Exponential Mixing of Frame Flows for Geometrically Finite Hyperbolic Manifolds

Pratyush Sarkar

Exponential Mixing of Frame Flows

Pratyush Sarkar

Overview

Hyperbolic geometry Hyperbolic space Lattices The dynamical systems

Historical results

Nonlattices

Recent results

Proof ideas

Pratyush Sarkar

Hyperbolic geometry		
-		

Outline

Hyperbolic geometry

Hyperbolic space Lattices The dynamical systems

Historical results

Nonlattices

Recent results

Proof ideas

Pratyush Sarkar

Hyperbolic geometry			
11 I I	1		

Group of isometries

$$\begin{aligned} \mathsf{SL}_2(\mathbb{R}) &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{Mat}_{2 \times 2}(\mathbb{R}) : \mathit{ad} - \mathit{bc} = 1 \right\} \\ \mathsf{Example:} \ A &= \left\{ a_t = \mathsf{diag}(e^{t/2}, e^{-t/2}) \right\} \end{aligned}$$

Pratyush Sarkar

Group of isometries

$$\begin{aligned} \mathsf{SL}_2(\mathbb{R}) &= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{Mat}_{2 \times 2}(\mathbb{R}) : \mathit{ad} - \mathit{bc} = 1 \right\} \\ \mathsf{Example:} \ \mathcal{A} &= \{ a_t = \mathsf{diag}(e^{t/2}, e^{-t/2}) \} \end{aligned}$$

$$G = \mathsf{PSL}_2(\mathbb{R}) \frown \mathbb{H}^2$$
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

Pratyush Sarkar

Hyperbo	lic	geometry	
0000000			

Historical resul

Nonlattice

Recent results

Proof ideas

Hyperbolic space

Hyperbolic geometry		
<u> </u>		

Group of isometries

$$\begin{split} &\mathsf{SO}(n,1) = \{X \in \mathsf{Mat}_{(n+1)\times(n+1)}(\mathbb{R}) : {}^{\mathrm{t}}XJX = J, \mathsf{det}(X) = 1\} \\ &J = \mathsf{diag}(1,1,\ldots,1,-1) \end{split}$$

Group of isometries

$$\begin{aligned} &\mathsf{SO}(n,1) = \{X \in \mathsf{Mat}_{(n+1)\times(n+1)}(\mathbb{R}) : {}^{\mathrm{t}}XJX = J, \mathsf{det}(X) = 1\} \\ &J = \mathsf{diag}(1,1,\ldots,1,-1) \end{aligned}$$

Examples:

$$K = \left\{ \begin{pmatrix} R & 0 \\ 0 & I_1 \end{pmatrix} : R \in \mathsf{SO}(n) \right\}$$

Pratyush Sarkar

Group of isometries

$$\begin{aligned} &\mathsf{SO}(n,1) = \{X \in \mathsf{Mat}_{(n+1)\times(n+1)}(\mathbb{R}) : {}^{\mathrm{t}}XJX = J, \mathsf{det}(X) = 1\} \\ &J = \mathsf{diag}(1,1,\ldots,1,-1) \end{aligned}$$

Examples:

$$K = \left\{ \begin{pmatrix} R & 0 \\ 0 & I_1 \end{pmatrix} : R \in SO(n) \right\}$$
$$M = \left\{ \begin{pmatrix} R & 0 \\ 0 & I_2 \end{pmatrix} : R \in SO(n-1) \right\}$$

Pratyush Sarkar

 Hyperbolic geometry
 Historical results
 Nonlattices
 Recent results
 Proof ideas

 0000
 0000
 0000
 0000
 0000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000<

Group of isometries

$$\begin{aligned} &\mathsf{SO}(n,1) = \{X \in \mathsf{Mat}_{(n+1)\times(n+1)}(\mathbb{R}) : {}^{\mathrm{t}}XJX = J, \mathsf{det}(X) = 1\} \\ &J = \mathsf{diag}(1,1,\ldots,1,-1) \end{aligned}$$

