How mathematical AI is transforming biosciences

Guo-Wei Wei

Mathematics

Michigan State University

http://www.math.msu.edu/~wei

Home Programs -

Mathematical and Computational Biology Jun 12 - 16, 2023

Research partnerships:

Grant support: NIH, NSF, NASA, Pfizer, BMS, MEDC, Georgetown U, COVID-19 HPC Consortium, MSU Foundation, and MSU iCER

Four paradigms of scientific research

1st Paradigm: Empirical sciences

Experiments

2nd Paradigm: Model-based theoretical sciences

Math/Phys models

1950

3rd Paradigm: Computational sciences

Computing, simulation, algorithms

2000

4th Paradigm: Data-driven scientific discovery

AI, machine learning, data science

Challenges of AI in biomolecular systems

- Geometric dimensionality: \mathbb{R}^{3N} , where **N** ~5000 for a protein.
- Machine learning dimensionality: > 1024³ m, where m is the number of atom types in a protein.
- Non-scalability: different sizes.
- *Complexity*: intermolecular & intramolecular interactions.

Our Strategy

Algebraic topology Differential geometry A.C.G.S.T. graphs Geometric algebra Variational PDEs

Sequence data Structure data Biophysics Bioinformatics Systems biology Systems physiology Datadriven biological discovery

Machine learning Deep learning Manifold learning Transformer Autoencoder Generative AI

Möbius Strips (1858)

Topology

Klein Bottle (1882)

Torus

Double Torus

Leonhard Paul Euler (Swiss Mathematician, April 15, 1707 – Sept 18 178.

Fuler

1735)

Seven Bridges

of Konigsberg

David J. Thouless F. Duncan M. Haldane J. Michael Kosterlitz

heoretical discoveries of topological phase transition and topological phases of matter"

Augustin-Louis Cauchy, Ludwig Schläfli, Johann Benedict Listing, Bernhard Riemann, and Enrico Betti

Topological invariants: Betti numbers

 β_0 is the number of connected components. β_1 is the number of tunnels or circles. β_2 is the number of cavities or voids.

Crane and Segerman

Persistent homology induced by filtration

Topological data analysis

Vietoris-Rips complexes, persistent homology and topological fingerprint (Xia, Wei, 2014)

Topological fingerprints of an alpha helix, beta barrel, etc.

O

0

Microtubule

(Xia & Wei, IJNMBE, 2014, 2015)

Beta barrel

Topological data analysis 2D persistent homology of protein unfolding (1UBQ)

Limitations of persistent homology that prevent it from working well for many data

- It cannot handle heterogeneous information (i.e., different type of objects in the data)
- It is qualitative rather than quantitative (e.g., a 5-member ring is counted the same as a 6-member ring)
- It cannot describe non-topological changes (i.e., homotopic shape evolution over filtration)
- It is incapable of dealing with directed networks and digraphs (polarization, regulation, control issues)
- It is unable to characterize structured data (e.g., hypergraphs, directed networks)

We address these limitations with new topological methods

Persistent cohomology for heterogeneous data

Zixuan Cang And Wei, SIAM **JMDS 2020**

20

15

10

0

Wasserstein curves

6

Optimal transport

Difference in geometric info

2

Combinatorial Graph (topological Laplacian)

• Simplexes (σ^q) :

0-simplex 1-simplex

2-simplex

3-simplex

• *K*-chain: $K = \left\{ \sum_{j} w_{j} \sigma_{j}^{q} \right\}$

(Eckmann 1944; Goldberg 2002; Horak, Jost, AIM, 2013; Serrano, Gomze, 2019,...)

