(r ibos ome c ontent)

bioc hemic al inves tment 
(R NA: pr otein)

T he firs t picture of a ribosome.  C ate et al.  (1999)  S cience 

285:  2095-2104.
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Experimental results

Aquatron Dynamic s
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Figure 1: Urabe, J ., J .J . Elser, M. Kyle, T. Yoshida, T. Sekino and Z.

Kawabata. 2002. Herbivorous animals can mitigate unfavorable ratios of

energy and material supplies by enhancing nutrient recycling. Ecology Letters,

5(2):177 - 185 4



Accidental experimental results
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5(2):177 - 185
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Very few papers on the global dynamics of stoichiometric mod-

els

1. X. Li, H. Wang, Y. Kuang, 2011. Global analysis of a stoichiometric

producer-grazer model ... JMB, 63, 901-932.

2. X. Yang, X. Li, H. Wang, and Y. Kuang, 2016. Stability and

bifurcation in a stoichiometric producer- grazer model with knife edge,

SIAM J. on Applied Dynamical Systems 15 (4), 2051-2077.

3. M. Chen, M. Fan, Y. Kuang, 2017. Global dynamics in a

stoichiometric food chain model with two limiting nutrients, Math.

Biosci., 289, 919.
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The First Model, 2000

Model of Loladze, Kuang and Elser (LKE model, Loladze I, Kuang

Y,Elser JJ, Stoichiometry in producer-grazer systems: Linking energy

flow with element cycling, 62(6): 1137-1162 (2000))

dx

dt
= bx

[
1− x

min(K , (P − θy)/q)

]
− f (x)y ,

dy

dt
= c min

(
1,

P − θy
θx

)
f (x)y − dy .

(1)
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LKE Model Assumptions

A1. The total mass of phosphorus P in the entire system is fixed, i.e. the

system is closed for phosphorus with total of P (mg P/l).

A2. Phosphorus to carbon ratio (P:C) in the producer varies, but it

never falls below a minimum q (mg P/mg C); the grazer maintains a

constant P:C ratio, denoted byθ (mg P/mg C).

A3. All phosphorus in the system is divided into two pools: phosphorus

in the grazer and phosphorus in the producer.
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LKE model dynamics

T heoretic al T es t of L ight: Nutrient E ffec ts

Model of Loladze, K uang and E ls er (modified from model of T . Anders en)

P roduc er

G razer

x' (t) = bx (1 -
min[K , (P  - θy) / q]

x ) - f (x)y

y' (t) = εmin (1, 
θ

(P  - θy) / x ) f (x)y - dy

F rom:  Loladze, I,  Y . K uang, and J .J .  E lser.  2000.  S toichiometry in producer-grazer systems: linking energy flow and element 

cycling.  B ull.  Math. B iol.  62:  1137-1162.
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LKE model dynamics

light

light

light

Model of Loladze, K uang and E ls er (modified from model of T . Anders en)

F rom:  Loladze, I,  Y . K uang, and J .J .  E lser.  2000.  S toichiometry in producer-grazer systems: linking energy flow and element 

cycling.  B ull.  Math. B iol.  62:  1137-1162.

T heoretic al T es t of L ight: Nutrient E ffec ts
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LKE model dynamics

Model of Loladze, K uang and E ls er (modified from model of T . Anders en)

light

T heoretic al T es t of L ight: Nutrient E ffec ts

G razer

F rom:  Loladze, I,  Y . K uang, and J .J .  E lser.  2000.  S toichiometry in producer-grazer systems: linking energy flow and element 

cycling.  B ull.  Math. B iol.  62:  1137-1162.

12



Some observations

Stoichiometric models incorporate both food quantity and food quality

effects in a single framework, appear to stabilize predatorprey systems

while simultaneously producing rich dynamics with alternative domains of

attraction and occasionally counterintuitive outcomes, such as

coexistence of more than one predator species on a single-prey item and

decreased herbivore performance in response to increased plant growth

rate.