Examples:

$$\begin{split} & \mathcal{K} = \left\{ \begin{pmatrix} R & 0 \\ 0 & I_1 \end{pmatrix} : R \in \mathrm{SO}(n) \right\} \\ & \mathcal{M} = \left\{ \begin{pmatrix} R & 0 \\ 0 & I_2 \end{pmatrix} : R \in \mathrm{SO}(n-1) \right\} \\ & \mathcal{A} = \left\{ a_t = \begin{pmatrix} I_{n-1} & 0 & 0 \\ 0 & \cosh(t) & \sinh(t) \\ 0 & \sinh(t) & \cosh(t) \end{pmatrix} : t \in \mathbb{R} \right\} \end{aligned}$$

Pratyush Sarkar

Hyperbolic geometry

Historical resu

Nonlattice

Recent results

Proof ideas

Group of isometries

 $\mathsf{SO}(n,1) \curvearrowright \mathbb{R}^{n,1}$ $G = \mathsf{SO}(n,1)^\circ \curvearrowright \mathbb{H}^n$

Pratyush Sarkar

Hyperbolic geometry		
Lattices		

• $\Gamma < G$ discrete subgroup

Pratyush Sarkar

Hyperbolic geometry		
Lattices		

\blacktriangleright $\Gamma < G$ discrete subgroup

• $\mu = G$ -invariant measure on $\Gamma \setminus G$ induced by Haar measure

Hyperbolic geometry		
Lattices		

- $\Gamma < G$ discrete subgroup
- $\mu = G$ -invariant measure on $\Gamma \setminus G$ induced by Haar measure
- Γ is said to be a **lattice** if μ is finite, say with mass 1.

Hyperbolic geometry		
Lattices		

- \blacktriangleright $\Gamma < G$ discrete subgroup
- ▶ $\mu = G$ -invariant measure on $\Gamma \setminus G$ induced by Haar measure
- Γ is said to be a **lattice** if μ is finite, say with mass 1.
- Example: $SL_2(\mathbb{Z}) < SL_2(\mathbb{R})$

Hyperbolic geometry		
Lattices		

- $\blacktriangleright \ \ \Gamma < G \ \ discrete \ \ subgroup$
- ▶ $\mu = G$ -invariant measure on $\Gamma \setminus G$ induced by Haar measure
- Γ is said to be a **lattice** if μ is finite, say with mass 1.
- Example: $SL_2(\mathbb{Z}) < SL_2(\mathbb{R})$
- $X = \Gamma \setminus \mathbb{H}^n$. If Γ is a lattice, X has finite volume.

Hyperbolic geometry		
Picture		

Pratyush Sarkar

Pratyush Sarkar

Hyperbolic geometry ○○○○○○○○●○	Historical results	Nonlattices	Recent results	Proof ideas
Goodosic flow				

Geodesic flow

 Geodesic flow on T¹(X): moves a unit tangent vector along a geodesic through it.

Geodesic flow: T¹(X) = Γ\G/M ∽ A (by matrix multiplication).

Hyperbolic geometry	Historical results	Nonlattices	Recent results	Proof ideas
Frame flow				

► Frame flow on F(X): moves a frame (positively oriented orthonormal basis) by parallel transport along a geodesic through, say, the first basis vector.

Frame flow: $F(X) = \Gamma \setminus G \curvearrowleft A$ (by matrix multiplication).

Hyperbolic geometry	Historical results	Nonlattices	Recent results	Proof ideas

Outline

Hyperbolic geometry Hyperbolic space Lattices The dynamical systems

Historical results

Nonlattices

Recent results

Proof ideas

Pratyush Sarkar

Historical results		

Theorem (Howe–Moore '79)

Let $X = \Gamma \setminus \mathbb{H}^n$ be of finite volume. The frame flow on $F(X) = \Gamma \setminus G$ is mixing:

$$orall \phi, \psi \in L^2(\Gamma \setminus G)$$
, we have
$$\lim_{t \to +\infty} \int_{\Gamma \setminus G} \phi(xa_t)\psi(x) \, d\mu(x) = \mu(\phi) \cdot \mu(\psi)$$

Pratyush Sarkar

Historical results		

Question

Can we say something stronger? More precisely, what is the $\ensuremath{\textit{rate}}$ of mixing?

