How mathematical AI is transforming biosciences

Guo-Wei Wei
Mathematics
Michigan State University
http://www.math.msu.edu/~wei ICE「ா

Mathematical and Computational Biology Jun 12-16, 2023

Research partnershins:

Grant support: NIH, NSF, NASA, Pfizer, BMS, MEDC, Georgetown U, COVID-19 HPC Consortium, MSU Foundation, and MSU iCER

Four paradigms of scientific research

Challenges of AI in biomolecular systems

- Geometric dimensionality: $\mathbb{R}^{3 N}$, where $\mathbb{N} \sim 5000$ for a protein.
- Machine learning dimensionality: >10243 m , where m is the number of atom types in a protein.
- Non-scalability: different sizes.
- Complexity: intermolecular \& intramolecular interactions.

Two schools of thinking

Given a protein with N atoms and an average of n electrons in each atom

Quantum Mechanics $\mathbb{R}^{3 N n+3 N}$

Basic hypothesis: Intrinsic physics lies on low-dimensional manifolds in a high dimensional space

Differentiable Manifold \mathbb{R}^{2}

Topology

Möbius Strips (1858)

David J. Thouless F. Duncan M. Haldane J. Michael Kosterlitz

Klein Bottle (1882)

Torus
Double Torus

Augustin-Louis Cauchy, Ludwig Schläfli, Johann Benedict Listing, Bernhard Riemann, and Enrico Betti

Seven Bridges of Konigsberg

Topological invariants: Betti numbers

β_{0} is the number of connected components.
β_{1} is the number of tunnels or circles.
β_{2} is the number of cavities or voids.

Point
Circle

$$
\begin{array}{ll}
\beta_{0}=1 & \beta_{0}=1 \\
\beta_{1}=0 & \beta_{1}=1
\end{array}
$$

$$
\begin{aligned}
& \beta_{0}=1 \\
& \beta_{1}=0 \\
& \beta_{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{0}=1 \\
& \beta_{1}=2 \\
& \beta_{2}=1
\end{aligned}
$$

Torus

Limitation

Crane and Segerman

Persistent homology induced by filtration

Simplexes:

0 -simplex 1-simplex
k-chain: $K=\left\{\sum_{j} c_{j} \sigma_{j}^{q}\right\}$

Chain group: $C_{q}\left(K, \mathbb{Z}_{2}\right)$

Boundary operator:

Frosini and Nandi (1999), Robins (1999), Edelsbrunner, Letscher and Zomorodian (2002), Zomorodian and Carlsson (2005), Edelsbrunner and Harer, (2007) Kaczynski, Mischaikow and Mrozek (2004), Ghrist (2008), ...

$$
\partial_{q} \sigma^{q}=\sum_{j=0}^{q}(-1)^{j}\left\{v_{0}, v_{1}, \ldots, \widehat{v}_{j}, \ldots, v_{k}\right\}
$$

Cycle group: $Z_{q}=\operatorname{Ker} \partial_{q}$
Boundary group: $B_{q}=\operatorname{Im} \partial_{q+1}$
Homology group: $H_{q}=Z_{q} / B_{q}$
Betti number: $\beta_{q}=\operatorname{Rank}\left(H_{q}\right)$
Xia, Wei, IJNMBE, 2014;
Xia, Feng, Tong, Wei, JCC, 2015

Topological data analysis

Vietoris-Rips complexes, persistent homology and topological fingerprint
(Xia, Wei, 2014)

Radius

Topological fingerprints of an alpha helix, beta barrel, etc.

