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Outline
q New approach to studying entrainment using a one-

dimensional map
q Analyze the Kronauer model for human circadian 

rhythm
q Application to jet lag: Why is there an asymmetry in 

recovery between east and west travel?
q Application to non-24 hour sleep wake disorder: non-

entrainment and Bright Light Therapy
q Application to social jetlag: Can one engage in catch up 

sleep to minimize disruption?
q Timing matters!
q Mathematical modeling reveals some unexpected 

findings and leads to the exploration of new dynamic 
phenomenon.



A Nobel Prize winning example!

q Protein  and mRNA levels in fly clock gene: 2017 Nobel prize 
winning work of Hall, Rosbash & Young (1984). schematic [Isaacson, 2013]

q Here the intrinsic or endogenous period of mRNAs and proteins is 
longer than 24 hours.

q How does this oscillation change as a function of light-dark input?
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A whole body example

q Core body temperature rhythms [Lericollais et al, 2013]

q Note CBT-min occurs early in the morning and is a reliable maker 
of the phase of entrainment.
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Central Questions

q How does entrainment of a circadian oscillator to a 24 hour light-
dark cycle depend on intrinsic parameters of the oscillator and 
external parameters associated with the LD forcing?

q What determines the phase of locking?

q Is the East-West asymmetry of jet lag “generic”? 

q How does the timing of bright light therapy affect the ability to 
entrain?

q Is “catch-up sleep” always beneficial?



Phase-locking due to periodic forcing

q This type of problem has been extensively studied in a 
variety of contexts; see work of Art Winfree who pioneered 
the study of biological clocks.

q Keener et al 1981, Bressloff 1992, Coombes & Owen 2003, 
Laing & Longtin 2003, Medvedev & Cisternas 2004 …. many 
more

q Circadian literature: Kronauer’s group 1990s-, Ronnenberg’s 
group 2000s-, Goldbeter’s group 2000s-, Herzel’s group 
2000s-, Peskin and Forger 2003, 2004…many more

q Phase-locking described either through Arnold Tongue 
structure or Devil’s Staircase (Denjoy’s Theorem for Circle 
Maps)

q We will be interested in the existence and stability of  1:1 
phase locked solutions, and how long it takes to entrain to 
them.



Circadian oscillators

q Either in experiment or model, the oscillator can be subjected to 24 
hours of constant darkness DD, constant light LL, or a 
combination of both LD, with a prescribed photoperiod  

q These limit cycles will lie in different locations in phase space and 
presumably have different properties for attraction towards them 
(think: stable-unstable manifolds)

q Ultimately, it is attraction of (not necessarily nearby) initial 
conditions to the LD limit cycle we are interested in, and as such 
we need a method to assess  “global” attraction. 

Two “unforced” limit cycles (Petersen, 1980) and one LD 
entrained limit cycle
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Forger - Jewett - Kronauer (FJK) model
q fit to experimental data on how light affects human circadian rhythms

l core body temperature (C)

l auxiliary variable (A)

l phototransduction pathway through which light drives the circadian system (n)

q B -- circadian modulation of the oscillator's sensitivity to light
q τc -- determines the period of the oscillator in constant darkness 
q I -- intensity of light 
q p– dose response exponent
q f(t) -- light stimulus

– For example, I don’t think that the local minimum we observe is actually exactly at
the unstable fixed point, I remember seeing that it is close to but not right at xu. Is
it always o↵set in a consistent direction? If it is always o↵set in a consistent direction,
does that mean that the “worst case” trip is always o↵set a little bit on the other side of
xu? Does the side of xu that the local min or worst-case trip falls on have anything to
do with ortho- versus anti-dromic entrainment? not sure about the o↵set, also not sure
if side of xu has anything to do with it. is it too esoteric a question?

– More generally, is there anything intrinsically slower or faster about antidromic entrain-
ment compared to orthodromic entrainment per se, or are entrainment times determined
by other factors and anti/ortho is just a secondary e↵ect rather than a cause of long/short
re-entrainment? i would argue for other factors and anti/ortho is a secondary e↵ect

Abstract:

1 Introduction

2 Model and Methods

2.1 The Forger, Jewett, and Kronauer (K3D) model

The K3D model Forger et al. (1999) for the human circadian rhythm utilizes a van der Pol type
oscillator and is based on prior models of Kronauer and collaborators Kronauer (1990); Jewett and
Kronauer (1998). It is a three-dimensional model given by
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The variable C represents core body temperature, A is a phenomenological auxiliary variable, and
n models the phototransduction pathway through which light drives the circadian system. The
variable B captures circadian modulation of the oscillator’s sensitivity to light. All parameter
values are positive. In particular, ⌧c determines the period of the oscillator in constant darkness, I
codes for the intensity of light, and µ is a sti↵ness parameter that is related to the rate of amplitude
growth or decay after the oscillator is perturbed o↵ of its limit cycle.

