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Geodesic planes

— H3/T =M
— %g = E’Tg/F
—>(H X H)/F

l. Triangle groups

Triangle groups

A(2,3,7) c SLa(R)




Triangle groups
A(2,5,0) ¢ SLy(R)

Triangle groups

A(p,g,0) ¢ SL(R) lattice

Ti/p cusp
V HIA

Ti/q invariant trace field

Keg = Q(Tr(g?) : g € A(p,g,®))
= (cos(211/p), cos(2TT/q), cos(TT/p) cos(TT/q))

A(p,q,0) is arithmetic & Kyq= O

Arithmetic case A(2,3,00) =SLy(Z) =

G (5))

0 12 I

0 I matrix entries = 7
— columns (a,b), ged=1
z —-l/z

cusp = Q U {0}

Non-arithmetic case

A(p.q,%0)

matrix entries = ?

is more mysterious!
4 columns (a,b) ?

cusps = 7 U {}
Theorem

The cusps of A(p,g,0) coincide with P!(Kpq)
whenever deg(Ky»q/Q) = 2, and

satisfy quadratic height bounds.




The golden Hecke group

= A(2,5,0) =
Y = (1+V/5)12 z Sty <<1 7)7(0 1>>

v

0 1

-1 0

Cor
The cusps of T coincide with K = Q(~+/5) u {0}
Leutbecher, 1970s

Golden Continued Fractions

Cor
Every x in Q(+/5) can be expressed as a finite golden

continued fraction:
x = [al,aza3,...,aN] =

aly +

Yyt
I

any

’

a3Y+ I

with aj in Z.
Quadratic height bounds: N, max a; = O(l+h(x)) .

Golden Fractions

Cor
Every x in K= Q(+/5) can be written uniquely

as a “golden fraction’ x = alc, up to sign.

acin O =7[y] c K relatively prime

(a,c) column of a matrix in I

Quadratic height bounds: h(a)+h(c) = O(l+h(x)?) .

h(n) = log n




Thin group perspective
= A(2,50) C SL2(Z[Y])

. m .
lattice N N |attice

SL2(R) € SLa(R) x SLa(R)
\ c Xk

Galois symmetry is broken: [ is indiscrete

[ acts as a sieve to select one of infinitely many
expressions x = (Yk a)/(Ykc)-

Holomorphic pentagon-to-star map

[ = A(2,5,0) K

V — Xk covered by H — HxH

via x — (x,F(x)).

Curves on a Hilbert modular surface
cf. M, Moller-Viehweg

K = real quadratic field
X = (Hx H)/SL(O&0OY)

V=H/T & Xg

geodesic curve

Theorem Q

EitherV is a Shimura curve, or the cusps of V
coincide with P! (K) and satisfy quadratic

height bounds.
proof by descent

Triangle groups and Hilbert modular varieties

Theorem. Every A(p,q,00) comes from a geodesic
curveV in a Hilbert modular variety X.

Cohen and Wolfart
Bouw and Moller

Cor. All previous results follow from Theorem Q.




[l. Billiards

Billiards in a regular pentagon

A dense set of slopes are periodic.

Which ones?

How do the periodic trajectories behave!?

Slopes and lengths

4s
L(s) = 469

20s
L(s) = 2338

6765s
L(6765s) = 1.734 x 1025

Slopes, lengths and heights

Theorem
The periodic slopes coincide with

\ / Q(V5)s, and log L(xs) = O(h(x)?).

exponent 2 is sharp

Another instance of quadratic height bounds.




lll. Teichmuller curves

Billiards and Riemann surfaces

(X,w) = (Pdz) / gluing

X has genus 2
W has just one zero!

P

pentagon .

billiards = geodesics on (X,|W|)

Moduli space QF|,

Dynamical:
SL2(R) acts on QP

Polygon for A - (X,w) = A - (Polygon for (X,w))
Complex geodesics f:IH — Dlg

T2
T

f(T1) f(T2)

Teichmuller curves

SL(X,w) = stabilizer of (X,w) in SLa(R)

SL(X,w) lattice = SL»(R) orbit of (X,w) generates

an isometrically immersed Teichmiiller curve:

f:V=TH/SLX,w) = M,




Factorization through Xk Pentagon revisited

X
vV .+ M, =T,/ Mod, Theorem

/ In this case SL(X,w) = A(2,5,0).
JaC(X)\ /

Xg = (H x H)/T

Cor: Results on billiards also follow from
Theorem Q.