Stoichiometric theory has tremendous potential for both quantitative and

qualitative improvements in the predictive power of mathematical

population models in the study of both ecological and evolutional

dynamics.
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Second Model

Yang Kuang, Jef Huisman and James J. Elser: Stoichiometric plant-herbivore models and their interpretation, Math. Biosc. and Eng., 1,

215-222(2004)

If we let Pp,Pz and Pf be the phosphorous in autotroph, phosphorous in

herbivore, and the free phosphorous respectively, then

Pt = Pp + Pz + Pf . Let x = x(t) be the autotroph density, y = y(t) be

the herbivore density and Q = Q(t) be the autotroph’s cell quota for P,

then Pp = Qx and Pz = θy . Hence

Pt = Pf + Qx + θy . (2)

We let q be the autotroph’s minimal cell quota for P, µm be the

autotroph’s true maximal growth rate, D be its death rate and f (x) be

the herbivore’s ingestion rate.
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Second Model

By Droop equation, we have

dx

dt
= µm

(
1− q

Q

)
x − Dx − f (x)y . (3)

Let e be the herbivore’s yield constant and d be the specific loss rate of

herbivore. If the autotroph is P poor (when Q < θ), then the conversion

rate becomes eQ/θ. We have

dy

dt
= e min

(
1,

Q

θ

)
f (x)y − dy . (4)

Finally, we need an equation governing the dynamics of Q

dQ

dt
= αPf − µm(Q − q). (5)
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Special Cases for the Second Model

Since the cell metabolic process operates in a much fast pace than the growth of total biomass of either species, we approximate Q(t) by

the solution of

αPf − µm(Q − q) = 0. (6)

We have the following autotroph-herbivore model:

dx

dt
= (µm − D)x

[
1 −

x + µmα
−1

[(µm − D)/µm ][µmα−1 + (Pt − θy)/q]

]
− f (x)y.

dy

dt
= e min

(
1,

Q

θ

)
f (x)y − dy.

(7)
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Second Model

If only C limits the autotroph’s growth, then the traditional autotroph equation can be used.

dx

dt
= bx

(
1 −

x

K

)
− f (x)y (8)

where b = µm − D is the net autotroph growth rate. Applying Leipig’s minimum principle, we obtain the following autotroph-herbivore

model with two limiting elements

dx

dt
= bx

[
1 − max

( x

K
,

x + µmα
−1

[(µm − D)/µm ][µmα−1 + (Pt − θy)/q]

)]
− f (x)y.

dy

dt
= e min

(
1,

Q

θ

)
f (x)y − dy.

(9)

17



Special Cases

If we, in addition, assume that the natural autotroph death rate D is far less

than its true maximal growth rate, then we can approximate the value of

(µm − D)/µm by 1. Together with the assumption α tends to ∞, the above

model becomes

dx

dt
= bx

[
1−max

(
x

K
,

x

(Pt − θy)/q

)]
− f (x)y .

dy

dt
= emin

(
1,

Q

θ

)
f (x)y − dy .

(10)
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Special Cases

As α tends to ∞, we see that

Q tends to (Pt − θy)/x .

The above model s exactly the same as the LKE (Loladze, Kuang and

Elser: Stoichiometry in producer-grazer systems: linking energy flow and

element cycling, Bull. Math. Biol., 62, 1137-1162(2000)) model:

dx

dt
= bx

(
1− x

min(K , (Pt − θy)/q)

)
− f (x)y ,

dy

dt
= emin

(
1,

(Pt − θy)/x
θ

)
f (x)y − dy .

(11)
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Simulation
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Single resource with two consumers

Let us start with a conventional model, which describes a system of two

consumers feeding on one biotic resource.

dx

dt
= rx

(
1− x

K

)
− f1(x)y1 − f2(x)y2

dy1

dt
= e1f1(x)y1 − d1y1

dy2

dt
= e2f2(x)y2 − d2y2

(12)
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Single resource with two consumers

dx

dt
= rx

(
1− x

min(K , (P − s1y1 − s2y2) /q)

)
− f1(x)y1 − f2(x)y2

= F (x , y1, y2)

dy1

dt
= e1 min

(
1,

(P − s1y1 − s2y2)

xs1

)
f1(x)y1 − d1y1 = G1(x , y1, y2)

dy2

dt
= e2 min

(
1,

(P − s1y1 − s2y2)

xs2

)
f2(x)y2 − d2y2 = G2(x , y1, y2)

(13)
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A bifurcation diagram
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Another bifurcation diagram

The coexistence of all species at a stable positive equilibrium is possible.

r = 1.4, c1 = 0.63, c2 = 0.6, a1 = 0.45, a2 = 0.36, e1 = 0.85, e2 =

0.8,P = 0.036, q = 0.003, s1 = 0.038, s2 = 0.025, d1 = 0.1, d2 = 0.12.
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A Better Model

H. Wang, Y. Kuang and I. Loladze: A mechanistically derived stoichiometric producer-grazer model, J. Biological Dynamics, 2, 286-296

(2008).

