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Near-Optimality Guarantees for Approximating Rational Matrix Functions by the Lanczos Method           
Noah Amsel, New York University                           
 
We study the Lanczos method for approximating the action of a symmetric matrix function f(A) on a vector b 
(Lanczos-FA). Lanczos-FA iteratively constructs its approximation from the Krylov subspace K_k = span{b, Ab, 
..., A^{k-1}b} and can be implemented efficiently using only matrix-vector products with A, making it 
particularly popular for high dimensional sparse or structured problems in computational science. 
 
For the function classes exp(tA)b, A^{-1}b, and matrix polynomials of reasonable degree, previous work has 
shown that the error of the Lanczos-FA approximation is within a small multiplicative factor of the error of the 
best approximation from the Krylov subspace. 
 
In practice, Lanczos-FA consistently achieves similarly high accuracy on a wide variety of other functions too, 
even outperforming alternative methods for which stronger theoretical guarantees are known. 
 
We aim to narrow this understanding gap by considering rational functions with no poles in the interval 
containing A's eigenvalues. We prove that for these functions, the error of infinite-precision Lanczos-FA is 
within a poly(kappa) factor of the optimal Krylov approximation, where kappa is the condition number of A. 
While we believe the dependence on kappa is loose, our bound qualitatively matches the convergence 
behavior of the algorithm better than previous analyses. 
 
Our result also provides insight on functions that are well approximated by rational functions, such as 
A^{±1/2}. Finally, the problem of tightening the dependence of our bound on kappa gives rise to several 
interesting questions in approximation theory for functions on a real interval. 
 
 
NerualFIM for learning Fisher InformaAon Metrics from point cloud data            
Dami Fasina, Yale University                           
 
Although data diffusion embeddings are ubiquitous in unsupervised learning and have proven to be a viable 
technique for uncovering the underlying intrinsic geometry of data, diffusion embeddings are inherently 
limited due to their discrete nature. To this end, we propose neural FIM, a method for compuXng the Fisher 
informaXon metric (FIM) from point cloud data - allowing for a conXnuous manifold model for the data. Neural 
FIM creates an extensible metric space from discrete point cloud data such that informaXon from the metric 
can inform us of manifold characterisXcs such as volume and geodesics. 
We demonstrate Neural FIM&#39;s uXlity in selecXng parameters for the PHATE visualizaXon method as well 
as its ability to obtain informaXon pertaining to local volume illuminaXng branching points and cluster centers 
embeddings of a toy dataset and two single-cell datasets of IPSC reprogramming and PBMCs 
(immune cells). 
 
 
 



Data-efficient matrix recovery and PDE learning            
Diana Halikias, Cornell University Department of MathemaXcs                           
 
Can one recover the entries of a matrix from only matrix-vector products? If so, how many are needed? I will 
present my research relaXng to this problem, including randomized algorithms to recover various structured 
matrices, as well as theoreXcal results which bound the query complexity of these structured families. 
Moreover, a conXnuous generalizaXon of query complexity describes how many pairs of forcing terms and 
soluXons are needed to uniquely idenXfy a Green's funcXon corresponding to the soluXon operator of an 
ellipXc PDE. I will present a recent main result, which is a theoreXcal guarantee on the number of input-output 
pairs required in ellipXc PDE learning problems with high probability. The proof of this result is construcXve, 
and relies on a randomized algorithm which leverages insights from numerical linear algebra and PDE theory. 
Finally, I will discuss future research direcXons invesXgaXng when querying the adjoint of an operator is 
essenXal to again opXmal query complexity. 
 
 
Measuring ElectromagneAc Green’s FuncAons via Field CorrelaAons            
Jonas Katona, Applied MathemaXcs Program, Yale University                           
 
RelaXons between the field correlaXons generated by noise and Green’s funcXons are central to correlaXon-
based imaging techniques. Such relaXons are well-known for applicaXons in geophysics, acousXcs, and scalar 
wave opXcs, but have not yet been generalized to electromagneXc waves, i.e., soluXons to Maxwell's 
equaXons. In this work, we derive formulae for deriving the real and imaginary parts of the electromagneXc 
Green’s tensor from the electric fields generated by suitable random surface and volume noises for the 
following boundary condiXons: 1) boundary condiXons for a perfect electric conductor (where the tangenXal 
component of the electric field is zero), 2) boundary condiXons for a perfect magneXc conductor (where the 
tangenXal component of the magneXc field is zero), and 3) Sommerfeld radiaXon condiXons on a sufficiently 
large ball. We illustrate the validity of our generalizaXons via numerical experiments. 
 