Similarly for
all families of optimal billiards

VI. Heights and Hilbert

I
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...since these are quadratic:  Eskin - Filip - Wright




Curves on a Hilbert modular surface

V =H/T & Xk

geodesic curve

Theorem Q

EitherV is a Shimura curve, or the cusps of V
coincide with P* (K) and satisfy quadratic
height bounds.

proof by descent

Proof of Theorem Q

Heights on P!(K)
Abelian varieties with real multiplication by K
Hilbert modular varieties

Curves on Hilbert modular surfaces

Heights on P"(K)

H(xz)=H(xg:x1: 1 xp) = Hmzax|xi\v.
v
comparable to

~

H(x) :ianmax|ai|v, lag : -+t an] = [2].
¢ v|oo ’ (aiare integers)

only requires knowledge of integers and
infinite places

Abelian varieties
A=Q(A)*/H\(A,Z) = C9/L
Polarization =Hermitian inner product on
Q(A)* =2 Hi(A,R)  suchthat

[07D] = _Im<C7D>

gives integral symplectic form on H,(A4,7).

Hodge norm:

IClla = (C,C)2  on  Hi(AR)




Example: The Jacobian

X compact Riemann surface, genus g
Q(X) = space of holomorphic |-forms, = CY
A =Jac(X) = Q(X)*/H1(X,Z)

. 1 _
Polarization: (Wi, wy) = 5/ w1 N Wa.
X

[C,D] = usual intersection form on H1(X,Z)

Hodge norm:

il =sunf| [ o] : o) =1}

Real multiplication

End(A) = ring of endomorphisms of A
as a complex Lie group

K totally real field of degree g = dim(A).

A has real multiplication by K if we are given a map

K — End(A) ® Q
such that Tk is self-adjoint for all k in K.
Eg. fin Aut(X) has order n = T = f+f-1 generates

real mult. by Q(cos(2TT/n)).

The projective line P} (K)

K CEnd(A)®@Q

]P)jlél(K) = space of K-lines in
Hl (Av @) = QQQ

Hodge norm at a place v

Diagonalize K on Q(A) and H,(A)

Ty = py(k) wy orthonormal eigenforms

Hl(A,R) — @USU —_— v
Il = Imal@la =] [ .
C
. 1
Cl, = [IC]13/* *Hodge valuation’




Height H4(x) on PL(K)

[‘{4($) — igf H |C|v

v|oo

(same K line)

Why a height?

Hy(x) =inf [T |Cl,

v|oo

H(z) = inf H max |a; |,

v|oo

Theorem. Given a linear isomorphism
L PL(K) — PYK)
H(u(z)) < Hy(x).

we have

How to make A with RM?
K = totally real field degree g over Q
O = ring of integers in K
T=(11,...,74) € HY
A=CI/000" T
(a,b) — (a; + b;T;)

Polarization =
usual inner product on Cs

Tk(2) = (kizi)

O C End(A) = A has real multiplication by K

Height on P1(K) from T

0+ b 1/2d
a. 7-.

H, — inf I

(z) a;l:%/a <1:[ Im 7; )

a,be O

d(1) = ir;f H-(x) >0

descends to a proper function on Xk




Case of a torus

A=C/Z®Zr H\(A,Z) = 72
K=Q
2
la + br|?
ICIh = [« =
C mrmT
Hodge norm

H-+(x) = length of geodesic with slope x = alb

Q
I
—_

Descent for SL»>7Z

Y(s)
t=Y(s) e H
albe Q

a/b

decreases like exp(-s)

H:(a/b)
no lower bound on H;
At =C / 7 @ tZ

= a/b is a cusp

g=2 Descent on a
curve Von a
Hilbert modular surface
t=Y(s) e H
a/b € Q(+v/D)
a/b
H+(a/b) T = (t,F(t)

Ar=C2/ 0 @®10Y

To show a/b in K is a cusp:
H+(a/b) ~ (t term) x (F(t) term)
< exp(-s) exp(|F’[ s)

When t lies over Vinick :
So Y spends only a finite

H+(a/b) = |
IFTE:)I )< S < | amount of time over Vinick
=
a/b is a cusp

QED Theorem Q




V. Hidden arithmetic
and modular symbols

What about matrix entries in A(2,5,00)?
M = all nonzero matrix entries
OM ={m’/m :m is in M}

R =-y2- dM.

