Collective cell behaviour

Naba Mukhtar

Shona Sinclair (USRA 2023)

Andreas Buttenschoen

Nicola Mulberry

Collective cell behaviour

Important in embryo development, dynamics and organization of tissues, wound healing, and in disease (cancer metastasis)

Neural crest cell migration

- Initiate formation of organs, limbs, etc
- Long migration to target sites

Image: P Kulesa

Project motivated by Paul Kulesa lab

Sympathetic nervous system development in chick embryo

Kasemeier-Kulesa JC, Morrison JA, Lefcort F, Kulesa PM. (2015) TrkB/BDNF signalling patterns the sympathetic nervous system. Nature comm. 6(1):8281.

Image: P Kulesa

Sympathetic nervous system

• Formed by migrating cluster of NCCs

Image: P Kulesa

Sympathetic ganglia migration

preganglionic neurons

Dorsal aorta

Cluster compactness

- Directed migration of loosely connected cells, local and non-local contacts with neighbours
- Later: cells reorganize to form tight cohesive cluster

Questions

- How do cells stay together?
- What influences affect cluster cohesion, compactness, shape?
- What initiates and guides the migration?
- How does the cluster find its target?

Questions

- How do cells stay together?
- What influences affect cluster cohesion, compactness, shape?

PLAN: - Recap of (old) agent-based modeling - Discuss recent (continuum) theory - Mention simulations & future prospects

Agent-based models

Keep track of positions *x*, velocities, *v*:

$$\frac{d\vec{x}_i}{dt} = \vec{v}_i.$$
Animals:
$$Cells:$$

$$\frac{d\vec{v}_i}{dt} = \vec{F}_i - \xi \vec{v}_i$$

$$\vec{v}_i \approx \frac{1}{\xi} \vec{F}_i$$

(no inertia)

Many agents

• Repulsion and attraction

$$\frac{d\vec{x}_i}{dt} = \Sigma_{i\neq j} \left(\vec{F}^r(\vec{x}_i - \vec{x}_j) - \vec{F}^a(\vec{x}_i - \vec{x}_j) \right)$$

• 1D, "Morse forces" (Exponentials)

$$F(x) = F^{r}(x) - F^{a}(x) = \operatorname{sign}(x) \left(Re^{-|x|/r} - Ae^{-|x|/a} \right)$$

Mogilner et al (2003) JMB 47:353-89.

Remarks

- Simplify analysis to 1D
- Forces are odd functions of distance
- Superposition of Repulsion and Attraction
- Morse forces are gradients of Morse potentials. (convenient for analysis)

Mogilner et al (2003) Mutual interactions, potentials, and individual distance in a social aggregation. Journal of mathematical biology 47:353-89.

Scaled variables

• Scale force by *A*, distance by *r*:

$$x' = \frac{x}{r}, \quad \ell = \frac{a}{r}, \quad C = \frac{R}{A}$$

Attraction - Repulsion C=4, l=2.5

C=0.5, *l*=0.5

C=0.5, *l*=0.5

Trajectories 1D C=4, l=2.5

C=4, *l*=0.5

C=0.5, *l*=0.5

Parameter regimes

r

a

Distance between agents

$$\delta = \sqrt{12 \frac{C - \ell^2}{C - 1}}.$$

 $C = l^2$

 $= \frac{a}{r}$

Same idea in 2D

Biological "Morse forces"

- Cell secretes attractant and/or repellent
- Chemical(s) diffuse, decay
- Cells move up/down gradients (chemotaxis)

1 space dimension

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial x^2} - kc.$$

$$c(x) = C_0 \exp(-x/\lambda), \quad \lambda = \sqrt{D/k}$$

Alex Mogilner (1990's)

Hybrid modelChemotaxis with attractant and repellent

Morpheus Multicellular Simulation TU Dresden

Continuum Limit

• From ABM to continuum model:

For large number (N) of agents, associate a density with the superposition

$$\rho(\vec{x},t) = \frac{1}{N} \sum_{i=1}^{N} \delta(\vec{x} - \vec{x}_i(t))$$

Typical nonlocal PDE

Falcó, Baker, Carrillo (2023) A local continuum model of cell-cell adhesion. SIAM J Appl Math 27:S17-42.

Directed motion (speed v), governed by potential function

$$\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \vec{v}), \text{ where } \vec{v} = -\nabla (W * \rho)$$

• In 1D:

$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x} \cdot (\rho v), \quad v = -\frac{\partial (W * \rho)}{\partial x}$$
("Nonlocal model")
$$W * \rho = \int K(x - s)\rho(x, t)dx$$

• No flux BCs as $x \rightarrow +/-$ infty

Comments

- Ignore random motion get variational system (Cahn-Hilliard type free energy)
- Assume: potentials not too long-ranged
- Approximate convolution with Taylor series (up to 2nd order).

$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x} \cdot (\rho v), \quad v = -\frac{\partial (W * \rho)}{\partial x}$$
$$v = -\frac{\partial (W * \rho)}{\partial x} \approx -\frac{\partial}{\partial x} (a_0 \rho + a_2 \rho_{xx}) \quad (\text{``Local approx''})$$

Local approximation

$$\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x}(\rho v), \text{ where } v \approx -\frac{\partial}{\partial x}(a_0 \rho + a_2 \rho_{xx})$$

- Where a_0, a_2 are moments of the kernel
- (Kernel is even so a_1 vanishes)
- Example: Morse potentials

$$K = Rr \exp(-|x|/r) - Aa \exp(-|x|/a).$$

$$a_0 = \int_{-\infty}^{\infty} K(z)dz = 2(Rr^2 - Aa^2)$$
 $a_2 = \frac{1}{2}\int_{-\infty}^{\infty} z^2 K(z)dz = \frac{1}{4}(Rr^4 - Aa^4)$

Advantage of local approx:

• Explicit solution of steady state cluster dens in 1D:

 ρ

$$(x) = \frac{M}{2\pi} \phi \left(\cos(\phi x) + 1 \right)$$

$$\phi = \sqrt{\frac{Rr^2 - Aa^2}{Rr^4 - Aa^4}}, \quad -b < x < b$$

- Direct results about how magnitudes and ranges of attraction and repulsion affect cluster radius, density, etc.
- Conditions for the formation of compact cluster.

