Understanding the limits of entrainment of circadian oscillator models using one-dimensional maps

Amitabha Bose
Department of Mathematical Sciences
New Jersey Institute of Technology
Joint work with Casey Diekman
Based on
Journal of Theoretical Biology $(2018,2022)$

ICERM
June, 2023

Outline

- New approach to studying entrainment using a onedimensional map
- Analyze the Kronauer model for human circadian rhythm
- Application to jet lag: Why is there an asymmetry in recovery between east and west travel?
\square Application to non-24 hour sleep wake disorder: nonentrainment and Bright Light Therapy
\square Application to social jetlag: Can one engage in catch up sleep to minimize disruption?
\square Timing matters!
- Mathematical modeling reveals some unexpected findings and leads to the exploration of new dynamic phenomenon.

A Nobel Prize winning example!

- Protein and mRNA levels in fly clock gene: 2017 Nobel prize winning work of Hall, Rosbash \& Young (1984). schematic [Isaacson, 2013]

- Here the intrinsic or endogenous period of mRNAs and proteins is longer than 24 hours.
- How does this oscillation change as a function of light-dark input?

A whole body example

- Core body temperature rhythms [Lericollais et al, 2013]

- Note CBT-min occurs early in the morning and is a reliable maker of the phase of entrainment.

Central Questions

- How does entrainment of a circadian oscillator to a 24 hour lightdark cycle depend on intrinsic parameters of the oscillator and external parameters associated with the LD forcing?
- What determines the phase of locking?
- Is the East-West asymmetry of jet lag "generic"?
- How does the timing of bright light therapy affect the ability to entrain?
- Is "catch-up sleep" always beneficial?

Phase-locking due to periodic forcing

- This type of problem has been extensively studied in a variety of contexts; see work of Art Winfree who pioneered the study of biological clocks.
- Keener et al 1981, Bressloff 1992, Coombes \& Owen 2003, Laing \& Longtin 2003, Medvedev \& Cisternas 2004 many more
- Circadian literature: Kronauer's group 1990s-, Ronnenberg's group 2000s-, Goldbeter's group 2000s-, Herzel's group 2000s-, Peskin and Forger 2003, 2004...many more
- Phase-locking described either through Arnold Tongue structure or Devil's Staircase (Denjoy's Theorem for Circle Maps)
- We will be interested in the existence and stability of $1: 1$ phase locked solutions, and how long it takes to entrain to them.

Circadian oscillators

Two "unforced" limit cycles (Petersen, 1980) and one LD entrained limit cycle

- Either in experiment or model, the oscillator can be subjected to 24 hours of constant darkness DD, constant light LL, or a combination of both LD, with a prescribed photoperiod
- These limit cycles will lie in different locations in phase space and presumably have different properties for attraction towards them (think: stable-unstable manifolds)
- Ultimately, it is attraction of (not necessarily nearby) initial conditions to the LD limit cycle we are interested in, and as such we need a method to assess "global" attraction.

Forger - Jewett - Kronauer (FJK) model

- fit to experimental data on how light affects human circadian rhythms
- core body temperature (C)
- auxiliary variable (A)
- phototransduction pathway through which light drives the circadian system (n)

$$
\begin{aligned}
\frac{d C}{d t} & =\frac{\pi}{12}(A+B) \\
\frac{d A}{d t} & =\frac{\pi}{12}\left(\mu\left(A-\frac{4}{3} A^{3}\right)-C\left[\left(\frac{24}{0.99669 \tau_{c}}\right)^{2}+k B\right]\right) \\
\frac{d n}{d t} & =(\alpha[I] f(t)(1-n)-\beta n) \\
B & =G \alpha[I] f(t)(1-n)(1-0.4 C)(1-0.4 A), \quad \alpha[I]=\alpha_{0}\left[\frac{I}{I_{0}}\right]^{p}
\end{aligned}
$$

- B -- circadian modulation of the oscillator's sensitivity to light
- τ_{c}-- determines the period of the oscillator in constant darkness
- I -- intensity of light
- p-dose response exponent
- $f(t)$-- light stimulus

FJK phase plane for DD, LL and LD

- The DD limit cycle has a period of τ_{c}, the period of LL is less. The LD entrained solution has a period of 24 hours.

