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Introduction



Overview

Biomass production is essentially a mass transfer process that requires
more than just energy. It is crucially dependent on the chemical
compositions of both the consumer species and food resources. There
maybe many ways cells or individual may die, but only one way (cell
division) to grow.

The basis of most life on earth is photosynthesis. Photoautotrophic
organisms can exhibit a very wide range of physiological plasticity in
elemental composition. In contrast, animals have almost constant
chemical composition. The stoichiometric formula for an average human
being is: H375 000,000 O132,000,000 C85,700,000 V6,430,000 Ca1,500,000 P1,020,000

S206,000 Va183,000 K177,000 Ch27,000 840,000 Siz8,600 Fe2,680 ZN2,110
CU76 I14 /\/ln13 F13 CI’75€4 MO3 COl



Ecological Stoichiometry

Chemistry is fundamental to truly understanding biology.

Stoichiometry is the accounting, or math, behind chemistry. It deals
with the balance of multiple chemical elements in chemical reactions.

Ecological stoichiometry is the study of the balance of energy and
multiple chemical resources (elements) in ecological interactions.



Growth Rate Hypothesis
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Experimental results

Aguatron Dynamics
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Figure 1: Urabe, J ., J .J . Elser, M. Kyle, T. Yoshida, T. Sekino and Z.
Kawabata. 2002. Herbivorous animals can mitigate unfavorable ratios of

energy and material supplies by enhancing nutrient recycling. Ecology Letters,
5(2):177 - 185 &



Accidental experimental results

Aquatron Dynamics
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Figure 2: Urabe, J ., J .J . Elser, M. Kyle, T. Yoshida, T. Sekino and Z.
Kawabata. 2002. Herbivorous animals can mitigate unfavorable ratios of

energy and material supplies by enhancing nutrient recycling. Ecology Letters,
5(2):177 - 185
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The First Model, 2000

Model of Loladze, Kuang and Elser (LKE model, Loladze |, Kuang
Y,Elser JJ, Stoichiometry in producer-grazer systems: Linking energy
flow with element cycling, 62(6): 1137-1162 (2000))

g,f - [1 ) m/i;(Ké(PX - ey)/q)} =i
2~ cmin <1, - y) f(x)y — dy.




LKE Model Assumptions

A1l. The total mass of phosphorus P in the entire system is fixed, i.e. the
system is closed for phosphorus with total of P (mg P/I).

A2. Phosphorus to carbon ratio (P:C) in the producer varies, but it
never falls below a minimum q (mg P/mg C); the grazer maintains a
constant P:C ratio, denoted by (mg P/mg C).

A3. All phosphorus in the system is divided into two pools: phosphorus
in the grazer and phosphorus in the producer.



LKE model dynamics

Theoretical Test of Light:Nutrient E ffects

Model of Loladze, Kuang and Elser (modified from model of T. Andersen)
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LKE model dynamics

Theoretical Test of Light:Nutrient E ffects

Model of Loladze, Kuang and Elser (modified from model of T. Andersen)
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From: Loladze, |, Y. Kuang, and J.J. Elser. 2000. S toichiometry in producer-grazer systems: linking energy flow and element
cycling. Bull. Math. Biol. 62: 1137-1162.
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LKE model dyna

Theoretical Test of Light:Nutrient E ffects

Model of Loladze, Kuang and Elser (modified from model of T. Andersen)
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Some observations

Stoichiometric models incorporate both food quantity and food quality
effects in a single framework, appear to stabilize predatorprey systems
while simultaneously producing rich dynamics with alternative domains of
attraction and occasionally counterintuitive outcomes, such as
coexistence of more than one predator species on a single-prey item and
decreased herbivore performance in response to increased plant growth
rate.

