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Hyperbolic plane

▶ H2 = {x + iy : y > 0}
▶ Constant sectional

curvature K = −1
▶ dsH2 = dsC

y

x

y
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Group of isometries

SL2(R) =
{(

a b
c d

)
∈ Mat2×2(R) : ad − bc = 1

}
Example: A =

{
at = diag

(
et/2, e−t/2)}

G = PSL2(R) ↷ H2(
a b
c d

)
· z = az + b

cz + d
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Hyperbolic space

▶ Hn = {(x1, x2, . . . , xn) : xn > 0}
▶ Constant sectional curvature

K = −1
▶ dsHn = dsRn

xn
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Group of isometries

SO(n, 1) = {X ∈ Mat(n+1)×(n+1)(R) : tXJX = J , det(X ) = 1}
J = diag(1, 1, . . . , 1,−1)

Examples:

K =
{(

R 0
0 I1

)
: R ∈ SO(n)

}

M =
{(

R 0
0 I2

)
: R ∈ SO(n − 1)

}

A =

at =

In−1 0 0
0 cosh(t) sinh(t)
0 sinh(t) cosh(t)

 : t ∈ R


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Group of isometries

SO(n, 1) ↷ Rn,1

G = SO(n, 1)◦ ↷ Hn
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Lattices

▶ Γ < G discrete subgroup

▶ µ = G-invariant measure on Γ\G induced by Haar measure

▶ Γ is said to be a lattice if µ is finite, say with mass 1.

▶ Example: SL2(Z) < SL2(R)

▶ X = Γ\Hn. If Γ is a lattice, X has finite volume.
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Picture
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Unit tangent and frame bundles for Hn

F(Hn)

project to the first basis vector

T1(Hn)

project to the basepoint

Hn

=

=

=

G

G/M

G/K
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Unit tangent and frame bundles for X = Γ\Hn

F(X )

project to the first basis vector
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Geodesic flow

▶ Geodesic flow on T1(X ): moves a unit tangent vector along a
geodesic through it.

▶ Geodesic flow: T1(X ) = Γ\G/M ↶ A (by matrix
multiplication).
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Frame flow

▶ Frame flow on F(X ): moves a frame (positively oriented
orthonormal basis) by parallel transport along a geodesic
through, say, the first basis vector.

▶ Frame flow: F(X ) = Γ\G ↶ A (by matrix multiplication).
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Theorem (Howe–Moore ’79)
Let X = Γ\Hn be of finite volume. The frame flow on
F(X ) = Γ\G is mixing:

∀ϕ, ψ ∈ L2(Γ\G), we have

lim
t→+∞

∫
Γ\G

ϕ(xat)ψ(x) dµ(x) = µ(ϕ) · µ(ψ).
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Question
Can we say something stronger? More precisely, what is the rate
of mixing?
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Theorem (Ratner, Moore ’87)
Let X = Γ\Hn be of finite volume. The frame flow on
F(X ) = Γ\G is exponentially mixing:

∃C > 0, η > 0 such that ∀ϕ, ψ ∈ C1(Γ\G), we have∣∣∣∣∣
∫

Γ\G
ϕ(xat)ψ(x) dµ(x) − µ(ϕ) · µ(ψ)

∣∣∣∣∣ ≤ Ce−ηt∥ϕ∥C1 · ∥ψ∥C1 .
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Question
Can we prove similar theorems for infinite volume hyperbolic
manifolds?
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Limit set

▶ The limit set Λ is the set of limit points of any orbit Γ · o in
∂Hn.

▶ If #Λ > 2, then Γ is said to be non-elementary.

▶ The critical exponent δΓ is the abscissa of convergence of
P(s) =

∑
γ∈Γ e−s·d(o,γ·o).
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Convex cocompact, geometrically finite

▶ Hull(Λ) = convex hull of Λ

▶ Core(X ) = Γ\ Hull(Λ) ⊂ X

▶ If Core(X ) is compact, then Γ and X are said to be convex
cocompact.

▶ If Core(X )ϵ for any ϵ > 0 has finite volume, then Γ and X are
said to be geometrically finite.

Pratyush Sarkar Exponential Mixing of Frame Flows



Hyperbolic geometry Historical results Nonlattices Recent results Proof ideas

Convex cocompact, geometrically finite

▶ Hull(Λ) = convex hull of Λ

▶ Core(X ) = Γ\ Hull(Λ) ⊂ X

▶ If Core(X ) is compact, then Γ and X are said to be convex
cocompact.

▶ If Core(X )ϵ for any ϵ > 0 has finite volume, then Γ and X are
said to be geometrically finite.

Pratyush Sarkar Exponential Mixing of Frame Flows



Hyperbolic geometry Historical results Nonlattices Recent results Proof ideas

Convex cocompact, geometrically finite

▶ Hull(Λ) = convex hull of Λ

▶ Core(X ) = Γ\ Hull(Λ) ⊂ X

▶ If Core(X ) is compact, then Γ and X are said to be convex
cocompact.

▶ If Core(X )ϵ for any ϵ > 0 has finite volume, then Γ and X are
said to be geometrically finite.

Pratyush Sarkar Exponential Mixing of Frame Flows



Hyperbolic geometry Historical results Nonlattices Recent results Proof ideas

Convex cocompact, geometrically finite

▶ Hull(Λ) = convex hull of Λ

▶ Core(X ) = Γ\ Hull(Λ) ⊂ X

▶ If Core(X ) is compact, then Γ and X are said to be convex
cocompact.