The function f(t) is the light stimulus. We are interested in three distinct situations: constant
darkness (DD), in which we set f(t) ⌘ 0; constant light (LL) in which f(t) ⌘ 1 and a 24-hour
light/dark (LD) photoperiod in which the lights are on for N hours and o↵ for 24 � N hours.
During light f(t) = 1, while during darkness f(t) = 0. In constant darkness, n ! 0 and B = 0,
while in constant light n ! ↵(I)/(↵(I)+�. Since � is chosen to be small, n is very close to 1 under
LL conditions.
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Forger, Jewett, and Kronauer (1999)



FJK phase plane for DD, LL and LD

q The DD limit cycle has a period of τc, the period of LL is less. The 
LD entrained solution has a period of 24 hours.
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The nullcline NA is cubic shaped curve in the projection onto the A�C space, while NC is simply
a vertical line in that space. During DD conditions, B = 0, and NA and NC intersect along the
middle branch of NA. This intersection corresponds to an unstable fixed point. Surrounding it is a
stable periodic orbit, referred to as the DD limit cycle. The prefactors ⇡/12, 0.99669 and the value
of µ = 0.23 were chosen such that the period of this limit cycle is very close to ⌧c hours Forger et al.
(1999). Note that value of the roots of NA are A = 0,±

p
3/2 indepenent of ⌧c. Increasing ⌧c makes

the A-nullcline have steeper left and right brances. This results in a decrease in the amplitude of
dA/dt, thereby slowing down oscillations. As a result, the intrinsic period of the DD oscillator is
an increasing function of ⌧c. Under LL conditions, although n is constant, B depends on A and C.
Using equation (2), and substituting into equation (4), yields a monotone increasing NC nullcline,
that continues to intersect NA along its middle branch. As a result, a LL limit cycle also exists.
The period of the LL limit cycle is less than ⌧c hours. The LL period is also an increasing function
of ⌧c for the same reasons that the DD period is.

When the model is considered under LD conditions, depending on parameters, a periodic solu-
tion may exist. When it does, we call it a LD-entrained solution. The period of the LD-entrained
solution matches that of the LD forcing and is thus 24 hours. Below, we will discuss the properties
of the LD-entrained solution and how they depend on light intentsity I, the duration N of light in
the photoperiod and the intrinsic DD period ⌧c.

2.2 The Entrainment Map ⇧(x)

Poincare sections of the K3D model are two-dimensional. Both in theory and in practice, we have
freedom to choose the section location provided that we know that a trajectory starting on it will
return to it later in time. Because the K3D model uses a van der Pohl type oscillator, we have
considerable knowledge of how trajectories evolve in phase space. For the sake of illustration, choose
the Poincare section, P, at A = 0, with A0 < 0, which yields a rectangle in the C and n space.
Assume that an oscillator has an initial condition that lies on P with n = 1 and the C value chosen
as the value at the intersetion with the DD limit cycle. Let x denote the number of hours since the
lights last turned on. Evolve the trajectory under the flow until it again returns to P. Call this
time ⇢(x). The entrainment map ⇧(x) is defined as the amount of time that has passed since the
most recent onset of the lights. In Diekman and Bose (In Press), we showed that ⇧(x) = x+ ⇢(x)
mod 24 which is a one-dimensional map. The entrainment map has certain generic properties: it
maps the interval [0,24] onto itself, it has at most one point of discontinuity, it is increasing at each
point of continuity and it is periodic in that ⇧(0+) = ⇧(24�). Moreover, it depends continously on
the important parameters of interest, I, N and ⌧c.