- Chain group: $C_q(K, \mathbb{Z}_2)$
- Boundary operator: $\partial_q : C_q(K) \to C_{q-1}(K)$ $\partial_q \sigma^q = \sum_{i=0}^q (-1)^j \{v_0, v_1, \dots, \widehat{v_j}, \dots, v_q\}$
- Adjoint boundary operator: $\partial_q^* : C_{q-1}(K) \to C_q(K)$
- q-combinatorial Laplacian operator: $\Delta_q = \partial_{q+1}\partial_{q+1}^* + \partial_q^*\partial_q$
- q-combinatorial Laplacian matrix: $\mathcal{L}_q = \mathcal{B}_{q+1}\mathcal{B}_{q+1}^T + \mathcal{B}_q^T\mathcal{B}_q$
- Betti numbers:

 $\beta_q = \dim(\mathcal{L}_q(K)) - \operatorname{rank}(\mathcal{L}_q(K)) = \# \text{ of zero eigenvalues of } \mathcal{L}_q(K)$

Persistent (Combinatorial) Laplacians

 $\mathcal{L}_{q}^{t+p} = \mathcal{B}_{q+1}^{t+p} \left(\mathcal{B}_{q+1}^{t+p} \right)^{T} + \left(\mathcal{B}_{q}^{t+p} \right)^{T} \mathcal{B}_{q}^{t+p}$

(Wang, Nguyen, Wei, 2019; Meng et al. 2021; Memoli et al. 2022; Liu and Wu 2023)

Alternative: Persistent Dirac by Maroulas and coworkers, Xia and coworkers

More in our toolbox for TDA

Evolutionary Homology Zixuan Cang, Munch, Wei, J. Appl. Comput. Topology, 2020

Persistent sheaf Laplacians Xiaoqi Wei, Wei, under review, 2021

Persistent Path Laplacians Rui Wang, Wei, Foundation of Data Science, 2023

Persistent hypergraph Laplacians Dong Chen, Liu, Wu, Wei, 2023

Persistent hyperdigraph Laplacians Dong Chen, Liu, Wu, Wei, 2023

Differential geometry

(Swiss Mathematician,

April 15, 1707 – Sept

18 1783

(Italian

Mathematician,

January 25 1736 -

Viral morphology

Minimal Surfaces A way to minimize energy and maximize stability

Man-made life, Mycoplasma mycoides

Differential geometry based multiscale model

 $G = \int \gamma [\text{area}] d\mathbf{r}$ area = $|\nabla S|$ where G is the surface energy, gamma (γ) is the surface tension, and S is a surface characteristic function:

Generalized Laplace-Beltrami flow:

(Bates, Wei, Zhao, 2006; JCC, 2008; Zhao, Cang, Tong & Wei, Bioinformatics 2018)

De Rham-Hodge theory and discrete exterior calculus

Evolutionary de Rham-Hodge

Manifold filtration $M_0 \xrightarrow{\mathfrak{I}_{0,1}} M_1 \xrightarrow{\mathfrak{I}_{1,2}} M_2 \xrightarrow{\mathfrak{I}_{2,3}} \cdots \xrightarrow{\mathfrak{I}_{n-1,n}} M_n \xrightarrow{\mathfrak{I}_{n,n+1}} M$ **Filtration-induced de Rham complexes:** $\Omega_n^0(M_0) \xrightarrow{d^0} \Omega_n^1(M_0) \xrightarrow{d^1} \Omega_n^2(M_0) \xrightarrow{d^2} \Omega_n^3(M_0)$ $\begin{array}{ccc} & \downarrow \mathfrak{E}_{0,1} & \downarrow \mathfrak{E}_{0,1} & \downarrow \mathfrak{E}_{0,1} & \downarrow \mathfrak{E}_{0,1} \\ \Omega_n^0(M_1) \xrightarrow{d^0} \Omega_n^1(M_1) \xrightarrow{d^1} \Omega_n^2(M_1) \xrightarrow{d^2} \Omega_n^3(M_1) \end{array}$ $\begin{array}{cccc} & \downarrow \mathfrak{E}_{1,1} & \downarrow \mathfrak{E}_{1,1} & \downarrow \mathfrak{E}_{1,1} & \downarrow \mathfrak{E}_{1,1} \\ \Omega_n^0(M_2) \xrightarrow{d^0} & \Omega_n^1(M_2) \xrightarrow{d^1} & \Omega_n^2(M_2) \xrightarrow{d^2} & \Omega_n^3(M_2) \end{array}$ (Chen, Zhao, Tong & $(\underbrace{\mathsf{CHEI}}_{2,1} \angle \mathsf{IdO}, \operatorname{IOIQ}_{\mathbf{A}} \otimes \mathbb{C}_{2,1} \otimes \mathbb{C}_{2,1$