Stoichiometric theory has tremendous potential for both quantitative and
qualitative improvements in the predictive power of mathematical
population models in the study of both ecological and evolutional
dynamics.
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Second Model

Yang Kuang, Jef Huisman and James J. Elser: Stoichiometric plant-herbivore models and their interpretation, Math. Biosc. and Eng., 1,

215-222(2004)

If we let P,, P, and Pr be the phosphorous in autotroph, phosphorous in
herbivore, and the free phosphorous respectively, then

Py = P, + P, + Pr. Let x = x(t) be the autotroph density, y = y(t) be
the herbivore density and @ = Q(t) be the autotroph'’s cell quota for P,
then P, = Qx and P, = fy. Hence

Py = Pr 4+ Qx + 0y. (2)

We let g be the autotroph’s minimal cell quota for P, p,, be the
autotroph's true maximal growth rate, D be its death rate and f(x) be
the herbivore’s ingestion rate.
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Second Model

By Droop equation, we have

(:;;:Mm(l—g>x—Dx—f(x)y. (3)

Let e be the herbivore’s yield constant and d be the specific loss rate of
herbivore. If the autotroph is P poor (when Q < ), then the conversion
rate becomes eQ/60. We have

d
d—}; = emin (1,3) f(x)y — dy. (4)
Finally, we need an equation governing the dynamics of @

d
& = aPr— (@~ ), ©
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Special Cases for the Second Model

Since the cell metabolic process operates in a much fast pace than the growth of total biomass of either species, we approximate Q(t) by
the solution of

aPr — pm(Q — q) = 0. (6)
We have the following autotroph-herbivore model:
—1

dx X+ pmao

Z o m—oni- - | - oo

jt [(em — D)/ pmllpma =" + (Pt — 6y)/q] (7)

y

= = emin (1‘ 7)f(x)y — dy.

dt 0
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Second Model

If only C limits the autotroph’s growth, then the traditional autotroph equation can be used.

% = bx(l = %) — f(x)y (8)

where b = iy — D is the net autotroph growth rate. Applying Leipig's minimum principle, we obtain the following autotroph-herbivore

model with two limiting elements

dx x x+ pma~1

—- = bx[l — max <7, ! =i >] — f(x)y.

gh a K [(em — D)/ pmllpma™" + (Pt — 0y)/dq] (9)
Y o e <1, 7>f(><)y — dy.

dt 0
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Special Cases

If we, in addition, assume that the natural autotroph death rate D is far less
than its true maximal growth rate, then we can approximate the value of
(ptm — D)/pum by 1. Together with the assumption « tends to oo, the above
model becomes

% = bx [1 — max (% m)} e (10)
dy

il emin<1,%>f(x)y—dy.
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Special Cases

As « tends to oo, we see that

Q tends to (P: — 0y)/x.

The above model s exactly the same as the LKE (Loladze, Kuang and
Elser: Stoichiometry in producer-grazer systems: linking energy flow and
element cycling, Bull. Math. Biol., 62, 1137-1162(2000)) model:

dx X
@ = (o i (P ~ ) =1 an
d—)t/ = emin (1,7( t_e y)/x)f(x))’*d}‘
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Single resource with two consumers

Let us start with a conventional model, which describes a system of two
consumers feeding on one biotic resource.

d
= = (1= %) —hiln - £(y

L = elfl(X))/1 - d1}/1 (12)

t
Y2
22 = ef —d
dt 2(X))/2 2Y2
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Single resource with two consumers

dx X
- 1= — h(x)y1 — h(x
dr I’X( m|n(K,(P51y152y2)/q)) 1( ).yl 2( )_y2
:F(X7y1»}’2)

d P— _
a o _ & il (1’ ( Siy1 — S2)2)

fi — dhy1 = Gi(x, y1,
dt XS1 ) (vt — du 1(x, y1, ¥2)

P_ sy
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A bifurcation diagram

Bifurcation diagram for a stoichiometric one plant-two herbivores model
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Another bifurcation diagram

The coexistence of all species at a stable positive equilibrium is possible.
r=14,¢c =0.63,c, =0.6,a; =0.45,a, = 0.36,e; = 0.85,ep =
0.8, P =10.036,q9 = 0.003,s; = 0.038,s, = 0.025,d; = 0.1, d>, = 0.12.

Bifurcation diagram for a stoichiometric one plant-two herbivores model
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A Better Model

H. Wang, Y. Kuang and |. Loladze: A mechanistically derived stoichiometric producer-grazer model, J. Biological Dynamics, 2, 286-296
(2008).

Let x be the density of carbon content in the producer, p be the density of phosphorus content in the producer, y is the density of carbon
contents in the grazer, P is the density of free phosphorus in media.