Steady state compact cluster

- Ingredients used: compact support, (radius b) variational character $\rightarrow \rho(\pm b) = 0$, $\rho_x(\pm b) = 0$
- Look for real solution for radius, *b*.
- Density > 0.

Shona Sinclair

Conditions for existence

C>1 l>1

Parameter plane

Compare to ABM results

Cell density, cluster radius

• Related to attraction-repulsion parameters:

• Density:
$$\rho(x) = \frac{M}{2\pi r} \sqrt{\frac{C-\ell^2}{C-\ell^4}} \left(\cos\left(\frac{x}{r} \sqrt{\frac{C-\ell^2}{C-\ell^4}}\right) + 1 \right)$$

• "Shape":

K

adius:

$$b = \pi \sqrt{\frac{Rr^4 - Aa^4}{Rr^2 - Aa^2}} = 2\pi r \sqrt{\frac{2(C - \ell^4)}{C - \ell^2}}$$

Cluster radius

$$b = 2\pi r \sqrt{\frac{2(C-\ell^4)}{C-\ell^2}}$$

Cluster compactness as a trajectory in *Cl* space.. Changing l=a/r has sharper influence than changing C=R/A.

Simulations of cells

Use insights gained to fine-tune simulations

No cohesion

T=10,

200,

400

Cell-cell attraction

Some parallels

- Single cell $\leftarrow \rightarrow$ cell cluster
- Animal swarm $\leftarrow \rightarrow$ cell swarm
- Simulations $\leftarrow \rightarrow$ analysis

How is polarity established?

Single cell

• White blood cell (neutrophil)

Cell cluster

• In zebrafish embryo (PLLP)

Molecular mechanisms

Intracellular signalling

• GTPase gradients

Maree, Holmes, Mori, Jilkine, Zmurchok, Bjaskar, Rens, Buttenschoen, LEK, etc

Multicellular signalling

• Wnt-FGF gradients

Knutsdottir et al (2017) PLoS CB.

Interaction forces

Marcoscopic

• Cohesive flock (surf scoters)

Lukeman et al (2010) PNAS 107(28)

Microscopic

Cell cluster Mukhtar et al. (2022). Biophys J 121(10)

Examples: multiscale simulations

Example 1: Synthetic biology

Self-organizing cell clusters made with synthetic cell signaling.

Toda et al (2018) Science, 361:156-62.(Wendell Lim's lab)

Model for cell signaling:

Toda et al (2018) Science 361

Mulberry & LEK (2020) Phys Biol

Emergence of tissue organization

https://morpheus.gitlab.io/

Mulberry & LEK (2020) Phys Biol

Example 2:

- Intracellular (GTPase) signaling
- GTPase affects cell spreading and contraction
- Stresses affect GTPase

Dhananjay MoHan Zhang Bhaskar Cole Zmurchok

Zmurchok et al (2018) Phys. Biol. 15

Computational methods

Cells as points, spheres, deforming ellipsoids or polygons, phase fields or Potts models

Cell sorting

Hildur Knutsdottir

Dhananjay Bhaskar

Eirikur Palsson

Morpheus

- <u>https://morpheus.gitlab.io/</u>
- Open source, good GUI, easy to use
- Lots of ready examples
- Growing archive of examples

Morpheus Multicellular Simulation TU Dresden

Next steps

- Kulesa lab: "Spatial transcriptomics" data, identify ligan-receptor pairs over space and time (look for attractant/repellent molecules)
- "Bead" experiments & simulations
- 2-layer cluster (model extension & interpretation)

https://singulomics.com/

Two species continuum models

• Nonlocal and approximating (PDE) local versions

Carrillo et al (2018) JTB

Armstrong, Painter, Sherratt (2019) JTB

Limitations & benefits

- Continuum: powerful math analysis tools, gain insights into key (dimensionless) parameters, expected range of behaviours
- Simulations: visualization and tracking of individual cells, positions, sizes, etc..
- Ideal: combine both!

THANKS FOR LISTENING

- NCCs arrive near dorsal aorta (DA)
- Aggregate (EphB2/EphrinB1, N-Cadherin signaling)
- Form a cohesive cluster ("sympathetic ganglion")
- Linger for 24 h
- Start to migrate towards "ventral root" (VR)
- Meet preganglion neuron axons that secrete BDNF

Cellular Potts model

- Cell shape on a grid
- "Energetic cost"

$$H = \lambda_a (A - A_0)^2 + \lambda_p (P - P_0)^2 + JP$$

• Many cells:

$$H = \lambda_a (A - A_0)^2 + \lambda_p (P - P_0)^2 + J_{0i} P_{0i} + \frac{1}{2} \sum_{j=1}^n J_{ij} P_{ij}.$$

• Stochasticity

$$\mathcal{P}(\Delta H) = \begin{cases} 1 & \Delta H < 0\\ \exp(-\Delta H/T) & \Delta H \ge 0 \end{cases}$$