Historical results		

Theorem (Ratner, Moore '87)

Let $X = \Gamma \setminus \mathbb{H}^n$ be of finite volume. The frame flow on $F(X) = \Gamma \setminus G$ is exponentially mixing:

 $\exists C > 0, \eta > 0$ such that $\forall \phi, \psi \in C^1(\Gamma \backslash G)$, we have

$$\left|\int_{\Gamma\setminus G}\phi(\mathsf{x}\mathsf{a}_t)\psi(\mathsf{x})\,d\mu(\mathsf{x})-\mu(\phi)\cdot\mu(\psi)\right|\leq Ce^{-\eta t}\|\phi\|_{C^1}\cdot\|\psi\|_{C^1}.$$

Hyperbolic geometry	Historical results ○○○○●	Nonlattices 0000	Recent results	Proof ideas

Question

Can we prove similar theorems for **infinite volume** hyperbolic manifolds?

	Nonlattices	

Outline

Hyperbolic geometry Hyperbolic space Lattices The dynamical systems

Historical results

Nonlattices

Recent results

Proof ideas

Pratyush Sarkar

	Nonlattices	
Limit set		

• The limit set Λ is the set of limit points of any orbit $\Gamma \cdot o$ in $\partial \mathbb{H}^n$.

	Nonlattices	
Limit set		

• The limit set Λ is the set of limit points of any orbit $\Gamma \cdot o$ in $\partial \mathbb{H}^n$.

• If $\#\Lambda > 2$, then Γ is said to be non-elementary.

	Nonlattices	
Limit set		

• The limit set Λ is the set of limit points of any orbit $\Gamma \cdot o$ in $\partial \mathbb{H}^n$.

• If $\#\Lambda > 2$, then Γ is said to be non-elementary.

The critical exponent δ_Γ is the abscissa of convergence of 𝒫(s) = Σ_{γ∈Γ} e^{-s⋅d(o,γ⋅o)}.

Pratyush Sarkar

• Hull(Λ) = convex hull of Λ

• Hull(Λ) = convex hull of Λ

•
$$Core(X) = \Gamma \setminus Hull(\Lambda) \subset X$$

• Hull(Λ) = convex hull of Λ

•
$$Core(X) = \Gamma \setminus Hull(\Lambda) \subset X$$

► If Core(X) is compact, then Γ and X are said to be convex cocompact.

• Hull(Λ) = convex hull of Λ

•
$$Core(X) = \Gamma \setminus Hull(\Lambda) \subset X$$

- If Core(X) is compact, then Γ and X are said to be convex cocompact.
- If Core(X)_ϵ for any ϵ > 0 has finite volume, then Γ and X are said to be geometrically finite.

	Nonlattices	
BMS measure		

The Bowen–Margulis–Sullivan measure ν is the measure of maximal entropy, say with mass 1.

	Nonlattices	
BMS measure		

The Bowen–Margulis–Sullivan measure ν is the measure of maximal entropy, say with mass 1.

Hyperbolic geometry	Historical results	Nonlattices	Recent results	Proof ideas
RMS moosure				

BMS measure

The Bowen–Margulis–Sullivan measure ν is the measure of maximal entropy, say with mass 1.

supp(ν) = {f ∈ F(X) : f[±] ∈ Λ} (projects onto the convex core).

