Fibonacci or Quasi-symmetric?
 Simulating and detecting plant patterns

Christophe Golé

Mathematical Sciences department, Smith College

ICERM; June 13, 2023

Thank you!

Work with:
Halley Wilkinson, Chelsea Fowler, Amelia Tarno, Emi Neuwalder, Yuhan Wang, Evelyn Gao (student picture)
Elaine Demetrion, Annie Karitonze, Maggie Hollis, Adara Williams, Xiaoman Xu, Yunxi Yan (students not shown, and many others...) and Robin Belton (postdoc, picture), Stéphane Douady (Physics, CNRS Paris, France, not shown), Jacques Dumais (Biology, UAI Chile)

- Fibonacci sequence:

$$
F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=1, F_{1}=1
$$

- Fibonacci sequence:
$F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=1, F_{1}=1$
- Fibonacci like sequence:
$F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=$ some $\#, F_{1}=$ another $\#$

- Fibonacci sequence:
$F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=1, F_{1}=1$
- Fibonacci like sequence:
$F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=$ some $\#, F_{1}=$ another $\#$
- Example:

$$
\overline{F_{0}=1, F_{1}}=3 \text { gives } 1,3,4,7,11,18 \cdots \quad \text { (Lucas sequence) }
$$

- Fibonacci sequence:

$$
F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=1, F_{1}=1
$$

- Fibonacci like sequence:
$F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=$ some $\#, F_{1}=$ another $\#$
- Example:

$$
F_{0}=1, F_{1}=3 \text { gives } 1,3,4,7,11,18 \cdots \quad \text { (Lucas sequence) }
$$

- Example:

$$
\overline{F_{0}}=2, F_{1}=2 \text { gives } 2,2,4,6,10,16 \cdots \quad \text { ("bijugate phyllotaxis") }
$$

- Fibonacci sequence:

$$
F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=1, F_{1}=1
$$

- Fibonacci like sequence:
$F_{n+1}=F_{n}+F_{n-1}, \quad F_{0}=$ some $\#, F_{1}=$ another $\#$
- Example:

$$
\left.F_{0}=1, F_{1}=3 \text { gives } 1,3,4,7,11,18 \cdots \quad \text { (Lucas sequence }\right)
$$

- Example:

$$
\bar{F}_{0}=2, F_{1}=2 \text { gives } 2,2,4,6,10,16 \cdots \quad \text { ("bijugate phyllotaxis") }
$$

- Classical phyllotaxis classification puts all plants in some Fibonacci like sequence. Most plants satisfy this but not all...

The "divergence" angle between successive organs often approaches the golden angle:

$$
137^{\circ} .51=360^{\circ} \lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n+2}}
$$

Fun fact: Divergence near the golden angle \Rightarrow Fibonacci phyllotaxis. But the converse is not true!

Biology

Hofmeister (1868): Primordia (nascent organs) form in the in the largest place left by previous ones around the meristem (growing tip)

Biology: Hofmeister confirmed

(around year 2000)

- Diffusion of growth hormone auxin amplified by Pin protein

Biology: Hofmeister confirmed

(around year 2000)

- Diffusion of growth hormone auxin amplified by Pin protein
- New primordia pump the auxin around them to form vasculature

Biology: Hofmeister confirmed

(around year 2000)

- Diffusion of growth hormone auxin amplified by Pin protein
- New primordia pump the auxin around them to form vasculature
- Primordia of roughly equal size form away from the newest ones, when there is enough auxin

Questions

- Why Fibonacci phyllotaxis?
- What happens when it fails?
- How to analyze plant data more systematically?

Leonardo: first classification

 ser (mancorpes) floor nim bis 0 ?? oren (a) effort ritard on of
 (See possible clue in "Do Plants Know Math?", PUP 2024)

Bonnet/Calandrini (1754): first bio-math collaboration?

Turing : first computer experiments (1951-54)

Turing's computer simulation of Phyllotaxis (with Reaction-Diffusion PDE?)

Math-Physics-Computer models 1977-now

Math-Physics-Computer models 1977-now

- PDE: Continuation of Turing's idea of reaction-diffusion (Meinhardt et. al., Newell-Shipman, etc.)