Let x be the density of carbon content in the producer, p be the density of phosphorus content in the producer, y is the density of carbon

contents in the grazer, P is the density of free phosphorus in media.

dx

dt
= rx

(
1 −

x

min{K, p/q}

)
− f (x)y, (14a)

dy

dt
= ê min

{
1,

p/x

θ

}
f (x)y − d̂y, (14b)

dp

dt
= g(P)x −

p

x
f (x)y − dp, (14c)

dP

dt
= −g(P)x + dp + θd̂y +

( p

x
− ê min

{
θ,

p

x

})
f (x)y (14d)
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Comparison

0 10 20 30 40 50
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time (day)

sp
ec

ie
s 

de
ns

iti
es

producer
consumer

LKE model

LKE model

mechanistic model

K=0.25 (mg C)/L

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (day)

sp
ec

ie
s 

de
ns

iti
es

producer
consumer

mechanistic model

mechanistic model
LKE model

LKE model

K=0.75 (mg C)/L

0 20 40 60 80
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

time (day)

sp
ec

ie
s 

de
ns

iti
es

producer
consumer

LKE model

mechanistic model

mechanistic model

K=1 (mg C)/L

0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

time (day)

sp
ec

ie
s 

de
ns

iti
es

producer
consumerK=2 (mg C)/L

LKE model
mechanistic model

26



Competition

Experiment and Hypothesis We experimentally studied the

competition between D. pulex and D. lumholtzi with a single food source,

the green alga Scenedesmus acutus. There were two light conditions:

high intensity and low intensity. We applied each light treatment to four

test cases: a control lacking Daphnia, D. pulex monoculture, D. lumholtzi

monoculture, and D. pulex and D.lumholtzi together in competition.
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Competition
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Competition
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Competition

A stoichiometric competition model.

dx

dt
= rx min

{
1− x

K
, 1− q

p/x

}
−

i=2∑
i=1

fi (x)yi , (15)

dy1

dt
= e1 min

{
1,

p/x

θ1

}
f1(x)y1 − d1y1, (16)

dy2

dt
= e2 min

{
1,

p/x

θ2

}
f2(x)y2 − d2y2, (17)

dp

dt
= g(T − p − θ1y1 − θ2y2)x − p

x

i=2∑
i=1

fi (x)yi − dp. (18)
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Competition
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Competition
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The chaotic coexistence with K=35
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Chaos in Competition
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Lyapunov exponents and the Kaplan-Yorke dimension
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Third (MRL) Model

applied  
sciences

Article

Rich Dynamics of a General Producer–Grazer Interaction
Model under Shared Multiple Resource Limitations
Tin Phan 1 , James J. Elser 2 and Yang Kuang 3,*

1 Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
2 Flathead Lake Biological Station, University of Montana, Polson, MT 59860, USA
3 School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
* Correspondence: kuang@asu.edu

Abstract: Organism growth is often determined by multiple resources interdependently. However,
growth models based on the Droop cell quota framework have historically been built using threshold
formulations, which means they intrinsically involve single-resource limitations. In addition, it is
a daunting task to study the global dynamics of these models mathematically, since they employ
minimum functions that are non-smooth (not differentiable). To provide an approach to encompass
interactions of multiple resources, we propose a multiple-resource limitation growth function based
on the Droop cell quota concept and incorporate it into an existing producer–grazer model. The
formulation of the producer’s growth rate is based on cell growth process time-tracking, while the
grazer’s growth rate is constructed based on optimal limiting nutrient allocation in cell transcription
and translation phases. We show that the proposed model captures a wide range of experimental
observations, such as the paradox of enrichment, the paradox of energy enrichment, and the paradox of
nutrient enrichment. Together, our proposed formulation and the existing threshold formulation provide
bounds on the expected growth of an organism. Moreover, the proposed model is mathematically more
tractable, since it does not use the minimum functions as in other stoichiometric models.
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Back to the growth. 
 

The electric circuit is a fair description of multiple resource limitation for an idealized organism. 
However, it can get quite confusing going back and forth between different terminologies. 





Properties and extensions. 





MRL applied to the LKE model. 







The rate of change equation for the grazer population: 

The rate of change equation for the producer population: 





Possible mechanism for assumption 7: The energy conversion efficiency for the grazer is an increasing function of the C:P 
ratio in the producer. 





Comparison of model dynamics 



Comparison of 
model bifurcation. 
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