► The Patterson–Sullivan measure ν^{PS} is the weak^{*} limit of $\frac{1}{\mathscr{P}(s)} \sum_{\gamma \in \Gamma} e^{-s \cdot d(o, \gamma \cdot o)} \delta_{\gamma \cdot o}$

	Nonlattices	
DMC moosure		

BMS measure

The Bowen–Margulis–Sullivan measure ν is the measure of maximal entropy, say with mass 1.

supp(ν) = {f ∈ F(X) : f[±] ∈ Λ} (projects onto the convex core).

► The Patterson–Sullivan measure ν^{PS} is the weak^{*} limit of $\frac{1}{\mathscr{P}(s)} \sum_{\gamma \in \Gamma} e^{-s \cdot d(o, \gamma \cdot o)} \delta_{\gamma \cdot o}$

• On F(\mathbb{H}^n), the BMS measure is $d\nu(f) = e^{\delta_{\Gamma}\beta_{f^+}(o,f)}e^{\delta_{\Gamma}\beta_{f^-}(o,f)}d\nu^{\mathrm{PS}}(f^+)d\nu^{\mathrm{PS}}(f^-)dt\,dm$

		Recent results	
Outline			

Hyperbolic geometry Hyperbolic space Lattices The dynamical system

Historical results

Nonlattices

Recent results

Proof ideas

Pratyush Sarkar

	Recent results	

Theorem (Babillot '02, Winter '15)

Let $\Gamma < G = \text{lsom}^+(\mathbb{H}^n_{\mathbb{K}})$ be geometrically finite and Zariski dense. The frame flow on $H(X) = \Gamma \setminus G$ is mixing with respect to the BMS measure:

$$orall \phi, \psi \in C_{c}(\Gamma \setminus G)$$
, we have
$$\lim_{t \to +\infty} \int_{\Gamma \setminus G} \phi(xa_{t})\psi(x) \, d\nu(x) = \nu(\phi) \cdot \nu(\psi).$$

Pratyush Sarkar

	Recent results	

Theorem (Mohammadi–Oh '15)

Let $\Gamma < G$ be geometrically finite and Zariski dense with $\delta_{\Gamma} > \max\left\{\frac{n-1}{2}, n-2\right\}$. The frame flow on $F(X) = \Gamma \setminus G$ is exponentially mixing with respect to the BMS measure:

 $\exists C > 0, \eta > 0$, and $\ell \in \mathbb{N}$ such that $\forall \phi, \psi \in C^{\infty}_{c}(\Gamma \backslash G)$, we have

$$\left|\int_{\Gamma\setminus G}\phi(\mathsf{x}\mathsf{a}_t)\psi(\mathsf{x})\,d\nu(\mathsf{x})-\nu(\phi)\cdot\nu(\psi)\right|\leq Ce^{-\eta t}\|\phi\|_{\mathcal{S}^\ell}\cdot\|\psi\|_{\mathcal{S}^\ell}.$$

	Recent results	

Theorem (S.–Winter '21)

Let $\Gamma < G$ be convex cocompact and Zariski dense. The frame flow on $F(X) = \Gamma \setminus G$ is exponentially mixing with respect to the BMS measure:

 $\exists C > 0, \eta > 0$ such that $\forall \phi, \psi \in C^1_c(\Gamma \setminus G)$, we have

$$\left|\int_{\Gamma\setminus G}\phi(xa_t)\psi(x)\,d\nu(x)-\nu(\phi)\cdot\nu(\psi)\right|\leq Ce^{-\eta t}\|\phi\|_{C^1}\cdot\|\psi\|_{C^1}.$$

	Recent results	

Theorem (Chow-S. '22)

Let $\Gamma < G = \text{Isom}^+(\mathbb{H}^n_{\mathbb{K}})$ be convex cocompact and Zariski dense. The frame flow on $H(X) = \Gamma \setminus G$ is exponentially mixing with respect to the BMS measure:

 $\exists C > 0, \eta > 0$ such that $\forall \phi, \psi \in C^1_c(\Gamma \backslash G)$, we have

$$\left|\int_{\Gamma\setminus G}\phi(xa_t)\psi(x)\,d\nu(x)-\nu(\phi)\cdot\nu(\psi)\right|\leq Ce^{-\eta t}\|\phi\|_{C^1}\cdot\|\psi\|_{C^1}.$$