Math-Physics-Computer models 1977-now

- PDE: Continuation of Turing's idea of reaction-diffusion (Meinhardt et. al., Newell-Shipman, etc.)
- Threshold models (Veen-Lindemeyer, Douady-Couder, Rothen et. al. etc.):
(1) Points on a cylinder are centers of inhibition potentials decaying with distance
(2) Points move down on the cylinder
(3) New points emerge at the top when/where the potential is low enough.

Math-Physics-Computer models 1977-now

- PDE: Continuation of Turing's idea of reaction-diffusion (Meinhardt et. al., Newell-Shipman, etc.)
- Threshold models (Veen-Lindemeyer, Douady-Couder, Rothen et. al. etc.):
(1) Points on a cylinder are centers of inhibition potentials decaying with distance
(2) Points move down on the cylinder
(3) New points emerge at the top when/where the potential is low enough.
- "Fixed plastochrone" models (Douady-Couder, Golé et. al. etc.):

Same as threshold model except points move down a definite amount before placing a new point.

Math-Physics-Computer models 1977-now

- PDE: Continuation of Turing's idea of reaction-diffusion (Meinhardt et. al., Newell-Shipman, etc.)
- Threshold models (Veen-Lindemeyer, Douady-Couder, Rothen et. al. etc.):
(1) Points on a cylinder are centers of inhibition potentials decaying with distance
(2) Points move down on the cylinder
(3) New points emerge at the top when/where the potential is low enough.
- "Fixed plastochrone" models (Douady-Couder, Golé et. al. etc.):

Same as threshold model except points move down a definite amount before placing a new point.

- Modeling at the cellular level (Prusinkiewicz et. al. etc.)

Limitations of these models

- Focus on constant divergence angle and lattices

Limitations of these models

- Focus on constant divergence angle and lattices
- Counting spirals is not computer friendly (transitions)

Limitations of these models

- Focus on constant divergence angle and lattices
- Counting spirals is not computer friendly (transitions)
- Explanation of Fibonacci predominance relied on lattices

Going back in 1868: Disk stacking

Going back in 1868: Disk stacking

What about Fibonacci? Elaine Demetrion and Emi Neuwalder's app

Fronts: in real plants too!

${ }^{1}$ A front captures the geometry of organs morphogenesis.

[^0]
Fronts and parastichies

Front: zigzagging line between a point P and its copy P^{\prime} one full rotation away, joining neighboring organs, as high as possible below segment PP'.

Fronts and parastichies

Front: zigzagging line between a point P and its copy P^{\prime} one full rotation away, joining neighboring organs, as high as possible below segment PP'. Numbers of parastichies $=8,5=$ number of front segments $=8,5$

Fronts and parastichies

Quasi-symmetric: front parastichy numbers are close to one another. Their ratio is close to, but statistically not equal to 1 .

Why Fibonacci?

Figure by van Iterson (1907)
Transitions occur when the ratio:
$\mathrm{b}=$ (disk radius) $/($ cylinder circumference $)$
decreases.

Why Fibonacci?

Front parastichy numbers: 5, 3: 5 up vectors; 3 down vectors

Why Fibonacci?

- Quadrilateral transitions \rightarrow still 5, 3

Why Fibonacci?

- Quadrilateral transitions \rightarrow still 5, 3
- But vectors are more horizontal!

Why Fibonacci?

5 up vectors $\rightarrow 5$ up vectors +5 down vectors
(Triangles occur on up vectors, because they're flatter since more numerous here).

Why Fibonacci?

Hence Fibonacci rule:

$$
5,3 \rightarrow 5,3+5=8
$$

Why Fibonacci?

Monotone Fibonacci: P. \# increase 1 at a time, F_{n} to F_{n+2}.

Why Fibonacci?

Fibonacci transitions in ornamental cabbage

Quasi-symmetry in simulations \& Peace lilly

a Iterates 1-200

Universe of plants partitioned

Simulations with decreasing radius, starting with $(1,1)$ front. The non Fibonacci-like patterns tend to be QS.

Stats on Magnolia flowers buds

Stats on Skunk Cabbage

150

Histogram of ratios of 450 front parastichy numbers

Quasi symmetric: Corn, strawberries, raspberries, peace lilly, skunk cabbage, banksia...

TDA Teaser

Hexagon is the parameter space of 3-fronts, colored by TDA distance between the orbit of each 3-front and its limiting rhombic tiling.

Thank you!

[^0]: ${ }^{1}$ Picture of picea by R. Rutishauer, Zurich