Al (1 = ;) — f(x)y, (142)
dt min{K, p/q}

ﬂ = émin {1. K}t‘(x)yfdby, (14b)
dt 6

dp P

— =g(P)x — —f(x)y — dp, (14c)
dt X

dP N P . P

o —g(P)x + dp + 0dy + <; = emm{e, ;}> f(x)y (14d)
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Comparison
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Competition

Experiment and Hypothesis We experimentally studied the
competition between D. pulex and D. lumholtzi with a single food source,
the green alga Scenedesmus acutus. There were two light conditions:
high intensity and low intensity. We applied each light treatment to four
test cases: a control lacking Daphnia, D. pulex monoculture, D. lumholtzi
monoculture, and D. pulex and D.lumholtzi together in competition.
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Competition
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Competition

A stoichiometric competition model.

i=2
dx . X q
— = = —lloeop= i Bs 1
i rxmln{l K,l p/x} 2 fi(x)y (15)
d . X
YA _ ermin< 1, i fi(x)yr — diya, (16)
dt 01
d . X
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Competition
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Competition
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The chaotic coexistence with K=35

Median light intensity: K=35
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Chaos in Competition
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Lyapunov exponents and the Kaplan-Yorke dimension
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Third (MRL) Model

friciel applied

sciences

Article

Rich Dynamics of a General Producer-Grazer Interaction
Model under Shared Multiple Resource Limitations

Tin Phan 1©, James J. Elser 2 and Yang Kuang 3*

Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
Flathead Lake Biological Station, University of Montana, Polson, MT 59860, USA

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA
Correspondence: kuang@asu.edu

@ o~

Abstract: Organism growth is often determined by multiple resources interdependently. However,
growth models based on the Droop cell quota framework have historically been built using threshold
formulations, which means they intrinsically involve single-resource limitations. In addition, it is
a daunting task to study the global dynamics of these models mathematically, since they employ
minimum functions that are non-smooth (not differentiable). To provide an approach to encompass
interactions of multiple resources, we propose a multiple-resource limitation growth function based
on the Droop cell quota concept and incorporate it into an existing producer-grazer model. The
formulation of the producer’s growth rate is based on cell growth process time-tracking, while the
grazer’s growth rate is constructed based on optimal limiting nutrient allocation in cell transcription
and translation phases. We show that the proposed model captures a wide range of experimental
observations, such as the paradox of enrichment, the paradox of energy enrichment, and the paradox of
nutrient enrichment. Together, our proposed formulation and the existing threshold formulation provide
bounds on the expected growth of an organism. Moreover, the proposed model is mathematically more
tractable, since it does not use the minimum functions as in other stoichiometric models.
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Back to the growth.

The electric circuit is a fair description of multiple resource limitation for an idealized organism.
However, it can get quite confusing going back and forth between different terminologies.
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Properties and extensions.
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Liebig’s Law of Minimum: Multiple resource limitation:
- the growth rate is constrained by lowest stave. - the growth rate is constrained by the nutri-

ent-specific water holes.

The growth rate of an organism is depicted here as the current water level in the barrel.

* Liebig’s law gives the upper bound on the growth rate, which is set by the lowest stave.

* The proposed multiple resource limitation gives the lower bound on the growth rate due to
the combined limitation of all resources, which is described using the water holes at the
bottom of the barrel.

* The true growth rate of an organism is then somewhere between these two bounds.



MRL applied to the LKE model.

Producer-grazer system is closed.

Minimum P:C ratio for producer is q.

P:C ratio of the grazer is fixed at 6.

Grazer dies at a constantrate d.

Density of producer is limited by light at a maximum K.

Intake phosphorus P;y can be partitioned.

The energy conversion efficiency for the grazer is an increasing function of the C:P ratio in the producer. (*)

NounkwhNeE

(Producer rate of change) = (Growth rate) — (Predation rate)

(grazer rate of change) = (Conversion to biomass) x (Predation rate) — (Death rate).




Goal 1: determine the amount of phosphorus intake per f(x)y (predation)

1. Since P:Cis @ for grazer, 8y is the total amount of phosphorus in the grazer population.

2. Since P is conserved in the closed system, the total amount of phosphorusin the producer populationis: P — @y.
3. The P:Cratio for the produceris Q = (P — 8y)/x.