Theorem

The closure of R is a countable semigroup in [-1,1],
homeomorphic to Ww + .

(Whereas 0 Z[Y] is dense in R.)

cf. Hilbert theorem 90.

Image of M under (m’/m, H(m))

Compare to WY in

Pisot numbers,
Weyl spectrum,
3D hyperbolic volumes, ...




Proof uses modular symbols
C

nonabelian

= formal products of geodesics between cusps

The space of modular symbols is itself

homeomorphic to W

V. The heptagon

Open problem

Regular 7-gon

K = Q(cos(211/7))
(cubic)

(i) Which slopes are periodic?

Shown: L(s)=7,

L(2's) = 2190.

(i) How long do we have to wait to test periodicity?!

Is there any algorithm at all?!!

Bold Conjecture

K = Q(cos(2T1/7))

Every x in K is the fixed point of a
parabolic or hyperbolic element g in A(2,7,0).

Due independently to Hanson-Merberg-Towse-Yudovina, and Boulanger;
further investigations by K. Winsor.




Davis-Lelievre

VII. A spectral gap
for triangles

Cusps
Theorem
Every Teichmiiller curve V — Mg has a cusp.

T most cases

Theorem
"Every’ geodesic curve V = Xy has a cusp,

provided dim(Xk)=2

What happens when dim(Xk) > 2?

What happens if dim Xk > 2?

Theorem

There exists a compact geodesic curve
V on a 6D Hilbert modular variety,

V=H/A - X

such that there is no compact Shimura variety with
VcSscXk




Spectral Gap

Theorem

For all but finitely many A(p,q,r),
# spherical and # hyperbolic places are about the same.

about /3 spherical

Cor (Takeuchi)

There are only finitely many arithmetic
triangle groups.
Cor (Waterman-Maclachlan)

There are only finitely many
purely hyperbolic triangle groups.

Galois conjugate triangles

111 112 113
2°3°7 2°377 2°377

hyperbolic spherical spherical

A(2,3,7) is arithmetic

38 arithmetic triangle groups

[commensurability classes]

(e1, €2, e3) Field Ram
1 | (2,3,00),(2,4,0),(2,6,00), (2,00,00), Q 0 Takeuchi
(3,3,00), (3,00,00), (4, 4, 00),
(6,6,00), (00,00,00)
2 [ (2,4,6),(2,6,6),(3,4,4),(3,6,6) Q 2,3 Maclachlan-Reid
3 {(2,3,8),(2,4,8),(2,6,8),(2,8,8),(3,3,4), | Q(V2) P2
(3,8,8), (4,4,4), (4,6,6),(4,8,8)
4 (2,3,12),(2,6,12),(3,3,6), (3,4,12), Q(v3) P2
(3,12,12), (6,6,6)
5 [ (2,4,12),(2,12,12),(4,4,6), (6,12, 12) Q(v3) Ps
6 | (2,4,5),(2,4,10),(2,5,5), (2,10, 10), Q(V3) P2
(4,4,5), (5,10, 10)
7] (256),(3,5,5) QWV5) Ps
8 [ (2,3,10),(2,5,10), (3,3,5), (5,5,5) Q(V5) Ps
9| (346) Q6) P2
10 | (2,3,7),(2,3,14),(2,4,7),(2,7,7), Q(cosm/7) | 0
(2,7,14),(3,3,7), (7,7,7)
11 (2,3,9),(2,3,18),(2,9,18),(3,3,9), Q(cos/9) 0
(3,6,18),(9,9,9)
12 | (2,4,18),(2,18,18),(4,4,9),(9,18,18) Q(cosm/9) P2, P3
13 | (2,3,16),(2,8,16), (3,3,8), Q(cos7/8) | P2
(4,16,16), (8,8,8)
14 | (2,5,20), (5,5, 10) Q(cos/10) | P2
15 | (2,3,24),(2,12,24), (3,3, 12), (3,8, 24), Q(cos/12) | P2
(6,24,24), (12,12,12)
16 | (2,5,30), (5,5,15) Q(cos/15) | Ps
17 | (2,3,30),(2,15,30), (3,3, 15), Q(cos/15) | Ps
(3,10,30), (15, 15, 15)
18 | (2,5,8),(4,5,5) QW2,v5) | P
19 | (2,3,11) Q(cos/11) | 0