DD, LL, and LD limit cycles

$\tau_{c}=24.2, N=12, I=1000$

DD

-- DD - $\mathrm{LL}-\mathrm{LD}$ (dark) — LD (light)

The map and its properties

$\Pi(x)$ is piecewise increasing, piecewise continuous and periodic

It has a stable and unstable fixed point and at most one point of discontinuity

The map depends continuously on parameters

Mathematical Aside: Border collision bifurcations (Yorke et al, 90s)

The corresponding stable and unstable periodic orbits from the Novak-Tyson model

Dynamics of the entrainment map

- Cobwebbing the entrainment map
- x_{u} separates initial conditions that reentrain through phase advance and phase delay

- Direct simulations of the FJK model match predictions of the entrainment map

Entrainment: Dependence on parameters

- Four factors are critically important for determining the phase of entrainment of a circadian oscillator:
- Endogenous period - the free running period of the oscillator in the absence of light input $-\tau_{\mathrm{c}}$
- Light intensity - measured in lux - I
- Photoperiod - the amount of light within a 24 hour day - N
- Dose-response exponent - p
- It's reasonable to expect that the phase of entrainment should vary as any one of these parameters is varied.
- We shall show how these parameters affect the speed of entrainment and, consequently, their effect on jet lag and BLT

Dependence of $\Pi(x)$ on endogenous period

- as τ_{c} increases, $\Pi(x)$ shifts up and to the left
- x_{s} moves to the right and x_{u} moves to the left
- as τ_{c} decreases the fixed points move in the opposite manner
- when τ_{c} becomes large or small enough, the fixed points merge at a saddle-node bifurcation
- implies loss of entrainment

Dependence of $\Pi(x)$ on light intensity

- As I increases, concavity of the map increases
- implies that higher light intensity reduces amount of time it takes oscillator to reentrain following a phase shift of the LD cycle

Jet lag due to east-west travel

- We computed, via direct simulation, reentrainment times for travelers making trips with all possible arrival times ($X=0$ to 24) and number of time zones traveled $(Z=-12$ to 12)
- $Z>0$ corresponds to traveling east
- $Z<0$ corresponds to traveling west

	Time Zones Traveled
䔍	12
	11
	10
	9
	8
	7
	6
	5
	4
	3
	2
	1
N	$\mathrm{z}=0$
$\begin{aligned} & \text { 荋 } \end{aligned}$	-1
	-2
	-3
	-4
	-5
	-6
	-7
	-8
	-9
	-10
	-11
	-12

Blue - NYC to Delhi arriving at 11PM HZT
Red - London to Seattle arriving at 1PM HZT

TRAVEL GRID

- Construct maps $\Pi_{x}(x)$ for each arrival time. By definition $\Pi_{16}(16)=16, \Pi_{6}(6)=6$
- Travel Z time zones (e.g. instantaneously)
- In the HTZ, with a new initial condition, entrain to the x_{s} of original map. $x_{0}=X+Z$ mod 24

Reentrainment: varying endogenous period

- HTZ arrival time of 1PM; $x_{s}=6$ after an 8 hour trips east or west.
- Note the role of the unstable fixed point x_{u}

Worst-case travel depends on endogenous period

- $\tau_{c}=24.2$-- typical clock, worst jet lag is for eastward trips of 10.5 time zones
- $\boldsymbol{\tau}_{\boldsymbol{c}}=24.6$-- slow clock, worst jet lag is for eastward trips of 7 time zones
- $\tau_{c}=23.8$-- fast clock, worst jet lag is for westward trips of 10.5 time zones
- $\tau_{c}=23.4$-- even faster clock, worst jet lag for is for westward trips of 6.5 time zones
we can explain these results using entrainment maps

Worst-case travel is determined by location of x_{u}

East-West asymmetry also depends on daylength

- Calculated reentrainment times by cobwebbing maps for eastward and westward trips of 10 time zones
- Colormap: (reentrainment time for $Z=-10)-($ reentrainment time for $Z=10)$
- East is worse, West is worse
 generalizes Petersen (1980)

East-west asymmetry is generic

- Approximated reentrainment times using first iterate of maps for eastward and westward trips of 6 time zones
- ODC $=$ orthodromy curve (x_{s} and x_{u} exactly 12 hours apart)