	Recent results	

Theorem (Li–Pan–S. '23)

Let $\Gamma < G$ be geometrically finite and Zariski dense. The frame flow on $F(X) = \Gamma \setminus G$ is exponentially mixing with respect to the BMS measure:

 $\exists C > 0, \eta > 0$ such that $\forall \phi, \psi \in C^1(\Gamma \backslash G)$, we have

$$\left|\int_{\Gamma\setminus G}\phi(xa_t)\psi(x)\,d\nu(x)-\nu(\phi)\cdot\nu(\psi)\right|\leq Ce^{-\eta t}\|\phi\|_{C^1}\cdot\|\psi\|_{C^1}.$$

		Recent results	
Applications			

Applications

Counting orbit points, counting geodesics

Pratyush Sarkar

		Recent results 000000●	
Applications			

Counting orbit points, counting geodesics

Equidistribution of holonomy, equidistribution of horospheres

		Recent results 000000●	
Applications			

Counting orbit points, counting geodesics

Equidistribution of holonomy, equidistribution of horospheres

Spectral gaps

Pratyush Sarkar

		Proof ideas
Outline		

Hyperbolic geometry Hyperbolic space Lattices The dynamical system

Historical results

Nonlattices

Recent results

Proof ideas

Pratyush Sarkar

		Proof ideas ○●○○○
Framework		

▶ Use countably infinite coding developed by Li–Pan.

		Proof ideas ○●○○○
Framework		

- ► Use countably infinite coding developed by Li–Pan.
- ► Follow the frame flow version of Dolgopyat's method.

		Proof ideas ○●○○○
Framework		

- ▶ Use countably infinite coding developed by Li–Pan.
- Follow the frame flow version of Dolgopyat's method.
- Local non-integrability condition (LNIC)

		Proof ideas ○●○○○
Framework		

- ► Use countably infinite coding developed by Li–Pan.
- ► Follow the frame flow version of Dolgopyat's method.
- Local non-integrability condition (LNIC)
- ► Non-concentration property (NCP)

		Proof ideas ○●○○○
Framework		

- ► Use countably infinite coding developed by Li–Pan.
- Follow the frame flow version of Dolgopyat's method.
- Local non-integrability condition (LNIC)
- Non-concentration property (NCP)
- Large deviation property (LDP)

		Proof ideas ○○●○○
LNIC		

We need a strong form of non-integrability when dealing with the frame flow:

$$[\mathfrak{n}^+,\mathfrak{n}^-]=\mathfrak{a}\oplus\mathfrak{m}.$$

Integrability would be $[n^+, n^-] = 0$.

Pratyush Sarkar

		Proof ideas ○○○●○
NCP		

Not all frames accessible due to fractal nature of $supp(\nu)$. To deal with this, we need the non-concentration property:

 $\exists \delta > 0$ such that $\forall x \in \Lambda$, $\epsilon > 0$, and direction ω , $\exists y \in \Lambda \cap B_{\epsilon}(x)$ such that $|\langle y - x, \omega \rangle| \ge \epsilon \delta$.

True when Γ is convex cocompact. Not true when Γ is geometrically finite with cusps! Replace Λ with a certain large subset $\Lambda_{\epsilon} \subset \Lambda$.

		Proof ideas ○○○○●
LDP		

When Γ is geometrically finite **with cusps**, we need a large deviation property which ensures that under a certain random walk, we are mostly in Λ_{ϵ} :

$$\exists \kappa \in (0,1)$$
 such that $\forall \epsilon > 0$ and $n \in \mathbb{N}$, we have
 $u^{\mathrm{PS}}\{x \in \Lambda_0 : \#\{j \in \mathbb{N} : j \leq n, T^j(x) \in \Lambda_\epsilon\} < \kappa n\} \leq e^{-\kappa n}$