Evolutionary de Rham-Hodge Laplacians

Manifold filtration:

 $\Delta_k^{l,p} = \partial_{k+1}^l d_k^l + d_{k-1}^{l+p} \partial_k^{l+p}$

Topological persistence

Homotopic shape evolution

Topological persistence

Discontinuous harmonic (topological) and continuous non-harmonic spectra

(Chen, Zhao, Tong & Wei, DCDS-B, 2020)

Mathematical learning algorithms

D3R Grand Challenge 3 (2017-2018)

(Nguyen et al, JCAMD, 2018)

Cathepsin Stage 1A Pose Predictions (partials)	Cathepsin Stage 1B Pose Prediction	A Starter
Affinity Rankings excludi	ng Kds > 10 μM	
Cathepsin Stage 1	Cathepsin Stage 2	400 Conto
Scoring (partials)	Scoring (partials)	
Free Energy Set	Free Energy Set	
VEGFR2	JAK2 SC2	p38-a
Scoring (partials)	Scoring (partials)	Scoring
JAK2 SC3	TIE2 3/3 1/2	ABL1 2/4 4/5 2/3
Scoring 4/4 4/4 4/4	Scoring 🍊 👗	Scoring (partials) 🍊 👗 🍊
Free Energy Set 🍏 💩 🍏	Free Energy Set 2 🍊 👗	
Active / Inactive Classific	cation	
VEGFR2	JAK2 SC2	p38-a
Scoring (partials)	Scoring (partials)	Scoring (partials)
JAK2 SC3	TIE2 1/5 1/4 1/2	ABL1
Scoring 1/5 1/4 1/2	Scoring (partials) 🥯 🏟 🛑	Scoring (partials)
Free Energy Set 🍊 👗 👗	Free Energy Set 1	J ()
Affinity Rankings for Coc	rystalized Ligands 🖉 🖉	
Cathensin Stage 1	Cathensin Stage 2 2/2 2/2	
Scoring (partials)	Scoring (partials)	
Free Energy Set 💥 💥	Eree Energy Set 19/44 3/20 1/4	

D3R Grand Challenge 2

Given: Farnesoid X receptor (FXR) and 102 ligands Tasks: Dock 102 ligands to FXR, and predict their poses, binding free energies and energy ranking

Stage 1

Pose Predictions (partials) Scoring (partials) Free Energy Set 1 (partials) Free Energy Set 2 (partials)

Pose Prediction

Stage 2 Scoring (partials) Free Energy Set 1 (partials) Free Energy Set 2 (partials)

(2016 - 2017)

Evolution of SARS-CoV-2 variants

What are the evolutionary mechanisms?

Mutation Tracker

https://users.math.msu.edu/users/weig/SARS-CoV-2_Mutation Tracker.html

ln(Frequency)

What governs SARS-CoV-2 transmission and evolution?

