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Amyloid-capillary dynamics in Alzheimer’s

Andrew Ahern (Oxford)

Review of general methodology
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Amyloid-capillary dynamics in Alzheimer’s

Andrew Ahern (Oxford)

Amyloid & capillaries
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GEOMETRIC ALGEBRA APPROACHES TO PROTEIN-PROTEIN DOCKING

AZZAM ALFARRAJ, GUO-WEI WEI

What is protein-protein docking?

Predicting the preferred orientation of interactive
proteins, when they are bound to form a stable
complex.

Computational methods
Sampling billions of putative complex structures.

Computationally expensive, using rotations and
translations extensively.

Why geometric algebra?

Efficient acceleration is achieved in either the
rotational or the translational subspace.

Geometric algebra overpasses in performing
operations in a far more compact and efficient
way, especially rotations here.

Maxwell’s Equations in GA:

VxH = J+0D/ot
VxFE = —0B/ot

V-D = (
V-B = 0 )

Rotation in GA
b= RaR™’
R = RyRyRy
_ 6—612¢/2€—6230/2€—612¢/2

VF=J



RESULTS OF ENZYME—INHIBITOR TUDI:

Execution Time:

GA time: 5 min 42 sec
0 -880.01 -880.01 0 305 303 EMET fime: 6 min 31 sec
1 -876.91 -843.87 1 205 214
2 -843.87 -841.74 2 120 89

3 -841.74 -826.94 3 94 61




Evolutionary de Rham Hodge method
Jiahui Chen Michigan State University

Artificial intelligence (Al) has emerged as a new paradigm for scientific discovery. However, Al
modeling of biological data remains a challenge due to their intricate structural complexity,
excessively high dimensionality, severe nonlinearity, and intrinsic multiscale. We devise
differential geometry and algebraic topology to address these challenges. Specifically, we utilize
persistent homology, a main workhorse in topological data analysis (TDA), to simplify
biomolecular structure complexity and reduce their dimensionality. Since persistent homology
is insensitive to homotopic shape evolution, we developed persistent Laplacians to capture non-
topological shape changes in data by their non-harmonic spectra. For volumetric data, like
molecular electron density of proteins, we proposed an evolutionary de Rham-Hodge method
to extend the traditional Hodge Laplacian to a multiscale formulation. We introduced boundary-
induced graph Laplacians to further reduced computational complexity. These new
mathematical tools are paired with advanced machine learning algorithms, such as ensemble
learning, manifold learning, graph neural networks, and transformers, to reveal the mechanisms
of SARS-CoV-2 transmission and evolutions via infectivity strengthening and antibody resistance.



W A Lesson learned from modeling Listeriosis of RTE food products Yol

WAKE FORIST C.W. Chukwu and F. Nyabadza

Introduction

Listeria is a Gram-positive facultative_}y anaerobic bacillus which was discovered by E.G.D. Murray in
1924, and in 1926, 1t was finally classified as Listeria monocytogenes [1]

Ready-to-eat food (RTE) are foods that the producers intend for direct human consumption without
furtlh%r preparation. Some examples of RTE food products that have been linked to causing Listeriosis
includes

polony, vegetables, dairy products, smoked fish and cooked shellfish, unpasteurized milk, cheeses,
sausages, hot dogs, deli meats.

Cross-contamination is the process by which bacteria/microorganisms with harmful effects are
unlr&tentt_lonally transferred from one substance or object to another, for example, during RTE
production.

Human Listeriosis is a zoonotic disease that results from consuming contaminated RTE food products.

Motivation

Motivated by the work done in [2] and the recent outbreak of Listeriosis in South Africa in 2017/2018 with
1049 confirmed cases and been one of the world's most significant Listeria outbreaks. Nonetheless, sporadic
Listeriosis outbreaks have also been recorded in other parts of the world including Canada, Europe, USA,
and so on.
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Modeling
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The model exhibited three steady states: the disease-free
equilibrium, Listeria-free, and endemic equilibrium points.
Solving the steady states we found the Contamination
Thresholc 38

wf= “‘F[“u' T 'in:'].