Topological data analysis

2D persistent homology of protein unfolding (1UBQ)

$\mathbb{R}^{3 N+1} \rightarrow \mathbb{R}^{2}$
 Radius

Time
Kelin Xia

Limitations of persistent homology that prevent it from working well for many data

- It cannot handle heterogeneous information (i.e., different type of objects in the data)
- It is qualitative rather than quantitative (e.g., a 5-member ring is counted the same as a 6-member ring)
- It cannot describe non-topological changes (i.e., homotopic shape evolution over filtration)
- It is incapable of dealing with directed networks and digraphs (polarization, regulation, control issues)
- It is unable to characterize structured data (e.g., hypergraphs, directed networks)

We address these limitations with new topological methods

Persistent cohomology for heterogeneous data

Combinatorial Graph (topological Laplacian)

- Simplexes $\left(\sigma^{q}\right)$: 0 -simplex 1 -simplex 2 -simplex 3 -simplex
- K-chain: $K=\left\{\sum_{j} w_{j} \sigma_{j}^{q}\right\}$
(Eckmann 1944; Goldberg 2002; Horak, Jost, AIM, 2013; Serrano, Gomze, 2019,...)
- Chain group: $C_{q}\left(K, \mathbb{Z}_{2}\right)$
- Boundary operator: $\partial_{q}: C_{q}(K) \rightarrow C_{q-1}(K)$

$$
\partial_{q} \sigma^{q}=\sum_{j=0}^{q}(-1)^{j}\left\{v_{0}, v_{1}, \ldots, \widehat{v}_{j}, \ldots, v_{q}\right\}
$$

- Adjoint boundary operator: $\partial_{q}^{*}: C_{q-1}(K) \rightarrow C_{q}(K)$
- q-combinatorial Laplacian operator: $\Delta_{q}=\partial_{q+1} \partial_{q+1}^{*}+\partial_{q}^{*} \partial_{q}$
- q-combinatorial Laplacian matrix: $\quad \mathcal{L}_{q}=\mathcal{B}_{q+1} \mathcal{B}_{q+1}^{T}+\mathcal{B}_{q}^{T} \mathcal{B}_{q}$
- Betti numbers:

$$
\beta_{q}=\operatorname{dim}\left(\mathcal{L}_{q}(K)\right)-\operatorname{rank}\left(\mathcal{L}_{q}(K)\right)=\# \text { of zero eigenvalues of } \mathcal{L}_{q}(K)
$$

Persistent (Combinatorial) Laplacians

$$
\mathcal{L}_{q}^{t+p}=\mathcal{B}_{q+1}^{t+p}\left(\mathcal{B}_{q+1}^{t+p}\right)^{T}+\left(\mathcal{B}_{q}^{t+p}\right)^{T} \mathcal{B}_{q}^{t+p}
$$

(Wang, Nguyen, Wei, 2019; Meng et al. 2021; Memoli et al. 2022; Liu and Wu 2023)

Shape evolution

Alternative: Persistent Dirac by Maroulas and coworkers, Xia and coworkers

More in our toolbox for TDA

Evolutionary Homology
Zixuan Cang, Munch, Wei, J. Appl. Comput. Topology, 2020

Persistent sheaf Laplacians
 Xiaoqi Wei, Wei, under review, 2021

Persistent Path Laplacians

Rui Wang, Wei, Foundation of Data Science, 2023
Persistent hypergraph Laplacians
Dong Chen, Liu, Wu, Wei, 2023

Persistent hyperdigraph Laplacians
Dong Chen, Liu, Wu, Wei, 2023

Differential geometry

Leonhard P. Euler (Swiss Mathematician, April 15, 1707 - Sept 181783

Joseph L. Lagrange (Italian
Mathematician, January 251736 April 10, 1813)

Viral morphology

Minimal Surfaces A way to minimize energy and maximize stability

Man-made life, Mycoplasma mycoides

Differential geometry based multiscale model

$G=\int \gamma[$ area $] d \boldsymbol{r} \quad$ area $=|\nabla S|$ where G is the surface energy, gamma (γ) is the surface tension, and S is a surface characteristic function:
Generalized Laplace-Beltrami flow:

$$
\frac{\partial S}{\partial t}=|\nabla S|\left[\nabla \cdot \frac{\gamma \nabla S}{|\nabla S|}\right]
$$

(Bates, Wei, Zhao, 2006; JCC,2008; Zhao, Cang, Tong \& Wei, Bioinformatics 2018)

De Rham-Hodge theory and discrete exterior calculus

Hodge decomposition:

(Zhao, Wang, Chen, Tong \& Wei, BMB, 2020)

$$
\text { A vector field }=\text { Harmonic }+ \text { curl-free }+ \text { divergent-free }
$$