Competing mechanisms of SARS-CoV mutations

Molecular scale				
Random genetic shifts	Replication errors			
Transcription errors	Translation errors			
Recombination	Viral proofreading			

Organism scale					
Host gene editing	Recombination				

Population scale

Natural selection

Life cycle of SARS-CoV-2 in a host cell

Mutations Strengthened SARS-CoV-2 Infectivity

We predicted prevailing SARS-CoV-2 variants to occur at residues 452 and 501

Jiahui Chen¹, Rui Wang¹, Menglun Wang¹ and Guo-Wei Wei^{1,2,3}

Dr Jiahui Chen

Alpha: N501Y

Beta: K417N, E484K, N501Y Gamma: K417T, E484K, N501Y **Delta**: L452R, T478K Epsilon: L452R Theta: E484K, N501Y Kappa: L452R, E484Q Lambda: L452Q, F490S Mu: R346K,E484K,<mark>N501Y</mark> Omicron: G339D, S371L, S373P, S375F, K417N, N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H; **BA.2**.12.1: Omicron + L452Q; **BA.4/BA.5**: Omicron + L452R

We discovered the mechanism of viral transmission and evolution

89) of all mutations on the RBD, which potentially increases the complexity of antiviral drug and vaccine development. This global analysis indicates that mutations on the RBD strengthen the binding of S protein and ACE2, leading to more infectious SARS-CoV-2.

We hypothesize that natural selection favors those mutations that enhance the viral transmission and if our predictions are correct, the predicted infectivity strengthening mutations will outpace predicted infectivity weakening mutations over time. Figure 3 illustrates the increase in the frequency of each strengthening mutations occurred. It is interesting to note that overall, infectivity-strengthening mutations grow faster than infectivity-weakening mutations, which also reveals that SARS-CoV-2 subtypes having infectivity-strengthening mutations are able to infect more people. Specifically, frequencies of S477N, N439K, V483A, and V367F are higher than those of other mutations, indicating these mutations have a stronger transmission capacity.

The SARS-CoV-2 genotypes are clustered into six clusters or subtypes based on their single nucleotide

Figure 3. The time evolution of 89 SARS-CoV-2 S protein RBD mutations. The red lines represent the mutations that strengthen the infectivity of SARS-CoV-2 (i.e., $\Delta\Delta G$ is positive), and the blue lines represent the mutations that weaken the infectivity of SARS-CoV-2 (i.e., $\Delta\Delta G$ is negative). Many mutations overlap their trajectories. Here, the collection date of each genome sequence that deposited in GISAID is applied.

Vaccine-breakthrough mutations

By genotyping 2,298,349 viral genomes isolated from patients

Wang, Chen, and Wei, J. Phys. Chem. Letter, 12. 11850-11857 2021

Evolution mechanisms --- Natural selection via two complementary transmission pathways: Infectivity strengthening and vaccine breakthrough

Omicron BA.2 (B.1.1.529.2): high potential to becoming the next

dominating variant

Jiahui Chen¹ and Guo-Wei Wei^{1,3,4}* ¹ Department of Mathematics, Michigan State University, MI 48824, USA.

Dr Jiahui Chen

On 2/10/2022, we predicted that BA.2 will become the dominant variant. This COVID-19 Weekly Epidemiological Update became the reality in later March according to WHO

This was confirmed by WHO on March 22, 2022! All other predictions were confirmed within 50 days

Chen, Wei, J. Phys. Chem. Lett., 13, 2840-3849, 2022.

Persistent Laplacian projected Omicron BA.4 and BA.5 to become

new dominating variants

Dr Jiahui Chen

Jiahui Chen¹, Yuchi Qiu¹, Rui Wang¹, and Guo-Wei Wei^{1,2,3*} ¹ Department of Mathematics, Michigan State University, MI 48824, USA. East Lansing, MI 48823 USA.

Jiahui Chen, Qiu, Wang, and Wei, Computers in Biology and Medicine, 151, 106262 (2023)

By Guo-Wei Wei

Algebraic graph	Geometric topology	Differential topology	Algebraic topology	Geometric Algebra
Topological graph		Vision:		Number theory
Statistics	The las and tea	The last frontier of science and technology is biological science The last frontier of biological science is mathematics		
Probability	Th			
Differential equation				
Numerical analysis	Multiscale analysis	Harmonic analysis	Real analysis	Stochastic analysis