(TR LS T TAT)

Purely hyperbolic

11 1 1 3 3
3107 10 3°10° 10

hyperbolic hyperbolic

1 8 13) (3 4 17)
14721742
(3 10 11) (5 2 19
14721742 1421742

all hyperbolic

)~ (




11 purely hyperbolic triangle groups

Degk, Degko: {4, 1} {hyp sphy: {1, o) M, Maclachlan-Waterman

Ramification@: [ 2, 3]

————————————-Delta{2, 6, 6}-—————————-——
DegK DegKo: {2 1} {hyp sph) {1, o}
Ramification@: [ 2, 3]

————————————-Delta{2, 6, 10}-————————m i !
DegK DegKo: {8 2} {hyp sph) {2, o} Con/. These are all!
Ramification@: [ Prime [5, @] [-1, 21, Prime [3, 0]I[]

———————————————— Delta{3, 4, 4}-——————————
DegK, Degke: {2, 1} {hyp sph}: {1, o}
Ramificationo: [ 2,

7777777777777777 Delta{3, 6, 6}-——-——-——-———
DegK, Degke: {2, 1} {hyp sph}: {1, o}
Ramificationo: [ 2,

———————————————— Delta{3, 10, 10}-------—————
DegK, Degke: {4, 2} {hyp,sph}: {2, 0}
Ramification@: [ Prime [5, @] [-1, 2], Prime [3, @]1[]

———————————————— Delta{4, 6, 12}----————————o
DegK, DegKe: {4, 2} {hyp,sph}: {2, o}
Ramification@: [ Prime [3, @] [@, 1], Prime [2, @] [1, 1]11[]

DegK, Degke: {4, 2} {hyp sph) {2, o}
Ramificationd: [ Prime (5, 0] [-1, 2], Prime [3, @]][]

———————————————— Delta{6, 9, 18}---—-———————m
DegK, Degke: {6, 3} {hyp,sph): {3, 0o}
Ramification@: [ Prime [3, 0, 0] [2, 1, @], Prime [2, @, 0]][]

———————————————— Delta{6, 10, 15}-----——————

DegK, Degke: {8, 4} {hyp, sph} {4 0

Ramification@: [Prlme 3, 0, o, 0] [0, 1, @, 1], Prime [5, 0, @, 0]
[2, 3, 0, 01111

---------------- Delta{14, 21, 42}-——————mmmmmmm
DegK, Degke: {12, 6} {hyp, sph) {6 0}
Ramification@: [1[]

VII. The (14,21,42)
triangle group

Fallacy

A = A(p,q,r) c SL2(R)
K = Q(traces of elements in A)

A can be realized as a subgroup of SL»(K)
correction

¢ quaternion algebra B = Q(A) splits over K

= A is purely hyperbolic

Theorem
Among the | | known purely hyperbolic cocompact triangle
groups, only A(14,21,42) is also split at all finite places.

Cor

A(14,21,42) embeds in SL(its inv. trace field K).

up to finite index




From (14,21,42) to an exotic curve

K= Q(COS 'I'I'/2|) degree 6

geodesic curve
on a 6D Hilbert
modular variety

V=H/A > X,

Theorem

Vis a compact geodesic curve, but there is no
compact Shimura variety withV c S c Xk

Proof: A is Zariski dense.

Start with A(14,21,42)

Pass to index 2

-w’\\\“\> ‘ \ ‘u \

Construct 5 maps H to H

QTR

'

REL




Image covers exoticV in Xk

Conjecture
A(14,21,42) is the only compact triangle group
which virtually embeds in SL;(its inv. trace field K).
Problem
Are there more examples of exotic curves?
For example, with dim Xx = 3?

Conclusion

The moving tablecloth game

Key step in proofs