Cryo-EM data:

Evolutionary de Rham-Hodge

Manifold filtration

$$
M_{0} \xrightarrow{\mathfrak{f}_{0,1}} M_{1} \xrightarrow{\mathfrak{f}_{1,2}} M_{2} \xrightarrow{\mathfrak{f}_{2,3}} \cdots \xrightarrow{\mathfrak{y}_{n-1, n}} M_{n} \xrightarrow{\mathfrak{f}_{n, n+1}} M
$$

Filtration-induced de Rham complexes:

Evolutionary de Rham-Hodge Laplacians

Manifold filtration:

$$
\Delta_{k}^{l, p}=\partial_{k+1}^{l} d_{k}^{l}+d_{k-1}^{l+p} \partial_{k}^{l+p}
$$

Topological persistence

Homotopic shape evolution

Topological
persistence

Discontinuous harmonic (topological) and continuous non-harmonic spectra

(Chen, Zhao, Tong \& Wei, DCDS-B, 2020)

Mathematical learning algorithms

Logistic regression

Ensemble methods

Transfer learning
Active learning

Convolutional neural network

Nature language processing Long-short term memory

Generative AI

 ChatGPTRecurrent neural network
Graph neural network
Autoencoder Transformer

Graph learning
Geometric learning

PCA UMAP t-SNE
 Correlated clustering and projection

Manifold learning

Topological deep learning
Multiscale Laplacian learning

D3R Grand Challenge 4 （2018－2019）

Pose Predictions
BACE Stage 1A

Pose Predictions（Partials）
Affinity Predictions
Cathepsin Stage 1
Combined Ligand and Structure Based Scoring $\pi_{0}^{2 / 5}$ Ligand Based Scoring（No participation） Structure Based Scoring
$\sqrt[2 / 3]{2 / 3}$
BACE Stage 1B
Pose Prediction（Partials）笑

```
Free Energy Set
```


BACE Stage 1

Combined Ligand and Structure（No participation Ligand Based Scoring（Partials）（No participation） Structure Based Scoring（Partials）（No participation）Structure Based Scoring（Partials） Free Energy Set（No participation）

D3R Grand Challenge 3 （2017－2018）
Pose Prediction
（Nguyen et al，JCAMD，2018）

Cathepsin Stage 1A
 Pose Prediction

Pose Predictions（partials）
Affinity Rankings excluding Kds＞ $10 \mu \mathrm{M}$

Cathepsin Stage 1

Scoring（partials）
Free Energy Set VEGFR2
Scoring（partials）
JAK2 SC3
Scoring
Free Energy Set 性 炇

BACE Stage 2
Combined Ligand and Structure
Ligand Based Scoring（No participation）

Free Energy Set（3）

Stage 1

Stage 2

Scoring（partials） Free Energy Set 1 （partials）
Free Energy Set 2 （partials）

Our performance in D3R Grand Challenges，worldwide competitions in computer－aided drug design organized by NIH， 2016－2019．

Evolution of SARS-CoV-2 variants

What are the evolutionary mechanisms?

Mutation Tracker

https://users.math.msu.edu/users/weig/SARS-CoV-2_Mutation_Tracker.html

$2020010120200301202004302020062920200828 \quad 2020102720201226202102242021042520210624202108232021102220211221202202192022042020220619202208182022101720230131$

What governs SARS-CoV-2 transmission and evolution?

Competing mechanisms of SARS-CoV mutations

Molecular scale

Random genetic shifts

Transcription errors

Recombination

Replication errors

Translation errors

Organism scale

Host gene editing
Recombination

Population scale

Natural selection

Life cycle of SARS-CoV-2 in a host cell

Mutations Strengthened SARS-CoV-2 Infectivity

We predicted prevailing SARS-CoV-2 variants to occur at residues 452 and 501

Jiahui Chen ${ }^{1}$, Rui Wang ${ }^{1}$, Menglun Wang ${ }^{1}$ and Guo-Wei Wei ${ }^{1,2,3}$