A fixed point x⇤ of the entrainment map satisfies ⇧(x⇤) = x⇤. It corresponds to the situation
where the trajectory has left P x⇤ hours after the lights turned on, and then returns to P exactly
24 hours later when the lights have again most recently turned on x⇤ hour ago.The fixed point is
stable if |⇧(x⇤)| < 1 and unstable otherwise. We will show that over a wide range of parameters,
there are typically two fixed points, xs which is stable, and xu which is unstable. These fixed points
indicate the existence of corresponding stable and unstable LD-entrained solutions. I don’t think
we want to go into this: Note that the fixed points of the map do not exactly correspond to the
existence of periodic solutions. Along P there are the two unknowns C and n start with specific
initial conditions as described above. The additional unknown, x, is what the entrainment map
tracks. When we measure ⇧(x) we only check that the trajectory has returned in phase space to
P, but not necessarily to the initial C and n values from which it started. This is why fixed points
of ⇧(x) do not correspond exactly to periodic solutions. However, this does not cause any practical
issues in locating actual period solutions for the full set of equations.

3
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DD, LL, and LD limit cycles ⌧c = 24.2, N = 12, I = 1000
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[PERppnTIMppnCLKpn] = ⇣p[PERppn][TIMppn � zetam[PERppnTIMppnCLKpn]

� �4xn[PERppnTIMppnCLKpn]
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The map and its properties

P(x) is piecewise increasing, 
piecewise continuous and 
periodic

It has a stable and unstable fixed 
point and at most one point of 
discontinuity

The map depends continuously 
on parameters

Mathematical Aside: Border 
collision bifurcations (Yorke et al, 
90s)

The corresponding stable and 
unstable periodic orbits from the 
Novak-Tyson model
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Dynamics of the entrainment map
q Cobwebbing the entrainment map

l 𝑥!	separates initial conditions that reentrain through phase advance and phase delay

q Direct simulations of the FJK model match predictions of the entrainment map
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Entrainment: Dependence on parameters

q Four factors are critically important for determining the phase of 
entrainment of a circadian oscillator:
l Endogenous period – the free running period of the oscillator in the 

absence of light input - τc
l Light intensity – measured in lux – I 

l Photoperiod – the amount of light within a 24 hour day – N 

l Dose-response exponent - p

q It’s reasonable to expect that the phase of entrainment should 
vary as any one of these parameters is varied.

q We shall show how these parameters affect the speed of 
entrainment and, consequently, their effect on jet lag and BLT
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Dependence of 𝚷(𝒙) on endogenous period

q as 𝜏" increases, Π 𝑥  shifts up and to the left 
l 𝑥! 	moves to the right and 𝑥"	moves to the left

q as 𝜏"	decreases the fixed points move in the opposite manner
q when 𝜏" becomes large or small enough, the fixed points merge at a saddle-node bifurcation

l implies loss of entrainment
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q As 𝐼 increases, concavity of the map increases

l implies that higher light intensity reduces amount of time it takes oscillator to reentrain 
following a phase shift of the LD cycle



Jet lag due to east-west travel
q We computed, via direct simulation, reentrainment times for travelers making trips with all 

possible arrival times (X = 0 to 24) and number of time zones traveled (Z = -12 to 12)
l Z > 0 corresponds to traveling east

l Z < 0 corresponds to traveling west

16

Blue – NYC to Delhi arriving at 11PM HZT
Red – London to Seattle arriving at 1PM HZT

• Construct maps PX(x) for each arrival time. By definition P16(16)=16, P6(6)=6
• Travel Z time zones (e.g. instantaneously)
• In the HTZ, with a new initial condition, entrain to the xs of  original map. x0=X+Z mod 24



Reentrainment: varying endogenous period
q HTZ arrival time of 1PM; xs=6 after an 8 hour trips east or west.
q Note the role of the unstable fixed point xu
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q 	𝝉𝒄 = 24.2 -- typical clock, worst jet lag is for eastward trips of 10.5 time zones
q 	𝝉𝒄 = 24.6 --  slow clock, worst jet lag is for eastward trips of 7 time zones
q 	𝝉𝒄 = 23.8 --  fast clock, worst jet lag is for westward trips of 10.5 time zones
q 	𝝉𝒄 = 23.4 -- even faster clock, worst jet lag for is for westward trips of 6.5 time zones

18

Worst-case travel depends on endogenous period

we can explain these results using entrainment maps
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Worst-case travel is determined by location of 𝑥! 
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East-West asymmetry also depends on daylength

ADC10+

ADC10-

NPC10

q Calculated reentrainment times by cobwebbing maps for eastward and westward trips of 10 
time zones
l Colormap:  ( reentrainment time for Z = -10 ) – ( reentrainment time for Z = 10 )

l East is worse, West is worse

NPC = neutral period curve 
generalizes Petersen (1980)