Results

The results show that reducing the number of contaminated
workers and removing contaminated food products are essential in
eliminating the disease in the human population.
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The circadian clock, downstream physiology, and feedback
Ruby Kim, University of Michigan

Light-induced activation
Cell of SCN prevents the
production of melatonin
. “modified” by pineal gland
Input gene —» mRNA — protein —> protein Output
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Tracing and Forecasting Metabolic Indices of Cancer Patients Using Patient-
Specific Deep Learning Models

Jianguo Hou'?, Jun Deng?, Chunyan Li?, Qi Wang?
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Introduction One-Step Prediction

Digital twin is comprised of three components: the physical (source) . owestwewedwsooms Crostnie ot eatve L1 oss=0. 00681
product in the physical space, the digital representation of the physical " b
product in the virtual environment, and connections between the two-data S
and information flowing between the physical and digital products.
Goal:
= Develop a data-driven, patient-specific Al-enabled deep learning model M o R P TN L LY
= To monitor, track, and predict a cancer patient's health states reflected e T ST e
through the metabolic panel from the patient medical records o Giness o T

Significance: B - 5006506 G075
It Is expected to be used by physicians x/\/\N Auion Gap oL 005019
= To predict the patient's treatment outcome trajectory Clloride 0.002267 O.I0T395
* To reduce the treatment-related adverse effects in the short term | P | [Potassium 0.01273 0.02356

. . . . . 0 100 200 300 400 500 600 700 Calcium 0.002098 0.005678
= To improve the quality of life of the cancer patient in the long term

Problem Set Up Multi-Steps Prediction

Question: For a given time series {x;}7—; how to learn the underlying _ ucostest e 1 os=00327 o BUNestreatie L oss=007456 et 0 sm0oi
dynamic system to make predictions for future using neural network? “ | _ d TN _ |

® initial data

Assumption:

= We assume there exists a self-sustained dynamical system such as
the metabolic system in any human body. A\ 7 N e W

= Any metabolic panel taken from a patient at a given time point would O S P e e T A b

Glucose

0.5 = et e ettt et sk e |
100

provide a glimpse of the state of the subsystem at that time. S e

. . . . . . . average [, error L=1 L=2 L=3 L=4
= With sufficiently collected time series longitudinal data, one would be o Goptont et seonioms =1 0.01350 | 0.01700 | 0.02355 | 0.02905
able to establish a fairly reasonable dynamical system model to — I B e R
I I I l I T=4 0.01251 0.03118 0.04020 0.04209
describe the underlying dynamics within the subsystem. ! 00151 | 0.03118 | 002030 1004309

Idea: largest relative Lo error | L=1 L=2 L=3 L=4
. . . T=1 0.1141 0.09797 0.1077 (0.1464
We use the LSTM RNN as the framework to build the patient-specific i T 0.0076 [ 0.2665 | 02750 | 0.268%
discrete dynamical system using longitudinal data of the cancer patient’s PSR — L R R L R
’ T T=5 0.09047 | 0.4020 | 0.3737 | 0.2987

metabolic panel to capture transient dynamics underlying the time series

data. | :
@ Real World ¢ Digital Twin f__11 ]H Dvnamical Tra.n Sfe r Learn I n g

| =2 0101 System

==on Glucose, test relative L1 loss=0.00349 BUN.test relative L1 10s5=0.02795
140 - — preald |4 — —real e
— pre — pred . .
*  Glucose *  Glucose 1 o = e ns One-step prediction
= = training-test boundary raining-test boundar -
. Data © BUN * BUN DiosnosE : - model with transfer
. _/—\ __/h\ = » Creatinine » Creatinine g1 .y . .
Tl Time | | Soof A : learning for patient
Digital Thread * Anion Gap * Anion Gap ] . .
[ e " . - 90
= 8 . co. . co. Prognosis ! SCC with time step
«  Chloride - Chloride o ] T=2.
. : 0 200 400 600 800 0 200 400 600 800
*  Sodmm *  Sodmm . Time Time
Optimal
* Potassium » Potassium treatment Creatinine test relative L1 loss=0.04829 Anion Gap test relative L1 loss=0.04089
. : strate Wwr—mea T n e e mmmmem e —m g emm e e am e e e e m e
* Calcium *  Calcium &Y Nl S Tndex ESK MS PII SCC
—:- lower bound Glucose 0.04450 0.04435 | 0.03049 | 0.003183
0.8 4 training-test boundary

BUN 0.04611 0.3267 0.08600 | 0.008891
Creatinine 0.02308 0.05583 | 0.04714 0.01645
Anion Gap | 0.01515 0.04435 | 0.05260 | 0.002854

CO2 0.004182 | 0.02860 | 0.02141 | 0.001285

® initial data

G

Chloride | 0.0008751 | 0.009741 | 0.006651 | 0.0002089

g g
E
§ 0.6 5 R
5 £
=T
0.5 _

0.4 W Sodium 0.0003999 [ 0.00654 | 0.002817 | 3.474e-05
03 4 P(_)t.assium 0.005959 | 0.06521 | 0.02623 | 0.0004617
One-step predlction LSTM mOdeI 0_2_6 - 4%% - - : = 4i0 - - Calcium 0.002123 | 0.01572 | 0.008822 | 0.0009209