 
2D AnalyAc Signals on Bounded Domains            
Brian Knight, UC Davis                           
 
By viewing a 1D signal as the boundary value of a harmonic funcXon in the unit disc in $\mathbb{C}$, one can 
obtain a mulXscale analyXc signal representaXon by supplemenXng its conjugate counterpart and viewing the 
funcXon on the disc at fixed radii. This can be done in the upper-half plane as well, and the two approaches are 
related via a conformal transformaXon. For $n$D signals there are several common approaches to generalizing 
this, namely, solving the Riemann-Hilbert problem in several complex variables, or forming the so-called 
monogenic signal on upper-half space via Clifford analysis. These are no longer related via any nice 
transformaXon. The former is naturally formed on a polydisc in $\mathbb{C}^n$, and is easily seen as an 
extension of the unit disc case in $\mathbb{C}$, whereas the lager is formed on the upper-half space 
$\mathbb{R}^{n}_{+}$ and is an extension of the upper-half plane case, though Felsberg et. all introduced a 
method to study the monogenic scale space on a bounded domain. We compare and contrast these methods 
with concern to their applicaXon in image processing tasks and discuss future direcXons of development. This 
is joint work with Dr. Naoki Saito. 
 
 
 
 
 



Hyperbolic Diffusion Embedding and Distance for Hierarchical RepresentaAon Learning            
Ya-Wei Eileen LIN, Technion - Israel InsXtute of Technology                           
 
Finding meaningful representaXons and distances of hierarchical data is important in many fields. This paper 
presents a new method for hierarchical data embedding and distance. Our method relies on combining 
diffusion geometry, a central approach to manifold learning, and hyperbolic geometry.  
Specifically, using diffusion geometry, we build mulX-scale densiXes on the data, aimed to reveal their 
hierarchical structure, and then embed them into a product of hyperbolic spaces. We show theoreXcally that 
our embedding and distance recover the underlying hierarchical structure. In addiXon, we demonstrate the 
efficacy of the proposed method and its advantages compared to exisXng methods on graph embedding 
benchmarks and hierarchical datasets.  
 
 This is a joint work with Ronald R. Coifman, Gal Mishne, and Ronen Talmon 
 
 
Sample Complexity for ScienAfic Machine Learning            
Yiping Lu, Stanford->Courant->Northwestern                           
 
Massive data collecXon and computaXonal capabiliXes have enabled data-driven scienXfic discoveries and 
control of engineering systems. However, there are sXll several quesXons that should be answered to 
understand the fundamental limits of just how much can be discovered with data and what is the value of 
addiXonal informaXon. For example, 1) How can we learn a physics law or economic principle purely from 
data? 2) How hard is this task, both computaXonally and staXsXcally? 3) What’s the impact on hardness when 
we add further informaXon (e.g., adding data, model informaXon)? I’ll answer these three quesXons in this talk 
in two learning tasks. A key insight in both two cases is that using direct plug-in esXmators can result in 
staXsXcally subopXmal inference. 
 
The first learning task I’ll discuss is linear operator learning/funcXonal data analysis, which has wide 
applicaXons in causal inference, Xme series modeling, and condiXonal probability learning. We build the first 
min-max lower bound for this problem. The min-max rate has a parXcular structure where the more 
challenging parts of the input and output spaces determine the hardness of learning a linear operator. Our 
analysis also shows that an intuiXve discreXzaXon of the infinite-dimensional operator could lead to a sub-
opXmal staXsXcal learning rate. Then, I’ll discuss how, by suitably trading-off bias and variance, we can 
construct an esXmator with an opXmal learning rate for learning a linear operator between infinite dimension 
spaces. We also illustrate how this theory can inspire a mulXlevel machine-learning algorithm of potenXal 
pracXcal use. 
 
For the second learning task, we focus on variaXonal formulaXons for differenXal equaXon models. We discuss 
a prototypical Poisson equaXon. We provide a minimax lower bound for this problem. Based on the lower 
bounds, we discover that the variance in the direct plug-in esXmator makes sample complexity subopXmal. We 
also consider the opXmizaXon dynamic for different variaXonal forms. Finally, based on our theory, we explain 
an implicit acceleraXon of using a Sobolev norm as the objecXve funcXon for training. 
 
If Xme permiged, I'll also briefly talk about the staXsXcal limit of debiasing machine learning algorithm for 
scienXfic compuXng and how it's relates to rare event. 
 