ADC = antidromy curve
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East-west asymmetry is generic

ODC

NPC6

West worse than East

East worse than West

q Approximated reentrainment times using first iterate of maps for eastward and westward 
trips of 6 time zones

l ODC = orthodromy curve (𝑥$ and 𝑥! exactly 12 hours apart)

q Note potential seasonal dependence



Conclusions about jetlag

q The extent of jetlag depends on one’s intrinsic clock, 
the time of year (photoperiod), light intensity and the 
direction of travel.

q Trips that place an individual in the neighborhood of the 
unstable fixed point, result in the worst jet lag, but….

q But, under high intensity light, those trips can result in 
very short jetlag due to the “phaseless set” 
(Guckenheimer 1973)

q East-west asymmetry is generic; it must exist. 
q See our 2018 paper for a cute “traveling diplomat” 

problem
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Non-24 hour sleep-wake disorder

q Patients with this disorder are not able to entrain to the 24-hour 
cycle. 

q They can spend several days in a nearly entrained stated but then 
many days in which their phase advances or delays relative to the 
LD cycle. 

q Bright light therapy: Exposure to high intensity light for short 
amount of time

q Now we will use multilux maps in which the light level is different at 
different times of the day

l Lights on from 6AM to 11PM so N=17

l N = 1 (12) 4, I= 100 (1000) 100

l N= 1 (12) 4, I= 10,000 (1000) 100 Early morning BLT

l N= 1 (12) 1 (3) , I= 100 (1000) 10,000 (100) Evening BLT

23



Reduction of light sensitivity 
causes non-entrainment
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BLT works at different times for different 
endogenous periods

25
Slow clock τc =24.7 Fast clock τc =23.5

NO 
BLT

AM 
BLT

PM 
BLT



Conclusions about BLT

q For individuals with slow clocks, 

l BLT administered in the morning is beneficial. 

l BLT administered in the evening is non-effective

q For individuals with fast clocks, 

l BLT administered in the morning is partially effective 
but causes CBTmin to occur mid day. 

l BLT administered in the evening is beneficial

q Currently working on a model for BLT for depressive 
patients (Mainwaring, B, Diekman)
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Social Jetlag
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• Social jetlag refers to situations where individuals 
have very different sleep patterns on a few days of 
the week

• Most common one is to stay up late on weekends 
and sleep in late

• Another form is high school students who stay up 
late during the week and try to engage in “catch up 
sleep” on the weekends

• To model this cases, we need maps for each of the 
different sleep patterns



Focus on high school students 
Slow clock τc =24.6

q Teenagers should be sleeping 8-10 hours a night.

q Suppose teenagers sleep 6 hours 12AM-6AM Sunday-Thursday
q Assume 8 hours is normal, so loss of 10 hours of sleep
q Catch up sleep on Friday and Saturday of 10 hours (still -6)

q Does the timing of the catch up sleep matter?
q Should teenager go to sleep at 12AM and sleep to until 10AM?
q Or sleep at 8PM and wake up at 6AM, or something in between?

q Circadian misalignment: When weekday iterates of the map fall 
more than 0.5 hours away from the stable fixed point of the 
weekday map. 
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10 hours catch up sleep with 
different onset times

29



Rule of thumb for minimizing misalignment 

30

• Shift sleep and wake times forward and backward 
by (Nwd- Nwe)/2

• Mathematical reason has to do with distance 
between stable fixed points of the different maps



Conclusions about catch up sleep

q Getting more sleep on weekends in and of itself is not sufficient.
q Too much sleep at the wrong times does not help
q Shifting the sleep and wake times appropriately is critical

q Korean school kids seem to follow the appropriate strategy 
compared to North American kids (Carskadon, 2011)
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Summary

q Entrainment maps can explain and predict several features of reentrainment
l East/West jetlag asymmetry depends on both endogenous period and daylength

§ whether endogenous period is > or < 24 hours is not the critical factor

l Appropriately timed Bright Light Therapy can be therapeutic for non-24 sleep-wake 
disorder or Seasonal Affective Disorder

l Catch up sleep can be timed to minimize circadian disruption

q Several open mathematical questions exist regarding the role of unstable objects 
in the phase space and how they organize dynamics

q Future Work

l BLT for depression patients (ongoing with Mainwairing and Diekman)

l Incorporate sleep/wake dynamics (see work by Booth, Diniz-Behn) 

l Peripheral oscillators in other organs and phase tumbling (ongoing with Liao 
and Diekman)