2V = [z1,20, 7] y" = Tp 1, Xi | X2 | oo | X | Kred|Xreo|Xews| oo | oo | X,

2 _ @ _ 5 ! ' ]
v We have developed a discrete dynamical system model for the
2= ey, &1, Tr 1],y = Tron e metabolic panel of a cancer patient using the LSTM recursive neural
1 RNz e network architecture. The patient-specific model can be used to make
Loss = W; 9 ' T e short term predictions in one step with relative errors consistently less
) than 10% in the absolute value and much less than it in an average
Multi-steps prediction LSTM model sense. It can be applied to make multi-step predictions with a slightly
2= [@1,@, - ,27], elevated error level (i.e., relative error less than 11% in three steps and
e e N e N SN S 15% in four steps. Using four additional cancer patients’ metabolic
7 | v \/ B panel, we show that the_ patient specific LSTM mc_)del can b_e callbrated
v O T i : through transfer learning _to .other cancer patlgnts. This modeling
o Y TH2y 5048 T L LD platform has a great potential in shaping digital twin models for cancer
...... patients.
Hthn, y™ 2 = [Zn, 2N 1y T v 1],
y(N): (Zr4 v, TrN41, Tr e N+ D—1] Publication
N , _I—Io_u, Jianguo, Jun D_eng, Chgnyan L| and Qi_ Wang. "Tracing and forecasting metabolic
Loss — % Z Z fﬂp+t—1+sg—. ;p+t1+s|| 2 indices o_f cancer pa_ltlents using patient-specific deep learning models." Journal of
=1 p—1 personalized medicine 12, no. 5 (2022): 742.
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Prolonged viral shedding from noninfectious individuals
confounds wastewater-based epidemiology

Tin Phan - Los Alamos National Laboratory

ICERM — Mathematical and Computational Biology
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Machine learning-assisted protein engineering
Yuchi Qiu
Department of Mathematics,
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Machine learning for protein engineering

Protein engineering Step 1: predict protein function Step 2: optimize protein function
optimizes protein and its TopFit CLADE
functions. 513* = arg max f(x),
Applications: | el s,
* Agriculture A ‘ aldaton
e Pharmaceutical ’ |
* Etc. l
. Protein functions?
vf\x
Cill v * Deep protein language models _ ,
A (e.g., Transformer) Deep/machine learning
C.2 * New topological data analysis * NLP models
os method e Zero-shot strategy

* Unsupervised clustering

(persistent spectral Laplacian) .
 Ensemble regression

Nature Computational Science, 2023 Nature Computational Science, 2021
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Abstract

This poster presents an efficient finite element solver for computing a
linear finite element solution of a nonuniform size-modified
Poisson-Nernst-Planck ion channel model, denoted by SMPNPIC. It
includes a damped iterative method and a software package workable
for an ion channel protein crystallographic structure and an ionic
solution with multiple species. In particular, mathematical
transformation, decomposition, and iteration techniques are developed
such that a SMPNPIC finite element solution can be found by only
solving linear boundary value problems and nonlinear algebraic
systems, totally avoiding the numerical difficulties caused by the strong
nonlinearities, un-symmetric forms, and singularity of SMPNPIC.
Numerical results for a voltage-dependent anion channel (VDAC) and
a mixture of four ionic species demonstrate the convergence and
performance of the damped iterative method.

Dr. Dexuan Xie (UWM, WI) PNP lon Channel Models 06/13/2023 2/1



Size-modified Nernst-Planck equations in steady state

n
. 72 vive(r)
VD, [ Vei(r) + Ziei(r)Vu(r) + V’C,(r)’*ni =0, reDs, i=1,2,...,n,
01—y 2 vi6i(r)
j=

which is reduced to the classic Nernst-Planck equations:
V-Di[Vci(r) + Zici(r)Vu(r)] =0, reDs, i=1,2,...,n,
Is strongly coupled together, making them difficult to solve numerically.

We overcome this difficulty by developing techniques of mathematical transformation,
function decomposition,and
numerical iteration
so that we can get a numerical solution by only solving

linear boundary value problems,
pus & System of nonlinear algebraic equations!

Dr. Dexuan Xie (UWM, WI) PNP lon Channel Models 06/13/2023
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