▶ If Core(X )ϵ for any ϵ > 0 has finite volume, then Γ and X are
said to be geometrically finite.

Pratyush Sarkar Exponential Mixing of Frame Flows



Hyperbolic geometry Historical results Nonlattices Recent results Proof ideas

BMS measure

▶ The Bowen–Margulis–Sullivan measure ν is the measure of
maximal entropy, say with mass 1.

▶ supp(ν) = {f ∈ F(X ) : f̃ ± ∈ Λ} (projects onto the convex
core).

▶ The Patterson–Sullivan measure νPS is the weak* limit of
1

P(s)
∑

γ∈Γ e−s·d(o,γ·o)δγ·o

▶ On F(Hn), the BMS measure is
dν(f ) = eδΓβf + (o,f )eδΓβf − (o,f ) dνPS(f +) dνPS(f −) dt dm
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Theorem (Babillot ’02, Winter ’15)
Let Γ < G = Isom+(Hn

K) be geometrically finite and Zariski dense.
The frame flow on H(X ) = Γ\G is mixing with respect to the BMS
measure:

∀ϕ, ψ ∈ Cc(Γ\G), we have

lim
t→+∞

∫
Γ\G

ϕ(xat)ψ(x) dν(x) = ν(ϕ) · ν(ψ).
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Theorem (Mohammadi–Oh ’15)
Let Γ < G be geometrically finite and Zariski dense with
δΓ > max

{
n−1

2 , n − 2
}

. The frame flow on F(X ) = Γ\G is
exponentially mixing with respect to the BMS measure:

∃C > 0, η > 0, and ℓ ∈ N such that ∀ϕ, ψ ∈ C∞
c (Γ\G), we have∣∣∣∣∣

∫
Γ\G

ϕ(xat)ψ(x) dν(x) − ν(ϕ) · ν(ψ)
∣∣∣∣∣ ≤ Ce−ηt∥ϕ∥Sℓ · ∥ψ∥Sℓ .
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Theorem (S.–Winter ’21)
Let Γ < G be convex cocompact and Zariski dense. The frame
flow on F(X ) = Γ\G is exponentially mixing with respect to the
BMS measure:

∃C > 0, η > 0 such that ∀ϕ, ψ ∈ C1
c (Γ\G), we have∣∣∣∣∣

∫
Γ\G

ϕ(xat)ψ(x) dν(x) − ν(ϕ) · ν(ψ)
∣∣∣∣∣ ≤ Ce−ηt∥ϕ∥C1 · ∥ψ∥C1 .
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Theorem (Chow–S. ’22)
Let Γ < G = Isom+(Hn

K) be convex cocompact and Zariski dense.
The frame flow on H(X ) = Γ\G is exponentially mixing with
respect to the BMS measure:

∃C > 0, η > 0 such that ∀ϕ, ψ ∈ C1
c (Γ\G), we have∣∣∣∣∣

∫
Γ\G

ϕ(xat)ψ(x) dν(x) − ν(ϕ) · ν(ψ)
∣∣∣∣∣ ≤ Ce−ηt∥ϕ∥C1 · ∥ψ∥C1 .
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Theorem (Li–Pan–S. ’23)
Let Γ < G be geometrically finite and Zariski dense. The frame
flow on F(X ) = Γ\G is exponentially mixing with respect to the
BMS measure:

∃C > 0, η > 0 such that ∀ϕ, ψ ∈ C1(Γ\G), we have∣∣∣∣∣
∫

Γ\G
ϕ(xat)ψ(x) dν(x) − ν(ϕ) · ν(ψ)

∣∣∣∣∣ ≤ Ce−ηt∥ϕ∥C1 · ∥ψ∥C1 .
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Applications

▶ Counting orbit points, counting geodesics

▶ Equidistribution of holonomy, equidistribution of horospheres

▶ Spectral gaps
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Framework

▶ Use countably infinite coding developed by Li–Pan.

▶ Follow the frame flow version of Dolgopyat’s method.

▶ Local non-integrability condition (LNIC)

▶ Non-concentration property (NCP)

▶ Large deviation property (LDP)
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LNIC

We need a strong form of non-integrability when dealing with the
frame flow:

[n+, n−] = a ⊕ m.

Integrability would be [n+, n−] = 0.
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NCP

Not all frames accessible due to fractal nature of supp(ν). To deal
with this, we need the non-concentration property:

∃δ > 0 such that ∀x ∈ Λ, ϵ > 0, and direction ω, ∃y ∈ Λ ∩ Bϵ(x)
such that |⟨y − x , ω⟩| ≥ ϵδ.

True when Γ is convex cocompact. Not true when Γ is
geometricaly finite with cusps! Replace Λ with a certain large
subset Λϵ ⊂ Λ.

Pratyush Sarkar Exponential Mixing of Frame Flows



Hyperbolic geometry Historical results Nonlattices Recent results Proof ideas

LDP

When Γ is geometricaly finite with cusps, we need a large
deviation property which ensures that under a certain random
walk, we are mostly in Λϵ:

∃κ ∈ (0, 1) such that ∀ϵ > 0 and n ∈ N, we have
νPS{x ∈ Λ0 : #{j ∈ N : j ≤ n,T j(x) ∈ Λϵ} < κn} ≤ e−κn.
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