 
Wavelet Galerkin Method for an ElectromagneAc ScaQering Problem            
Michelle Michelle, Purdue University                           



 
The Helmholtz equaXon is challenging to solve numerically due to the polluXon effect, which osen results in a 
huge ill-condiXoned linear system. We present a high order wavelet Galerkin method to numerically solve an 
electromagneXc scagering from a large cavity problem modeled by the 2D Helmholtz equaXon. The high 
approximaXon order and the sparse stable linear system offered by wavelets are useful in dealing with the 
polluXon effect. By using the direct approach presented in our past work, we present various opXmized spline 
biorthogonal wavelets on a bounded interval. We provide a self-contained proof to show that the tensor 
product of such wavelets forms a 2D Riesz wavelet in the appropriate Sobolev space. Compared to the 
coefficient matrix of a standard Galerkin method, when an iteraXve scheme is applied to the coefficient matrix 
of our wavelet Galerkin method, much fewer iteraXons are needed for the relaXve residuals to be within a 
tolerance level. Furthermore, for a fixed wavenumber, the number of required iteraXons is pracXcally 
independent of the size of the wavelet coefficient matrix. In contrast, when an iteraXve scheme is applied to 
the coefficient matrix of a standard Galerkin method, the number of required iteraXons doubles as the mesh 
size for each axis is halved. The implementaXon can also be done conveniently thanks to the simple structure, 
the refinability property, and the analyXc expression of our wavelet bases. 
 
 
Central-Upwind Schemes for Weakly Compressible Two-layer Shallow-Water Flows            
SarswaX Shah, NaXonal Autonomous University of Mexico                           
 
We formulate a weakly compressible two-layer shallow water flows in channels with arbitrary cross secXons. 
The standard approach for those flows results in a condiXonally hyperbolic balance law with non-conservaXve 
products while the current model is uncondiXonally hyperbolic. A detailed descripXon of the properXes of the 
model is provided, including entropy inequaliXes and entropy stability. Furthermore, a high-resoluXon, non-
oscillatory semi-discrete central-upwind scheme is presented. The scheme extends exisXng central-upwind 
semi-discrete numerical methods for hyperbolic balance laws. Along with the descripXon of the scheme, we 
present several numerical experiments that demonstrate the robustness of the numerical algorithm 
 
 
ExtracAng the geometry of low-dimensional secondary features of data           Bogdan Toader, Yale University                           
 
Data osen displays mulXple sources of variability and there is a rich literature focusing on extracXng useful 
low-dimensional features from such datasets. For example, mulXple views of the data can be used to extract 
common features, while each view displays secondary low-dimensional features that remain unexplored using 
standard methods. In this work, we propose an autoencoder that extracts the geometry of such private 
features in an unsupervised manner. We show a number of simple examples that capture the main properXes 
of this method, as well as its generalizaXon power. 
 
 
The Law of Parsimony in Gradient Descent for Learning Deep Linear Networks.           Peng Wang, The 
University of Michigan                           
 
Over the past few years, an extensively studied phenomenon in training deep networks is the implicit bias of 
gradient descent towards parsimonious soluXons. In this work, we invesXgate this phenomenon by narrowing 
our focus to deep linear networks. Through our analysis, we reveal a surprising ``law of parsimony'' in the 
learning dynamics when the data possesses low-dimensional structures. Specifically, we show that the 
evoluXon of gradient descent starXng from orthogonal iniXalizaXon only affects a minimal porXon of singular 
vector spaces across all weight matrices. In other words, the learning process happens only within a small 
invariant subspace of each weight matrix, despite the fact that all weight parameters are updated throughout 



training. This simplicity allows us to beger understand deep representaXon learning by elucidaXng the linear 
progressive separaXon and concentraXon of representaXons from shallow to deep layers. 
 
 
OpAmizaAon on Manifolds via Graph Gaussian Processes            
Ruiyi Yang, Princeton University                           
 
OpXmizaXon problems on smooth manifolds are ubiquitous in science and engineering. OsenXmes the 
manifolds are not known analyXcally and only available as an unstructured point cloud, so that gradient-based 
methods are not directly applicable. In this poster, we shall discuss a Bayesian opXmizaXon approach, which 
exploits a Gaussian process over the point cloud and an acquisiXon funcXon to sequenXally search for the 
global opXmizer. Regret bounds are established and several numerical examples demonstrate the effecXveness 
of our method. 
 
 
Learning CollecAve Behaviors from ObservaAon            
Ming Zhong, Illinois InsXtute of Technology                           
 
We present a family of learning methods to study collecXve behaviors such as clustering, flocking, swarming, 
synchronizaXon. Our learning methods can derive physically meaningful dynamical systems from observaXon 
data. Furthermore, our methods are efficient (able to handle high-dimensional data in linear Xme and learn 
even the feature variables), effecXve (able to learn many different kinds of dynamical systems), and 
convergent. We present extensive numerical experiments to support our theoreXcal claims as well as a real 
data study into how AI can discover laws of planetary moXon from NASA JPL's Horizon data of our solar 
system. 