4. The total amount of phosphorus acquired from predationis Q@ x f(x)y.




Goal 2: find phosphorus that goes into biomass production for the grazer.
1. Not all acquired phosphorusis used for biomass production.
2. Assume that phosphorusintake (P;y) is partitionedinto P and Pp.
- P is the phosphorus going into maintaining/building the existing/new machinery.
- Pp is the phosphorus reserved for biomass synthesis (processed by Pg).
3. Let a(-) be the optimal function that optimize the growth process by optimizing the fraction of intake phosphorus that
goesinto Pp and Pp.
4. Then, the most efficient division would have each Py processes a(-) unit of Pp to build biomass.
+If a(+) is small (< 1), then most of the intake resource (phosphorus) goes into maintaining the machinery.

+If a(-) is very large, then most of the intake P goes into making new biomass.

Py = PR+ Pp = Pr +a(-)Pr = (14 «(-))Pr.

__ 1 _ ()
PR_l—I—IE(')PIN and pp_l—l—ﬁ[:-]PIN.
Pp *() PN = “() Qf (x)y.

T 1+a() 1+a(-)



Goal 3: find biomass synthesis from predation.
Since P:Cis @ for the grazer, we have

(Conversion to biomass) X (Predation rate) = (

1 a()
01+ a(-)

) Qf (x)y

The rate of change equation for the grazer population:

dy  «() Qf(x)y
dt — 14a() 6 —dy.

Goal 4: apply the MRL to the growth of the producer population.

)

-0+ (-9

The rate of change equation for the producer population:

dx (1_%
)

- —H
(-




Goal 5: Determine the biomass efficiency conversion rate.

By assumption (7), a(+) is an increasing function of 1/Q (or the C:P ratio of the producer), which we assume to take the form:
1 1/Q a

al=]|=a - :
Q m+1/Q mQ+1

a is the maximum efficiency of biomass production.

m is the half-saturation of biomass production efficiency.

a(-) B a
1+a() a+mQ+1

cxX

Goal 6: the predation functional response f(x) is taken to be: f(x) = P




Possible mechanism for assumption 7: The energy conversion efficiency for the grazer is an increasing function of the C:P
ratio in the producer.

It has been noted that a higher C:P ratio (lower P:C ratio) in the producer tends to decrease the efficiencyin the transfer of
energy (C) and increasing P can increase the biomass of the upper trophic species.

In our model, the P: C ratio of the producer is representedby Q@ = (P — 0y)/x. Thus, higher Q@ means a lower relative
energy contentin the producer (lower C relativeto P). Additionally, since the total quantity of P is fixed in our model, more
P in the producer biomass (or higher ) implies less P in the grazer biomass.

Since all P intake (P;y) is partitionedinto P, and Pp, e.g., P + a(-)Pp = P;y, and if we assume the organism prioritizes
survival over growth, then it means the cell must prioritize keeping Py relatively constant over maximizing Pp.

a(:)Pp = Py — Pp

Note that the right-hand side is a decreasing function of increasing P (or ) in the producer. The left-handside is the
amount of phosphorus going into new biomass production. Thus, as P,y decreases and Py, is kept constant, the amount of
phosphorus partitioned for new biomass production decreases. Therefore, a(+) canbe considered to be a decreasing
function of increasing P (or increasing Q).

In other words, to account for the effect of energy, we can consider a(+) as an increasing function of 1/Q (instead of a
decreasing function of Q). That is, higher P in producers leads to higher Q, but lower P in the grazers (lower 1/Q), which
would lead to a lower food conversion efficiency value for a(+) while decreasing P in producer has the opposite effect.




Theorem 1: The biological solutions of the proposed model are eventually bounded within the set

P P
0= {(x,y):x,y >0,x < min{K,E},y EE}.

In summary, the LKE model takes the form:

d_x_ o1 X _oox
T min (K, (P —0y)/q) k—l—xy

dy _ (P—0y)/x\ cx
dt—b]mm(l, 2 )k+xy dy.

The MRL model takes on the following form for comparison purposes:

dx_ (1_@(1_%) o
1-%)

E_P(

dy a cx Q
dt a+mQ+1k+x9y Y




Comparison of model dynamics
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