Alpha: N501Y
Beta: K417N, E484K, N501Y
Gamma: K417T, E484K, N501Y Delta: L452R, T478K
Epsilon: L452R
Theta: E484K, N501Y
Kappa: L452R, E484Q
Lambda: L452Q, F490S
Mu: R346K,E484K,N501Y
Omicron: G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H;
BA.2.12.1: Omicron + L452Q;
BA.4/BA.5: Omicron + L452R

We discovered the mechanism of viral transmission and evolution

89) of all mutations on the RBD, which potentially increases the complexity of antiviral drug and vaccine development. This global analysis indicates that mutations on the RBD strengthen the binding of S protein and ACE2, leading to more infectious SARS-CoV-2.

We hypothesize that natural selection favors those mutations that enhance the viral transmission and if our predictions are correct, the predicted infectivity strengthening mutations will outpace predicted infectivity weakening mutations over time. Figure 3 illustrates the increase in the frequency of each
strengthening mutations occurred. It is interesting to note that overall, infectivity-strengthening mutations grow faster than infectivity-weakening mutations, which also reveals that SARS-CoV-2 subtypes having infectivity-strengthening mutations are able to infect more people. Specifically, frequencies of S477N, N439K, V483A, and V367F are higher than those of other mutations, indicating these mutations have a stronger transmission capacity.

The SARS-CoV-2 genotypes are clustered into six clusters or subtypes based on their single nucleotide

Chen, Wang, Wang, Wei, JMB, 432, 5212, July 2020
 Dr Jiahui Chen

Rui Wang

Figure 3. The time evolution of 89 SARS-CoV-2 S protein RBD mutations. The red lines represent the mutations that strengthen the infectivity of SARS-CoV-2 (i.e., $\Delta \Delta G$ is positive), and the blue lines represent the mutations that weaken the infectivity of SARS-CoV-2 (i.e., $\Delta \Delta G$ is negative). Many mutations overlap their trajectories. Here, the collection date of each genome sequence that deposited in GISAID is applied.

Vaccine-breakthrough mutations

By genotyping 2,298,349 viral genomes isolated from patients
Wang, Chen, and Wei, J. Phys. Chem. Letter, 12. 11850-11857 2021

Evolution mechanisms --- Natural selection via two complementary transmission pathways: Infectivity strengthening and vaccine breakthrough

Omicron BA. 2 (B.1.1.529.2): high potential to becoming the next dominating variant
Jiahui Chen ${ }^{1}$ and Guo-Wei Wei ${ }^{1,3,4 *}$
${ }^{1}$ Department of Mathematics, Michigan State University, MI 48824, USA.

On 2/10/2022, we predicted that BA. 2 will become the dominant variant. This
COVID-19 Weekly Epidemiological Update became the reality in later Edition 84, published 22 March 2022

March according to WHO

This was confirmed by WHO on March 22, 2022!
All other predictions were confirmed within 50 days
Chen, Wei, J. Phys. Chem. Lett., 13, 2840-3849, 2022.

Persistent Laplacian projected Omicron BA. 4 and BA. 5 to become new dominating variants

Jiahui Chen ${ }^{1}$, Yuchi Qiu ${ }^{1}$, Rui Wang ${ }^{1}$, and Guo-Wei Wei ${ }^{1,2,3 *}$
${ }^{1}$ Department of Mathematics,

Dr Jiahui Chen Michigan State University, MI 48824, USA. East Lansing, MI 48823 USA.

This was confirmed by WHO in early July (WHO weekly update release number 101)
Jiahui Chen, Qiu, Wang, and Wei, Computers in Biology and Medicine, 151, 106262 (2023)

Characterizing Musical Sounds with Topological Data Analysis

Topological Artificial Intelligence Forecasting of Future Dominant Viral Variants

By Guo-Wei Wei

Mathematics-assisted Directed Evolution and Protein Engineering
By Yuchi Qiu and Guo-Wei Wei

```
    SIAM NEWS BLOG
```Research | December 18, 2017
Mathematics at a Historic Transition in Biology

\footnotetext{
SIAM NEWS SEPTEMBER 2016
}

Mathematical Molecular Bioscience and Biophysics

```