- Note potential seasonal dependence N

Conclusions about jetlag

- The extent of jetlag depends on one's intrinsic clock, the time of year (photoperiod), light intensity and the direction of travel.
- Trips that place an individual in the neighborhood of the unstable fixed point, result in the worst jet lag, but....
- But, under high intensity light, those trips can result in very short jetlag due to the "phaseless set" (Guckenheimer 1973)
- East-west asymmetry is generic; it must exist.
- See our 2018 paper for a cute "traveling diplomat" problem

Non-24 hour sleep-wake disorder

- Patients with this disorder are not able to entrain to the 24-hour cycle.
- They can spend several days in a nearly entrained stated but then many days in which their phase advances or delays relative to the LD cycle.
- Bright light therapy: Exposure to high intensity light for short amount of time
- Now we will use multilux maps in which the light level is different at different times of the day
- Lights on from 6AM to 11PM so $\mathrm{N}=17$
- $N=1$ (12) 4, $\mathrm{l}=100$ (1000) 100
- $N=1$ (12) 4, l=10,000 (1000) 100 Early morning BLT
- $N=1$ (12) 1 (3) , I= 100 (1000) 10,000 (100) Evening BLT

Reduction of light sensitivity causes non-entrainment

BLT works at different times for different endogenous periods

Conclusions about BLT

- For individuals with slow clocks,
- BLT administered in the morning is beneficial.
- BLT administered in the evening is non-effective
- For individuals with fast clocks,
- BLT administered in the morning is partially effective but causes $\mathrm{CBT}_{\text {min }}$ to occur mid day.
- BLT administered in the evening is beneficial
- Currently working on a model for BLT for depressive patients (Mainwaring, B, Diekman)

Social Jetlag

- Social jetlag refers to situations where individuals have very different sleep patterns on a few days of the week
- Most common one is to stay up late on weekends and sleep in late
- Another form is high school students who stay up late during the week and try to engage in "catch up sleep" on the weekends
- To model this cases, we need maps for each of the different sleep patterns

Focus on high school students Slow clock $\tau_{\mathrm{c}}=24.6$

- Teenagers should be sleeping 8-10 hours a night.
- Suppose teenagers sleep 6 hours 12AM-6AM Sunday-Thursday
- Assume 8 hours is normal, so loss of 10 hours of sleep
- Catch up sleep on Friday and Saturday of 10 hours (still -6)
- Does the timing of the catch up sleep matter?
- Should teenager go to sleep at 12AM and sleep to until 10AM?
- Or sleep at 8PM and wake up at 6AM, or something in between?
- Circadian misalignment: When weekday iterates of the map fall more than 0.5 hours away from the stable fixed point of the weekday map.

10 hours catch up sleep with different onset times

C

H sleep 12A-6A weekdays, 10P-8A weekends

L

Rule of thumb for minimizing misalignment

- Shift sleep and wake times forward and backward by $\left(\mathrm{N}_{\mathrm{wd}}-\mathrm{N}_{\mathrm{we}}\right) / 2$
- Mathematical reason has to do with distance between stable fixed points of the different maps

Conclusions about catch up sleep

- Getting more sleep on weekends in and of itself is not sufficient.
- Too much sleep at the wrong times does not help
\square Shifting the sleep and wake times appropriately is critical
- Korean school kids seem to follow the appropriate strategy compared to North American kids (Carskadon, 2011)

Summary

- Entrainment maps can explain and predict several features of reentrainment
- East/West jetlag asymmetry depends on both endogenous period and daylength
- whether endogenous period is >or <24 hours is not the critical factor
- Appropriately timed Bright Light Therapy can be therapeutic for non-24 sleep-wake disorder or Seasonal Affective Disorder
- Catch up sleep can be timed to minimize circadian disruption
- Several open mathematical questions exist regarding the role of unstable objects in the phase space and how they organize dynamics
- Future Work
- BLT for depression patients (ongoing with Mainwairing and Diekman)
- Incorporate sleep/wake dynamics (see work by Booth, Diniz-Behn)
- Peripheral oscillators in other organs and phase tumbling (ongoing with Liao and Diekman)

